On a k-extension of the Nielsen's β-function

Kwara Nantomah ${ }^{\text {a,* }}$, Kottakkaran Sooppy Nisar ${ }^{\text {b }}$, Kuldeep Singh Gehlot ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Mathematical Sciences, University for Development Studies, Navrongo Campus, P.O. Box 24, Navrongo, UE/R, Ghana
${ }^{b}$ Department of Mathematics, College of Arts and Science-Wadi Aldawaser, 11991, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
${ }^{\text {c Government College Jodhpur, JNV University Jodhpur, Rajasthan, India-306401 }}$

(Communicated by M.B. Ghaemi)

Abstract

Motivated by the k-digamma function, we introduce a k-extension of the Nielsen's β-function, and further study some properties and inequalities of the new function.

Keywords: Nielsen's β-function, k-extension, k-digamma function, Inequality.
2010 MSC: Primary 33Bxx; Secondary 33B99, 26A48.

1. Introduction and Preliminaries

The Nielsen's β-function may be defined by any of the following equivalent forms (see [3] , 5], [8, [12]).

$$
\begin{aligned}
\beta(x) & =\int_{0}^{1} \frac{t^{x-1}}{1+t} d t \quad(x>0) \\
& =\int_{0}^{\infty} \frac{e^{-x t}}{1+e^{-t}} d t \quad(x>0) \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+x} \quad(x>0) \\
& =\frac{1}{2}\left\{\psi\left(\frac{x+1}{2}\right)-\psi\left(\frac{x}{2}\right)\right\} \quad(x>0)
\end{aligned}
$$

[^0]where $\psi(u)=\frac{d}{d u} \ln \Gamma(u)$ is the digamma or psi function and $\Gamma(u)$ is the Euler's Gamma function. It satisfies the properties:
\[

$$
\begin{aligned}
\beta(x+1) & =\frac{1}{x}-\beta(x), \\
\beta(x)+\beta(1-x) & =\frac{\pi}{\sin \pi x} .
\end{aligned}
$$
\]

Additional properties of this function can also be found in [9]. As shown in [2] and [6, the Nielsen's β-function is very useful in evaluating and estimating certain integrals as well as some mathematical constants. Recently in [10], the authors introduced and studied some properties of a q-analogue of the function. In this paper, we continue the investigation by establishing a k-extension of the function. The paper is motivated by the k-digamma function introduced by Díaz and Pariguan [4]. In the meantime, we state the following definitions which are well-known in the literature.

Definition 1.1. A function $h: I \rightarrow \mathbb{R}$ is said to be convex on I if

$$
h(a x+(1-a) y) \leq a h(x)+(1-a) h(y)
$$

holds for all $x, y \in I$ and $a \in[0,1]$. If h is twice differentiable, then it is said to be convex if and only if $h^{\prime \prime}(x) \geq 0$ for every $x \in I$.

Definition 1.2. A function $h: I \rightarrow \mathbb{R}^{+}$is said to be logarithmically convex or in short log-convex if $\ln h$ is convex on I. That is if

$$
\ln h(a x+(1-a) y) \leq a \ln h(x)+(1-a) \ln h(y),
$$

or equivalently

$$
h(a x+(1-a) y) \leq[h(x)]^{a}[h(y)]^{1-a}
$$

for all $x, y \in I$ and $a \in[0,1]$.
Definition 1.3. A function $h: I \rightarrow \mathbb{R}$ is said to be completely monotonic on I if h has derivatives of all order on I and

$$
(-1)^{s} h^{(s)}(x) \geq 0
$$

for all $x \in I$ and $s \in \mathbb{N}[13]$.
We now present our findings in the following sections.

2. \boldsymbol{k}-Extension of Nielsen's $\boldsymbol{\beta}$-function

In this section, we introduce a k-extension (also called k-analogue) of the Nielsen's β-function and further study some properties and inequalities involving the new function. We begin by recalling the following definitions concerning the k-Gamma function.

The k-Gamma function (also known as the k-analogue or k-extension of the classical Gamma function) is defined by Díaz and Pariguan [4] for $k>0$ and $x \in \mathbb{C} \backslash k \mathbb{Z}$ as

$$
\Gamma_{k}(x)=\lim _{n \rightarrow \infty} \frac{n!k^{n}(n k)^{\frac{x}{k}-1}}{(x)_{n, k}}=\int_{0}^{\infty} t^{x-1} e^{-\frac{t^{k}}{k}} d t .
$$

where $(x)_{n, k}=x(x+k)(x+2 k) \ldots(x+(n-1) k)$ is the Pochhammer k-symbol. Also, the k-Gamma function satisfies the relations (see also [14])

$$
\begin{align*}
\Gamma_{k}(x+k) & =x \Gamma_{k}(x), \\
\Gamma_{k}(k) & =1, \\
\Gamma_{k}(x) \Gamma_{k}(k-x) & =\frac{\pi}{k \sin \left(\frac{\pi x}{k}\right)} . \tag{2.1}
\end{align*}
$$

