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Abstract

Motivated by the k–digamma function, we introduce a k–extension of the Nielsen’s β–function, and
further study some properties and inequalities of the new function.
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1. Introduction and Preliminaries

The Nielsen’s β–function may be defined by any of the following equivalent forms (see [3], [5], [8],
[12]).

β(x) =

∫ 1

0

tx−1

1 + t
dt (x > 0)

=

∫ ∞
0

e−xt

1 + e−t
dt (x > 0)

=
∞∑
k=0

(−1)k

k + x
(x > 0)

=
1

2

{
ψ

(
x+ 1

2

)
− ψ

(x
2

)}
(x > 0),
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where ψ(u) = d
du

ln Γ(u) is the digamma or psi function and Γ(u) is the Euler’s Gamma function. It
satisfies the properties:

β(x+ 1) =
1

x
− β(x),

β(x) + β(1− x) =
π

sinπx
.

Additional properties of this function can also be found in [9]. As shown in [2] and [6], the Nielsen’s
β–function is very useful in evaluating and estimating certain integrals as well as some mathematical
constants. Recently in [10], the authors introduced and studied some properties of a q-analogue
of the function. In this paper, we continue the investigation by establishing a k–extension of the
function. The paper is motivated by the k–digamma function introduced by Dı́az and Pariguan [4].
In the meantime, we state the following definitions which are well–known in the literature.

Definition 1.1. A function h : I → R is said to be convex on I if

h(ax+ (1− a)y) ≤ ah(x) + (1− a)h(y)

holds for all x, y ∈ I and a ∈ [0, 1]. If h is twice differentiable, then it is said to be convex if and
only if h′′(x) ≥ 0 for every x ∈ I.

Definition 1.2. A function h : I → R+ is said to be logarithmically convex or in short log–convex
if lnh is convex on I. That is if

lnh(ax+ (1− a)y) ≤ a lnh(x) + (1− a) lnh(y),

or equivalently
h(ax+ (1− a)y) ≤ [h(x)]a[h(y)]1−a

for all x, y ∈ I and a ∈ [0, 1].

Definition 1.3. A function h : I → R is said to be completely monotonic on I if h has derivatives
of all order on I and

(−1)sh(s)(x) ≥ 0

for all x ∈ I and s ∈ N [13].

We now present our findings in the following sections.

2. k-Extension of Nielsen’s β-function

In this section, we introduce a k–extension (also called k–analogue) of the Nielsen’s β–function and
further study some properties and inequalities involving the new function. We begin by recalling the
following definitions concerning the k–Gamma function.

The k–Gamma function (also known as the k–analogue or k–extension of the classical Gamma
function) is defined by Dı́az and Pariguan [4] for k > 0 and x ∈ C\kZ as

Γk(x) = lim
n→∞

n!kn(nk)
x
k
−1

(x)n,k
=

∫ ∞
0

tx−1e−
tk

k dt.
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where (x)n,k = x(x+k)(x+2k) . . . (x+(n−1)k) is the Pochhammer k–symbol. Also, the k–Gamma
function satisfies the relations (see also [14])

Γk(x+ k) = xΓk(x),

Γk(k) = 1,

Γk(x)Γk(k − x) =
π

k sin
(
πx
k

) . (2.1)

Furthermore, the k–analogue of the Euler’s beta function is given as

Bk(x, y) =
Γk(x)Γk(y)

Γk(x+ y)
=

1

k

∫ 1

0

t
x
k
−1(1− t)

y
k
−1 dt (x > 0, y > 0). (2.2)

The logarithmic derivative of the k–Gamma function, which is termed the k–digamma function, is
defined as

ψk(x) =
d

dx
ln Γk(x) =

ln k − γ
k

− 1

x
+
∞∑
n=1

x

nk(nk + x)

=
ln k − γ

k
+
∞∑
n=0

(
1

nk + k
− 1

nk + x

)
(2.3)