Furthermore, the k-analogue of the Euler's beta function is given as

$$
\begin{equation*}
\mathbf{B}_{k}(x, y)=\frac{\Gamma_{k}(x) \Gamma_{k}(y)}{\Gamma_{k}(x+y)}=\frac{1}{k} \int_{0}^{1} t^{\frac{x}{k}-1}(1-t)^{\frac{y}{k}-1} d t \quad(x>0, y>0) . \tag{2.2}
\end{equation*}
$$

The logarithmic derivative of the k-Gamma function, which is termed the k-digamma function, is defined as

$$
\begin{align*}
\psi_{k}(x)=\frac{d}{d x} \ln \Gamma_{k}(x) & =\frac{\ln k-\gamma}{k}-\frac{1}{x}+\sum_{n=1}^{\infty} \frac{x}{n k(n k+x)} \\
& =\frac{\ln k-\gamma}{k}+\sum_{n=0}^{\infty}\left(\frac{1}{n k+k}-\frac{1}{n k+x}\right) \tag{2.3}\\
& =\int_{0}^{\infty}\left(\frac{2 e^{-t}-e^{-k t}}{k t}-\frac{e^{-x t}}{1-e^{-k t}}\right) d t, \tag{2.4}
\end{align*}
$$

where $\gamma=0.57721 \ldots$ is the Euler-Mascheroni's constant. It satisfies the properties (see also [7])

$$
\begin{align*}
\psi_{k}(x+k) & =\frac{1}{x}+\psi_{k}(x), \\
\psi_{k}(k) & =\frac{\ln k-\gamma}{k} \\
\psi_{k}(k-x)-\psi_{k}(x) & =\frac{\pi}{k} \cot \left(\frac{\pi x}{k}\right) . \tag{2.5}
\end{align*}
$$

Remark 2.1. The integral representation (2.4) which is appearing for the first time, is derived as follows. In the work [11], a (p, k)-analogue of the digamma function was given as

$$
\psi_{p, k}(x)=\frac{1}{k} \ln (p k)-\int_{0}^{\infty} \frac{1-e^{-k(p+1) t}}{1-e^{-k t}} e^{-x t} d t \quad(p \in \mathbb{N}, k>0)
$$

where $\lim _{p \rightarrow \infty} \psi_{p, k}(x)=\psi_{k}(x)$ and $\lim _{k \rightarrow 1} \psi_{p, k}(x)=\psi_{p}(x)$. By using the relation $\ln x=\int_{0}^{\infty} \frac{e^{-t}-e^{-x t}}{t} d t$ (see [1, p. 230]), we obtain

$$
\psi_{p, k}(x)=\frac{1}{k} \int_{0}^{\infty} \frac{e^{-t}-e^{-p t}}{t} d t+\frac{1}{k} \int_{0}^{\infty} \frac{e^{-t}-e^{-k t}}{t} d t-\int_{0}^{\infty} \frac{1-e^{-k(p+1) t}}{1-e^{-k t}} e^{-x t} d t .
$$

Then

$$
\begin{aligned}
\psi_{k}(x)=\lim _{p \rightarrow \infty} \psi_{p, k}(x) & =\frac{1}{k} \int_{0}^{\infty} \frac{2 e^{-t}-e^{-k t}}{t} d t-\int_{0}^{\infty} \frac{e^{-x t}}{1-e^{-k t}} d t \\
& =\int_{0}^{\infty}\left(\frac{2 e^{-t}-e^{-k t}}{k t}-\frac{e^{-x t}}{1-e^{-k t}}\right) d t .
\end{aligned}
$$

Also, it is worth noting from (2.4) that,

$$
\lim _{k \rightarrow 1} \psi_{k}(x)=\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-x t}}{1-e^{-t}}\right) d t=\psi(x), \text { (see [1, p. 259]). }
$$

Motivated by these definitions, we introduce the k-extension of the Nielsen's β-function in the following definition.

Definition 2.2. The k-extension of the Nielsen's β-function is defined for $k>0$ by the following equivalent forms:

$$
\begin{align*}
\beta_{k}(x) & =\frac{k}{2}\left\{\psi_{k}\left(\frac{x+k}{2}\right)-\psi_{k}\left(\frac{x}{2}\right)\right\} \quad(x>0) \tag{2.6}\\
& =\sum_{n=0}^{\infty}\left(\frac{k}{2 n k+x}-\frac{k}{2 n k+x+k}\right) \quad(x>0) \tag{2.7}\\
& =\int_{0}^{\infty} \frac{e^{-\frac{x t}{k}}}{1+e^{-t}} d t \quad(x>0) \tag{2.8}\\
& =\int_{0}^{1} \frac{t^{\frac{x}{k}-1}}{1+t} d t \quad(x>0) \tag{2.9}
\end{align*}
$$

where $\beta_{k}(x)=\beta(x)$ if $k=1$.
Remark 2.3. Representations (2.7) and (2.8) are respectively derived from (2.3) and (2.4), and by a change of variable, (2.9) is obtained from (2.8).

Proposition 2.4. The function $\beta_{k}(x)$ satisfies the functional equation

$$
\begin{equation*}
\beta_{k}(x+k)=\frac{k}{x}-\beta_{k}(x) \tag{2.10}
\end{equation*}
$$

and the reflection formula

$$
\begin{equation*}
\beta_{k}(x)+\beta_{k}(k-x)=\frac{\pi}{\sin \left(\frac{\pi x}{k}\right)} . \tag{2.11}
\end{equation*}
$$

Proof . By using representation (2.9), we obtain

$$
\beta_{k}(x+k)+\beta_{k}(x)=\int_{0}^{1} \frac{t^{\frac{x}{k}}+t^{\frac{x}{k}-1}}{1+t} d t=\int_{0}^{1} t^{\frac{x}{k}-1} d t=\frac{k}{x}
$$

Next, by using (2.5), (2.6) and some trigonometric identities, we obtain

$$
\begin{aligned}
& \beta_{k}(x)+\beta_{k}(k-x) \\
& =\frac{k}{2}\left\{\psi_{k}\left(\frac{x}{2}+\frac{k}{2}\right)-\psi_{k}\left(\frac{x}{2}\right)+\psi_{k}\left(k-\frac{x}{2}\right)-\psi_{k}\left(\frac{k}{2}-\frac{x}{2}\right)\right\} \\
& =\frac{k}{2}\left\{\psi_{k}\left(k-\left(\frac{k}{2}-\frac{x}{2}\right)\right)-\psi_{k}\left(\frac{k}{2}-\frac{x}{2}\right)+\psi_{k}\left(k-\frac{x}{2}\right)-\psi_{k}\left(\frac{x}{2}\right)\right\} \\
& =\frac{k}{2}\left\{\frac{\pi}{k} \cot \left(\frac{\pi}{2}-\frac{\pi x}{2 k}\right)+\frac{\pi}{k} \cot \left(\frac{\pi x}{2 k}\right)\right\} \\
& =\frac{\pi}{2}\left\{\cot \left(\frac{\pi}{2}-\frac{\pi x}{2 k}\right)+\cot \left(\frac{\pi x}{2 k}\right)\right\} \\
& =\frac{\pi}{2}\left\{\tan \left(\frac{\pi x}{2 k}\right)+\cot \left(\frac{\pi x}{2 k}\right)\right\}=\frac{\pi}{2 \cos \left(\frac{\pi x}{2 k}\right) \sin \left(\frac{\pi x}{2 k}\right)}=\frac{\pi}{\sin \left(\frac{\pi x}{k}\right)}
\end{aligned}
$$

This completes the proof.

Remark 2.5. It can be deduced from (2.1), (2.2) and (2.11) that the function $\beta_{k}(x)$ is related to the k-analogue of the Euler's beta function, $\mathbf{B}_{k}(x, y)$ in the following ways

$$
\begin{gathered}
\beta_{k}(x)+\beta_{k}(k-x)=k \mathbf{B}_{k}(x, k-x), \\
\beta_{k}(x)=-k \frac{d}{d x}\left[\ln \mathbf{B}_{k}\left(\frac{x}{2}, \frac{k}{2}\right)\right] .
\end{gathered}
$$

By successive applications of (2.10), we obtain the generalized form

$$
\beta_{k}(x+n k)=\sum_{s=0}^{n-1} \frac{(-1)^{n+1+s} k}{x+s k}+(-1)^{n} \beta_{k}(x)
$$

where $n \in \mathbb{N}$. Also, successive differentiation of (2.6), (2.8), (2.9) and (2.10) yields respectively