=

∫ ∞
0

(
2e−t − e−kt

kt
− e−xt

1− e−kt

)
dt, (2.4)

where γ = 0.57721 . . . is the Euler–Mascheroni’s constant. It satisfies the properties (see also [7])

ψk(x+ k) =
1

x
+ ψk(x),

ψk(k) =
ln k − γ

k
,

ψk(k − x)− ψk(x) =
π

k
cot
(πx
k

)
. (2.5)

Remark 2.1. The integral representation (2.4) which is appearing for the first time, is derived as
follows. In the work [11], a (p, k)–analogue of the digamma function was given as

ψp,k(x) =
1

k
ln(pk)−

∫ ∞
0

1− e−k(p+1)t

1− e−kt
e−xt dt (p ∈ N, k > 0),

where limp→∞ ψp,k(x) = ψk(x) and limk→1 ψp,k(x) = ψp(x). By using the relation lnx =
∫∞
0

e−t−e−xt

t
dt

(see [1, p. 230]), we obtain

ψp,k(x) =
1

k

∫ ∞
0

e−t − e−pt

t
dt+

1

k

∫ ∞
0

e−t − e−kt

t
dt−

∫ ∞
0

1− e−k(p+1)t

1− e−kt
e−xt dt.

Then

ψk(x) = lim
p→∞

ψp,k(x) =
1

k

∫ ∞
0

2e−t − e−kt

t
dt−

∫ ∞
0

e−xt

1− e−kt
dt

=

∫ ∞
0

(
2e−t − e−kt

kt
− e−xt

1− e−kt

)
dt.

Also, it is worth noting from (2.4) that,

lim
k→1

ψk(x) =

∫ ∞
0

(
e−t

t
− e−xt

1− e−t

)
dt = ψ(x), (see [1, p. 259]).
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Motivated by these definitions, we introduce the k–extension of the Nielsen’s β–function in the
following definition.

Definition 2.2. The k-extension of the Nielsen’s β-function is defined for k > 0 by the following
equivalent forms:

βk(x) =
k

2

{
ψk

(
x+ k

2

)
− ψk

(x
2

)}
(x > 0) (2.6)

=
∞∑
n=0

(
k

2nk + x
− k

2nk + x+ k

)
(x > 0) (2.7)

=

∫ ∞
0

e−
xt
k

1 + e−t
dt (x > 0) (2.8)

=

∫ 1

0

t
x
k
−1

1 + t
dt (x > 0), (2.9)

where βk(x) = β(x) if k = 1.

Remark 2.3. Representations (2.7) and (2.8) are respectively derived from (2.3) and (2.4), and by
a change of variable, (2.9) is obtained from (2.8).

Proposition 2.4. The function βk(x) satisfies the functional equation

βk(x+ k) =
k

x
− βk(x) (2.10)

and the reflection formula

βk(x) + βk(k − x) =
π

sin
(
πx
k

) . (2.11)

Proof . By using representation (2.9), we obtain

βk(x+ k) + βk(x) =

∫ 1

0

t
x
k + t

x
k
−1

1 + t
dt =

∫ 1

0

t
x
k
−1 dt =

k

x
.

Next, by using (2.5), (2.6) and some trigonometric identities, we obtain

βk(x) + βk(k − x)

=
k

2

{
ψk

(
x

2
+
k

2

)
− ψk

(x
2

)
+ ψk

(
k − x

2

)
− ψk

(
k

2
− x

2

)}
=
k

2

{
ψk

(
k −

(
k

2
− x

2

))
− ψk

(
k

2
− x

2

)
+ ψk

(
k − x

2

)
− ψk

(x
2

)}
=
k

2

{π
k

cot
(π

2
− πx

2k

)
+
π

k
cot
(πx

2k

)}
=
π

2

{
cot
(π

2
− πx

2k

)
+ cot

(πx
2k

)}
=
π

2

{
tan
(πx

2k

)
+ cot

(πx
2k

)}
=

π

2 cos
(
πx
2k

)
sin
(
πx
2k

) =
π

sin
(
πx
k

) .
This completes the proof. �
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Remark 2.5. It can be deduced from (2.1), (2.2) and (2.11) that the function βk(x) is related to
the k-analogue of the Euler’s beta function, Bk(x, y) in the following ways

βk(x) + βk(k − x) = kBk(x, k − x),

βk(x) = −k d
dx

[
ln Bk

(
x

2
,
k

2

)]
.