$$
\begin{align*}
\beta_{k}^{(n)}(x) & =\frac{k}{2^{n+1}}\left\{\psi_{k}^{(n)}\left(\frac{x+k}{2}\right)-\psi_{k}^{(n)}\left(\frac{x}{2}\right)\right\} \quad(x>0) \\
& =\frac{(-1)^{n}}{k^{n}} \int_{0}^{\infty} \frac{t^{n} e^{-\frac{x t}{k}}}{1+e^{-t}} d t \quad(x>0) \tag{2.12}\\
& =\frac{1}{k^{n}} \int_{0}^{1} \frac{(\ln t)^{n} t^{\frac{x}{k}-1}}{1+t} d t \quad(x>0), \\
\beta_{k}^{(n)}(x+k) & =(-1)^{n} \frac{n!k}{x^{n+1}}-\beta_{k}^{(n)}(x) \quad(x>0) \tag{2.13}
\end{align*}
$$

for $n \in \mathbb{N}_{0}$.
Remark 2.6. It follows readily from representation (2.12) that:
(i) $\beta_{k}(x)$ is positive and decreasing;
(ii) $\beta_{k}^{(n)}(x)$ is positive and decreasing if $n \in \mathbb{N}_{0}$ is even;
(iii) $\beta_{k}^{(n)}(x)$ is negative and increasing if $n \in \mathbb{N}_{0}$ is odd.

Theorem 2.7. The function $\beta_{k}(x)$ is
(a) logarithmically convex on $(0, \infty)$;
(b) completely monotonic on $(0, \infty)$.

Proof . (a) Let $r>1, s>1$ and $\frac{1}{r}+\frac{1}{s}=1$ and $x, y \in(0, \infty)$. Then by (2.9) and the Hölder's inequality, we obtain

$$
\begin{aligned}
\beta_{k}\left(\frac{x}{r}+\frac{y}{s}\right) & =\int_{0}^{1} \frac{t^{\frac{x}{k r}+\frac{y}{k s}-1}}{1+t} d t \\
& =\int_{0}^{1} \frac{t^{\frac{x-k}{k r}}}{(1+t)^{\frac{1}{r}}} \frac{t^{\frac{y-k}{k s}}}{(1+t)^{\frac{1}{s}}} d t \\
& \leq\left(\int_{0}^{1} \frac{t^{\frac{x}{k}-1}}{1+t} d t\right)^{\frac{1}{r}}\left(\int_{0}^{1} \frac{t^{\frac{y}{k}-1}}{1+t} d t\right)^{\frac{1}{s}} \\
& =\left[\beta_{k}(x)\right]^{\frac{1}{r}}\left[\beta_{k}(y)\right]^{\frac{1}{s}} .
\end{aligned}
$$

Hence $\beta_{k}(x)$ is logarithmically convex on $(0, \infty)$.
(b) It follows easily from (2.12) that

$$
(-1)^{n} \beta_{k}^{(n)}(x)=\frac{(-1)^{2 n}}{k^{n}} \int_{0}^{\infty} \frac{t^{n} e^{-\frac{x t}{k}}}{1+e^{-t}} d t \geq 0
$$

Thus, $\beta_{k}(x)$ is completely monotonic on $(0, \infty)$.
Remark 2.8. The log-convexity of $\beta_{k}(x)$ implies that:
(a) the Turan-type inequality $\beta_{k}(x) \beta_{k}^{\prime \prime}(x)-\left(\beta_{k}^{\prime}(x)\right)^{2} \geq 0$ holds for $x>0$;
(b) the function $\frac{\beta_{k}^{\prime}(x)}{\beta_{k}(x)}$ is increasing on $(0, \infty)$.

Theorem 2.9. The inequality

$$
\beta_{k}(x+k) \beta_{k}(y+k) \leq(\ln 2) \beta_{k}(x+y+k)
$$

holds for $x, y \in[0, \infty)$.
Proof . Let F and λ be defined for $x, y \in[0, \infty)$ as

$$
F(x, y)=\frac{\beta_{k}(x+k) \beta_{k}(y+k)}{\beta_{k}(x+y+k)}
$$

and

$$
\lambda(x, y)=\ln F(x, y)=\ln \beta_{k}(x+k)+\ln \beta_{k}(y+k)-\ln \beta_{k}(x+y+k)
$$

Then by fixing y, we obtain

$$
\lambda^{\prime}(x, y)=\frac{\beta_{k}^{\prime}(x+k)}{\beta_{k}(x+k)}-\frac{\beta_{k}^{\prime}(x+y+k)}{\beta_{k}(x+y+k)} \leq 0
$$

since $\frac{\beta_{k}^{\prime}(x)}{\beta_{k}(x)}$ is increasing for $x>0$. Thus, $\lambda(x, y)$ is nonincreasing. Consequently, $F(x, y)$ is also nonincreasing. Then for $x \geq 0$, we have $F(x, y) \leq F(0, y)$ which gives

$$
\frac{\beta_{k}(x+k) \beta_{k}(y+k)}{\beta_{k}(x+y+k)} \leq \beta_{k}(k)=\ln 2 .
$$

Theorem 2.10. The inequality

$$
\beta_{k}(x) \beta_{k}(x+y+z)-\beta_{k}(x+y) \beta_{k}(x+z)>0
$$

holds for positive real numbers x, y and z.
Proof. Let h be defined for positive real numbers x and z as

$$
h(x)=\frac{\beta_{k}(x+z)}{\beta_{k}(x)} .
$$

Then, it suffices to show that h is increasing. Let $\eta(x)=\ln h(x)$. Then

$$
\eta^{\prime}(x)=\frac{\beta_{k}^{\prime}(x+z)}{\beta_{k}(x+z)}-\frac{\beta_{k}^{\prime}(x)}{\beta_{k}(x)}>0 .
$$

Thus, $\eta(x)$ and consequently $h(x)$ are increasing. Hence for $y>0$, we have $h(x+y)>h(x)$ which gives the desired result.

Theorem 2.11. The inequality

$$
\begin{equation*}
\frac{\left[\beta_{k}(1+k)\right]^{a}}{\beta_{k}(a+k)} \leq \frac{\left[\beta_{k}(x+k)\right]^{a}}{\beta_{k}(a x+k)} \leq(\ln 2)^{a-1} \tag{2.14}
\end{equation*}
$$

holds for $a \geq 1$ and $x \in[0,1]$. It reverses if $0<a \leq 1$.
Proof. Let $a \geq 1, Q(x)=\frac{\left[\beta_{k}(x+k)\right]^{a}}{\beta_{k}(a x+k)}$ and $g(x)=\ln Q(x)$ for $x \geq 0$. Then

$$
g^{\prime}(x)=a\left[\frac{\beta_{k}^{\prime}(x+k)}{\beta_{k}(x+k)}-\frac{\beta_{k}^{\prime}(a x+k)}{\beta_{k}(a x+k)}\right] \leq 0 .
$$

Thus, $Q(x)$ is nonincreasing. Then for $x \in[0,1]$, we have $Q(1) \leq Q(x) \leq Q(0)$ which yields the result (2.14). If $0<a \leq 1$, then we obtain $g^{\prime}(x) \geq 0$ which implies that $Q(x)$ is nondecreasing. Then for $x \in[0,1]$, we obtain $Q(0) \leq Q(x) \leq Q(1)$ which gives the reverse of (2.14).
3. Some results involving $\left|\beta_{k}^{(n)}(x)\right|$

In this section we study some properties and inequalities of the function $\left|\beta_{k}^{(n)}(x)\right|$ where $n \in \mathbb{N}_{0}$. To start with, we note that $\left|\beta_{k}^{(n)}(x)\right|=(-1)^{n} \beta_{k}^{(n)}(x)$ for all $n \in \mathbb{N}_{0}$. This together with relation (2.13) yields

$$
\begin{equation*}
\left|\beta_{k}^{(n)}(x+k)\right|=\frac{n!k}{x^{n+1}}-\left|\beta_{k}^{(n)}(x)\right| \tag{3.1}
\end{equation*}
$$

We also note that, if $f(x)=\left|\beta_{k}^{(n)}(x)\right|$, then $f^{\prime}(x)=-\left|\beta_{k}^{(n+1)}(x)\right|$. This implies that the $f(x)$ is decreasing for all $n \in \mathbb{N}$.

Proposition 3.1. Let Δ_{n} be defined for $x>0$ and $n \in \mathbb{N}$ as

$$
\Delta_{n}(x)=\frac{x^{n+1}}{n!}\left|\beta_{k}^{(n)}(x)\right|
$$

Then,

$$
\lim _{x \rightarrow 0} \Delta_{n}(x)=k \quad \text { and } \quad \lim _{x \rightarrow 0} \Delta_{n}^{\prime}(x)=0
$$

Proof . It follows from (3.1) that

$$
\lim _{x \rightarrow 0} \Delta_{n}(x)=\lim _{x \rightarrow 0}\left\{k-\frac{x^{n+1}}{n!}\left|\beta_{k}^{(n)}(x+k)\right|\right\}=k
$$

Also,

$$
\lim _{x \rightarrow 0} \Delta_{n}^{\prime}(x)=\lim _{x \rightarrow 0}\left\{\frac{x^{n+1}}{n!}\left|\beta_{k}^{(n+1)}(x+k)\right|-\frac{(n+1) x^{n}}{n!}\left|\beta_{k}^{(n)}(x+k)\right|\right\}=0
$$

Theorem 3.2. Let $n \in \mathbb{N}_{0}, r>1, s>1$ and $\frac{1}{r}+\frac{1}{s}=1$. Then, the inequality

$$
\begin{equation*}
\left|\beta_{k}^{(n)}\left(\frac{x}{r}+\frac{y}{s}\right)\right| \leq\left|\beta_{k}^{(n)}(x)\right|^{\frac{1}{r}}\left|\beta_{k}^{(n)}(y)\right|^{\frac{1}{s}}, \tag{3.2}
\end{equation*}
$$

holds for $x, y>0$.