By successive applications of (2.10), we obtain the generalized form

βk(x+ nk) =
n−1∑
s=0

(−1)n+1+sk

x+ sk
+ (−1)nβk(x),

where n ∈ N. Also, successive differentiation of (2.6), (2.8), (2.9) and (2.10) yields respectively

β
(n)
k (x) =

k

2n+1

{
ψ

(n)
k

(
x+ k

2

)
− ψ(n)

k

(x
2

)}
(x > 0)

=
(−1)n

kn

∫ ∞
0

tne−
xt
k

1 + e−t
dt (x > 0) (2.12)

=
1

kn

∫ 1

0

(ln t)nt
x
k
−1

1 + t
dt (x > 0),

β
(n)
k (x+ k) = (−1)n

n!k

xn+1
− β(n)

k (x) (x > 0) (2.13)

for n ∈ N0.

Remark 2.6. It follows readily from representation (2.12) that:

(i) βk(x) is positive and decreasing;

(ii) β
(n)
k (x) is positive and decreasing if n ∈ N0 is even;

(iii) β
(n)
k (x) is negative and increasing if n ∈ N0 is odd.

Theorem 2.7. The function βk(x) is

(a) logarithmically convex on (0,∞);

(b) completely monotonic on (0,∞).

Proof . (a) Let r > 1, s > 1 and 1
r

+ 1
s

= 1 and x, y ∈ (0,∞). Then by (2.9) and the Hölder’s
inequality, we obtain

βk

(x
r

+
y

s

)
=

∫ 1

0

t
x
kr

+ y
ks
−1

1 + t
dt

=

∫ 1

0

t
x−k
kr

(1 + t)
1
r

t
y−k
ks

(1 + t)
1
s

dt

≤
(∫ 1

0

t
x
k
−1

1 + t
dt

) 1
r
(∫ 1

0

t
y
k
−1

1 + t
dt

) 1
s

= [βk(x)]
1
r [βk(y)]

1
s .
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Hence βk(x) is logarithmically convex on (0,∞).
(b) It follows easily from (2.12) that

(−1)nβ
(n)
k (x) =

(−1)2n

kn

∫ ∞
0

tne−
xt
k

1 + e−t
dt ≥ 0.

Thus, βk(x) is completely monotonic on (0,∞). �

Remark 2.8. The log–convexity of βk(x) implies that:

(a) the Turan–type inequality βk(x)β′′k(x)− (β′k(x))2 ≥ 0 holds for x > 0;

(b) the function
β′k(x)

βk(x)
is increasing on (0,∞).

Theorem 2.9. The inequality

βk(x+ k)βk(y + k) ≤ (ln 2)βk(x+ y + k)

holds for x, y ∈ [0,∞).

Proof . Let F and λ be defined for x, y ∈ [0,∞) as

F (x, y) =
βk(x+ k)βk(y + k)

βk(x+ y + k)

and
λ(x, y) = lnF (x, y) = ln βk(x+ k) + ln βk(y + k)− ln βk(x+ y + k).

Then by fixing y, we obtain

λ′(x, y) =
β′k(x+ k)

βk(x+ k)
− β′k(x+ y + k)

βk(x+ y + k)
≤ 0,

since
β′k(x)

βk(x)
is increasing for x > 0. Thus, λ(x, y) is nonincreasing. Consequently, F (x, y) is also

nonincreasing. Then for x ≥ 0, we have F (x, y) ≤ F (0, y) which gives

βk(x+ k)βk(y + k)

βk(x+ y + k)
≤ βk(k) = ln 2.