Proof . Similarly, by the relation (2.12) and the Hölder's inequality, we obtain

$$
\begin{aligned}
\left|\beta_{k}^{(n)}\left(\frac{x}{r}+\frac{y}{s}\right)\right| & =\frac{1}{k^{n}} \int_{0}^{\infty} \frac{t^{n} e^{-\left(\frac{x}{k r}+\frac{y}{k s}\right) t}}{1+e^{-t}} d t \\
& =\frac{1}{k^{n}} \int_{0}^{\infty} \frac{t^{\frac{n}{r}} e^{-\frac{x t}{k r}}}{\left(1+e^{-t}\right)^{\frac{1}{r}}} \frac{t^{\frac{n}{s}} e^{-\frac{y t}{k s}}}{\left(1+e^{-t}\right)^{\frac{1}{s}}} d t \\
& \leq\left(\frac{1}{k^{n}} \int_{0}^{\infty} \frac{t^{n} e^{-\frac{x t}{k}}}{1+e^{-t}} d t\right)^{\frac{1}{r}}\left(\frac{1}{k^{n}} \int_{0}^{\infty} \frac{t^{n} e^{-\frac{y t}{k}}}{1+e^{-t}} d t\right)^{\frac{1}{s}} \\
& =\left|\beta_{k}^{(n)}(x)\right|^{\frac{1}{r}}\left|\beta_{k}^{(n)}(y)\right|^{\frac{1}{s}}
\end{aligned}
$$

which completes the proof.
Remark 3.3. Inequality (3.2) implies that the function $\left|\beta_{k}^{(n)}(x)\right|$ is \log-convex for all $n \in \mathbb{N}_{0}$. This further implies that:
(a) the inequality $\left|\beta_{k}^{(n+2)}(x)\right| \cdot\left|\beta_{k}^{(n)}(x)\right|-\left|\beta_{k}^{(n+1)}(x)\right|^{2} \geq 0$ holds;
(b) the function $\left|\beta_{k}^{(n+1)}(x)\right| /\left|\beta_{k}^{(n)}(x)\right|$ is decreasing.

Theorem 3.4. Let $n \in \mathbb{N}_{0}$. Then the inequality

$$
\begin{equation*}
\left|\beta_{k}^{(n)}(x+y)\right|<\left|\beta_{k}^{(n)}(x)\right|+\left|\beta_{k}^{(n)}(y)\right| \tag{3.3}
\end{equation*}
$$

holds for $x, y>0$.
Proof. Let $F_{k}(x, y)=\left|\beta_{k}^{(n)}(x+y)\right|-\left|\beta_{k}^{(n)}(x)\right|-\left|\beta_{k}^{(n)}(y)\right|$ for $n \in \mathbb{N}_{0}$. Without loss of generality, let y be fixed. Then,

$$
\begin{aligned}
F_{k}^{\prime}(x, y) & =\left|\beta_{k}^{(n+1)}(x)\right|-\left|\beta_{k}^{(n+1)}(x+y)\right| \\
& >0
\end{aligned}
$$

since $\left|\beta_{k}^{(n)}(x)\right|$ is decreasing for all $n \in \mathbb{N}_{0}$. Thus, $F_{k}(x, y)$ is increasing. Moreover,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} F_{k}(x, y) & =\lim _{x \rightarrow \infty}\left\{\left|\beta_{k}^{(n)}(x+y)\right|-\left|\beta_{k}^{(n)}(x)\right|-\left|\beta_{k}^{(n)}(y)\right|\right\} \\
& =-\left|\beta_{k}^{(n)}(y)\right| \\
& <0 .
\end{aligned}
$$

Therefore, $F_{k}(x, y) \leq \lim _{x \rightarrow \infty} F_{k}(x, y)<0$ which gives the result (3.3).
Theorem 3.5. Let $n \in \mathbb{N}_{0}, a>0$, and $x>0$. Then the inequalities

$$
\begin{equation*}
\left|\beta_{k}^{(n)}(a x)\right| \leq a\left|\beta_{k}^{(n)}(x)\right| \quad \text { if } \quad a \geq 1, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\beta_{k}^{(n)}(a x)\right| \geq a\left|\beta_{k}^{(n)}(x)\right| \quad \text { if } \quad a \leq 1, \tag{3.5}
\end{equation*}
$$

are satisfied.

Proof. Let $a \geq 1$ and $H_{k}(x)=\left|\beta_{k}^{(n)}(a x)\right|-a\left|\beta_{k}^{(n)}(x)\right|$. Then,

$$
\begin{aligned}
H_{k}^{\prime}(x) & =a\left\{\left|\beta_{k}^{(n+1)}(x)\right|-\left|\beta_{k}^{(n+1)}(a x)\right|\right\} \\
& \geq 0
\end{aligned}
$$

Hence, $H_{k}(x)$ is nondecreasing. Moreover, $\lim _{x \rightarrow \infty} H_{k}(x)=0$. Therefore, $H_{k}(x) \leq \lim _{x \rightarrow \infty} H_{k}(x)=0$ which gives the result (3.4). Similarly, if $a \leq 1$, we obtain $H_{k}^{\prime}(x) \leq 0$ and $H_{k}(x) \geq \lim _{x \rightarrow \infty} H_{k}(x)=0$ yielding the result (3.5).

Remark 3.6. It is interesting to note that the result (3.3) coincides with (3.4) if $x=y$ in (3.3) and $a=2$ in (3.4).

The following lemma is known in the literature as the the convolution theorem for Laplace transforms:
Lemma 3.7. Let $f(t)$ and $g(t)$ be any two functions with convolution $f * g=\int_{0}^{t} f(s) g(t-s) d s$. Then the Laplace transform of the convolution is given as

$$
\mathcal{L}\{f * g\}=\mathcal{L}\{f\} \mathcal{L}\{g\} .
$$

That is

$$
\begin{equation*}
\int_{0}^{\infty}\left[\int_{0}^{t} f(s) g(t-s) d s\right] e^{-x t} d t=\int_{0}^{\infty} f(t) e^{-x t} d t \int_{0}^{\infty} g(t) e^{-x t} d t \tag{3.6}
\end{equation*}
$$

Theorem 3.8. Let G_{k} be defined for $k>0, n \in \mathbb{N}_{0}$ and $x>0$ as

$$
G_{k}(x)=k x\left|\beta_{k}^{(n)}(x)\right| .
$$

Then, $G_{k}(x)$ is decreasing.
Proof . By using the relation $\frac{n!}{x^{n+1}}=\int_{0}^{\infty} t^{n} e^{-x t} d t$ for $x>0$ and $n \in \mathbb{N}_{0}$, which is derived from the Gamma function, and by the convolution theorem for Laplace transforms (3.6), we obtain the following.

$$
\begin{aligned}
G_{k}^{\prime}(x) & =k\left|\beta_{k}^{(n)}(x)\right|-k x\left|\beta_{k}^{(n+1)}(x)\right| \\
& =x\left[\frac{k}{x}\left|\beta_{k}^{(n)}(x)\right|-k\left|\beta_{k}^{(n+1)}(x)\right|\right], \\
\frac{G_{k}^{\prime}(x)}{x} & =\frac{k}{x}\left|\beta_{k}^{(n)}(x)\right|-k\left|\beta_{k}^{(n+1)}(x)\right| \\
& =\int_{0}^{\infty} e^{-\frac{x t}{k}} d t \cdot \frac{1}{k^{n}} \int_{0}^{\infty} \frac{t^{n} e^{-\frac{x t}{k}}}{1+e^{-t}} d t-\frac{k}{k^{n+1}} \int_{0}^{\infty} \frac{t^{n+1} e^{-\frac{x t}{k}}}{1+e^{-t}} d t \\
& =\frac{1}{k^{n}} \int_{0}^{\infty}\left[\int_{0}^{t} \frac{s^{n}}{1+e^{-s}} d s\right] e^{-\frac{x t}{k}} d t-\frac{1}{k^{n}} \int_{0}^{\infty} \frac{t^{n+1} e^{-\frac{x t}{k}}}{1+e^{-t}} d t \\
& =\frac{1}{k^{n}} \int_{0}^{\infty} A_{n}(t) e^{-\frac{x t}{k}} d t,
\end{aligned}
$$

where

$$
A_{n}(t)=\int_{0}^{t} \frac{s^{n}}{1+e^{-s}} d s-\frac{t^{n+1}}{1+e^{-t}}
$$

Then $A_{n}(0)=\lim _{t \rightarrow 0^{+}} A_{n}(t)=0$. Furthermore,

$$
\begin{aligned}
A_{n}^{\prime}(t) & =\frac{t^{n}}{1+e^{-t}}-\frac{(n+1) t^{n}}{1+e^{-t}}-\frac{t^{n+1} e^{-t}}{\left(1+e^{-t}\right)^{2}} \\
& =-\frac{t^{n}}{1+e^{-t}}\left[n+\frac{t e^{-t}}{1+e^{-t}}\right]<0,
\end{aligned}
$$

which implies that $A_{n}(t)$ is decreasing. Then for $t>0$, we obtain $A_{n}(t)<A_{n}(0)=0$. Thus, $G_{k}^{\prime}(x)<0$ which completes the proof.