�

Theorem 2.10. The inequality

βk(x)βk(x+ y + z)− βk(x+ y)βk(x+ z) > 0

holds for positive real numbers x, y and z.

Proof . Let h be defined for positive real numbers x and z as

h(x) =
βk(x+ z)

βk(x)
.

Then, it suffices to show that h is increasing. Let η(x) = lnh(x). Then

η′(x) =
β′k(x+ z)

βk(x+ z)
− β′k(x)

βk(x)
> 0.

Thus, η(x) and consequently h(x) are increasing. Hence for y > 0, we have h(x + y) > h(x) which
gives the desired result. �
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Theorem 2.11. The inequality

[βk(1 + k)]a

βk(a+ k)
≤ [βk(x+ k)]a

βk(ax+ k)
≤ (ln 2)a−1 (2.14)

holds for a ≥ 1 and x ∈ [0, 1]. It reverses if 0 < a ≤ 1.

Proof . Let a ≥ 1, Q(x) = [βk(x+k)]
a

βk(ax+k)
and g(x) = lnQ(x) for x ≥ 0. Then

g′(x) = a

[
β′k(x+ k)

βk(x+ k)
− β′k(ax+ k)

βk(ax+ k)

]
≤ 0.

Thus, Q(x) is nonincreasing. Then for x ∈ [0, 1], we have Q(1) ≤ Q(x) ≤ Q(0) which yields the
result (2.14). If 0 < a ≤ 1, then we obtain g′(x) ≥ 0 which implies that Q(x) is nondecreasing. Then
for x ∈ [0, 1], we obtain Q(0) ≤ Q(x) ≤ Q(1) which gives the reverse of (2.14). �

3. Some results involving
∣∣∣β(n)

k (x)
∣∣∣

In this section we study some properties and inequalities of the function
∣∣∣β(n)
k (x)

∣∣∣ where n ∈ N0. To

start with, we note that
∣∣∣β(n)
k (x)

∣∣∣ = (−1)nβ
(n)
k (x) for all n ∈ N0. This together with relation (2.13)

yields ∣∣∣β(n)
k (x+ k)

∣∣∣ =
n!k

xn+1
−
∣∣∣β(n)
k (x)

∣∣∣ . (3.1)

We also note that, if f(x) =
∣∣∣β(n)
k (x)

∣∣∣, then f ′(x) = −
∣∣∣β(n+1)
k (x)

∣∣∣. This implies that the f(x) is

decreasing for all n ∈ N.

Proposition 3.1. Let ∆n be defined for x > 0 and n ∈ N as

∆n(x) =
xn+1

n!

∣∣∣β(n)
k (x)

∣∣∣ .
Then,

lim
x→0

∆n(x) = k and lim
x→0

∆′n(x) = 0.

Proof . It follows from (3.1) that

lim
x→0

∆n(x) = lim
x→0

{
k − xn+1

n!

∣∣∣β(n)
k (x+ k)

∣∣∣} = k.

Also,

lim
x→0

∆′n(x) = lim
x→0

{
xn+1

n!

∣∣∣β(n+1)
k (x+ k)

∣∣∣− (n+ 1)xn

n!

∣∣∣β(n)
k (x+ k)

∣∣∣} = 0.

�

Theorem 3.2. Let n ∈ N0, r > 1, s > 1 and 1
r

+ 1
s

= 1. Then, the inequality∣∣∣β(n)
k

(x
r

+
y

s

)∣∣∣ ≤ ∣∣∣β(n)
k (x)

∣∣∣ 1r ∣∣∣β(n)
k (y)

∣∣∣ 1s , (3.2)

holds for x, y > 0.
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Proof . Similarly, by the relation (2.12) and the Hölder’s inequality, we obtain∣∣∣β(n)
k