Theorem 3.9. Let $k>0$ and $n \in \mathbb{N}_{0}$. Then the inequality

$$
\begin{equation*}
\left|\beta_{k}^{(n)}(x y)\right|<\left|\beta_{k}^{(n)}(x)\right|+\left|\beta_{k}^{(n)}(y)\right|, \tag{3.7}
\end{equation*}
$$

holds for $x>0$ and $y \geq 1$.
Proof . Let $T_{k}(x, y)=k\left|\beta_{k}^{(n)}(x y)\right|-k\left|\beta_{k}^{(n)}(x)\right|-k\left|\beta_{k}^{(n)}(y)\right|$ for $k>0, n \in \mathbb{N}_{0}, x>0$ and $y \geq 1$. Let y be fixed. Then

$$
\begin{aligned}
T_{k}^{\prime}(x, y) & =-k y\left|\beta_{k}^{(n+1)}(x y)\right|+k\left|\beta_{k}^{(n+1)}(x)\right| \\
& =\frac{1}{x}\left\{k x\left|\beta_{k}^{(n+1)}(x)\right|-k x y\left|\beta_{k}^{(n+1)}(x y)\right|\right\} \\
& \geq 0
\end{aligned}
$$

since $k x\left|\beta_{k}^{(n)}(x)\right|$ is decreasing. Hence, $T_{k}(x, y)$ is nondecreasing. Then for $0<x<\infty$, we obtain

$$
T_{k}(x, y) \leq \lim _{x \rightarrow \infty} T_{k}(x, y)=-k\left|\beta_{k}^{(n)}(y)\right|<0
$$

which gives the result (3.7).

4. Concluding Remarks

Motivated by the k-digamma function, we have introduced a k-extension of the Nielsen's β-function, and further studied some properties and inequalities concerning the new function.

References

[1] M. Abramowitz and I.A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th Printing, Washington, 1972.
[2] K.N. Boyadzhiev, L.A. Medina and V.H. Moll, The integrals in Gradshteyn and Ryzhik. Part 11: The incomplete beta function, Scientia, Ser. A, Math. Sci. 18 (2009) 61-75.
[3] D.F. Connon, On an integral involving the digamma function, arXiv:1212.1432 [math.GM].
[4] R. Díaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007) 179192.
[5] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Edited by D. Zwillinger and V. Moll. Academic Press, New York, 8th Edition, 2014.
[6] L.A. Medina and V.H. Moll, The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function, Scientia, Ser. A, Math. Sci. 17 (2009) 45-66.
[7] S. Mubeen, A. Rehman and F. Shaheen, Properties of k-gamma, k-beta and $k-p s i$ functions, Bothalia J. 44 (2014) 372-380.
[8] K. Nantomah, On Some Properties and Inequalities for the Nielsen's β-Function, arXiv:1708.06604v1 [math.CA], 12 pages.
[9] K. Nantomah, Monotonicity and Convexity Properties of the Nielsen's β-Function, Probl. Anal. Issues Anal. 6 (2017) 81-93.
[10] K. Nantomah, M.M. Iddrisu and C.A. Okpoti, On a q-analogue of the Nielsen's β-Function, Int. J. Math. Appl. 6 (2018) 163-171.
[11] K. Nantomah. E. Prempeh and S.B. Twum, On a (p, k)-analogue of the Gamma function and some associated Inequalities, Moroccan J. Pure Appl. Anal. 2 (2016) 79-90.
[12] N. Nielsen, Handbuch der Theorie der Gammafunktion, First Edition, Leipzig : B.G. Teubner, 1906.
[13] D.V. Widder, The Laplace Transform, Princeton Mathematical Series 6, Princeton University Press, 1946.
[14] W.-S. Wang, Some properties of k-gamma and k-beta functions, ITM Web Conf., 7, 07003, 2016.

[^0]: *Corresponding author
 Email addresses: knantomah@uds.edu.gh (Kwara Nantomah), ksnisar1@gmail.com (Kottakkaran Sooppy Nisar), drksgehlot@rediffmail.com (Kuldeep Singh Gehlot)

 Received: November 2017 Revised: February 2018