(x
r

+
y

s

)∣∣∣ =
1

kn

∫ ∞
0

tne−(
x
kr

+ y
ks

)t

1 + e−t
dt

=
1

kn

∫ ∞
0

t
n
r e−

xt
kr

(1 + e−t)
1
r

t
n
s e−

yt
ks

(1 + e−t)
1
s

dt

≤

(
1

kn

∫ ∞
0

tne−
xt
k

1 + e−t
dt

) 1
r
(

1

kn

∫ ∞
0

tne−
yt
k

1 + e−t
dt

) 1
s

=
∣∣∣β(n)
k (x)

∣∣∣ 1r ∣∣∣β(n)
k (y)

∣∣∣ 1s ,
which completes the proof. �

Remark 3.3. Inequality (3.2) implies that the function
∣∣∣β(n)
k (x)

∣∣∣ is log–convex for all n ∈ N0. This

further implies that:

(a) the inequality
∣∣∣β(n+2)
k (x)

∣∣∣ . ∣∣∣β(n)
k (x)

∣∣∣− ∣∣∣β(n+1)
k (x)

∣∣∣2 ≥ 0 holds;

(b) the function
∣∣∣β(n+1)
k (x)

∣∣∣ / ∣∣∣β(n)
k (x)

∣∣∣ is decreasing.

Theorem 3.4. Let n ∈ N0. Then the inequality∣∣∣β(n)
k (x+ y)

∣∣∣ < ∣∣∣β(n)
k (x)

∣∣∣+
∣∣∣β(n)
k (y)

∣∣∣ (3.3)

holds for x, y > 0.

Proof . Let Fk(x, y) =
∣∣∣β(n)
k (x+ y)

∣∣∣ − ∣∣∣β(n)
k (x)

∣∣∣ − ∣∣∣β(n)
k (y)

∣∣∣ for n ∈ N0. Without loss of generality,

let y be fixed. Then,

F ′k(x, y) =
∣∣∣β(n+1)
k (x)

∣∣∣− ∣∣∣β(n+1)
k (x+ y)

∣∣∣
> 0,

since
∣∣∣β(n)
k (x)

∣∣∣ is decreasing for all n ∈ N0. Thus, Fk(x, y) is increasing. Moreover,

lim
x→∞

Fk(x, y) = lim
x→∞

{∣∣∣β(n)
k (x+ y)

∣∣∣− ∣∣∣β(n)
k (x)

∣∣∣− ∣∣∣β(n)
k (y)

∣∣∣}
= −

∣∣∣β(n)
k (y)

∣∣∣
< 0.

Therefore, Fk(x, y) ≤ limx→∞ Fk(x, y) < 0 which gives the result (3.3). �

Theorem 3.5. Let n ∈ N0, a > 0, and x > 0. Then the inequalities∣∣∣β(n)
k (ax)

∣∣∣ ≤ a
∣∣∣β(n)
k (x)

∣∣∣ if a ≥ 1, (3.4)

and ∣∣∣β(n)
k (ax)

∣∣∣ ≥ a
∣∣∣β(n)
k (x)

∣∣∣ if a ≤ 1, (3.5)

are satisfied.
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Proof . Let a ≥ 1 and Hk(x) =
∣∣∣β(n)
k (ax)

∣∣∣− a ∣∣∣β(n)
k (x)

∣∣∣. Then,

H ′k(x) = a
{∣∣∣β(n+1)

k (x)
∣∣∣− ∣∣∣β(n+1)

k (ax)
∣∣∣}

≥ 0.

Hence, Hk(x) is nondecreasing. Moreover, limx→∞Hk(x) = 0. Therefore, Hk(x) ≤ limx→∞Hk(x) = 0
which gives the result (3.4). Similarly, if a ≤ 1, we obtain H ′k(x) ≤ 0 and Hk(x) ≥ limx→∞Hk(x) = 0
yielding the result (3.5). �

Remark 3.6. It is interesting to note that the result (3.3) coincides with (3.4) if x = y in (3.3) and
a = 2 in (3.4).

The following lemma is known in the literature as the the convolution theorem for Laplace transforms:

Lemma 3.7. Let f(t) and g(t) be any two functions with convolution f ∗ g =
∫ t
0
f(s)g(t − s) ds.

Then the Laplace transform of the convolution is given as

L{f ∗ g} = L{f}L {g} .

That is ∫ ∞
0

[∫ t

0

f(s)g(t− s) ds
]
e−xt dt =

∫ ∞
0

f(t)e−xt dt

∫ ∞
0

g(t)e−xt dt. (3.6)

Theorem 3.8. Let Gk be defined for k > 0, n ∈ N0 and x > 0 as

Gk(x) = kx
∣∣∣β(n)
k (x)

∣∣∣ .
Then, Gk(x) is decreasing.

Proof . By using the relation n!
xn+1 =

∫∞
0
tne−xt dt for x > 0 and n ∈ N0, which is derived from

the Gamma function, and by the convolution theorem for Laplace transforms (3.6), we obtain the
following.

G′k(x) = k
∣∣∣β(n)
k (x)

∣∣∣− kx ∣∣∣β(n+1)
k (x)

∣∣∣
= x

[
k

x

∣∣∣β(n)
k (x)

∣∣∣− k ∣∣∣β(n+1)
k (x)

∣∣∣] ,
G′k(x)

x
=
k

x

∣∣∣β(n)
k (x)

∣∣∣− k ∣∣∣β(n+1)
k (x)

∣∣∣
=

∫ ∞
0

e−
xt
k dt · 1

kn

∫ ∞
0

tne−
xt
k

1 + e−t
dt− k

kn+1

∫ ∞
0

tn+1e−
xt
k

1 + e−t
dt

=
1

kn

∫ ∞
0

[∫ t

0

sn

1 + e−s
ds

]
e−

xt
k dt− 1

kn

∫ ∞
0

tn+1e−
xt
k

1 + e−t
dt

=
1

kn

∫ ∞
0

An(t)e−
xt
k dt,

where

An(t) =

∫ t

0

sn

1 + e−s
ds− tn+1

1 + e−t
.
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Then An(0) = limt→0+ An(t) = 0. Furthermore,

A′n(t) =
tn

1 + e−t
− (n+ 1)tn

1 + e−t
− tn+1e−t

(1 + e−t)2

= − tn

1 + e−t

[
n+

te−t

1 + e−t

]
< 0,

which implies that An(t) is decreasing. Then for t > 0, we obtain An(t) < An(0) = 0. Thus,
G′k(x) < 0 which completes the proof. �

Theorem 3.9. Let k > 0 and n ∈ N0. Then the inequality∣∣∣β(n)
k (xy)

∣∣∣ < ∣∣∣β(n)
k (x)

∣∣∣+
∣∣∣β(n)
k (y)

∣∣∣ , (3.7)

holds for x > 0 and y ≥ 1.

Proof . Let Tk(x, y) = k
∣∣∣β(n)
k (xy)

∣∣∣ − k ∣∣∣β(n)
k (x)

∣∣∣ − k ∣∣∣β(n)
k (y)

∣∣∣ for k > 0, n ∈ N0, x > 0 and y ≥ 1.

Let y be fixed. Then

T ′k(x, y) = −ky
∣∣∣β(n+1)
k (xy)

∣∣∣+ k
∣∣∣β(n+1)
k (x)

∣∣∣
=

1

x

{
kx
∣∣∣β(n+1)
k (x)

∣∣∣− kxy ∣∣∣β(n+1)
k (xy)

∣∣∣}
≥ 0,

since kx
∣∣∣β(n)
k (x)

∣∣∣ is decreasing. Hence, Tk(x, y) is nondecreasing. Then for 0 < x <∞, we obtain

Tk(x, y) ≤ lim
x→∞

Tk(x, y) = −k
∣∣∣β(n)
k (y)

∣∣∣ < 0,

which gives the result (3.7). �

4. Concluding Remarks

Motivated by the k–digamma function, we have introduced a k–extension of the Nielsen’s β–function,
and further studied some properties and inequalities concerning the new function.
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