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Abstract

In this paper, we first give a separation theorem for a closed star-shaped set at the origin and a
point outside it in terms of separation by an upper semi-continuous and super-linear function, and
also, we introduce a ν-star-shaped-conjugation. By using this facts, we present characterizations of
the set containment with infinite star-shaped constraints defined by weak inequalities. Next, we give
characterizations of the set containment with infinite evenly radiant constraints defined by strict or
weak inequalities. Finally, we give a characterization of the set containment with an upper semi-
continuous and radiant constraint, in a reverse star-shaped set, defined by a co-star-shaped constraint.
These results have many applications in Mathematical Economics, in particular, in Utility Theory.
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1. Introduction

The study of separation properties of closed star-shaped sets received increasing attention in recent
years, starting with [10, 11, 16] in Euclidean spaces, and [19, 20] in infinite dimensional spaces. The
separation property plays a crucial role in the study of convex optimization problems. The separation
property for two convex sets easily follows from a simple fact. If a point does not belong to a closed
convex set, then this point can be separated from this set. Generalizations of this assertion were
studied in the framework of abstract convexity. Note that in contrast with the classical case, the
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nonlinear separation of a point from a set does not imply the separation property for two sets. A
very interesting notion of separability of star-shaped sets by a finite collection of linear functionals
in (Rn)∗ has been introduced and studied in [16]. In particular, it was shown that every point x does
not belong to a closed star-shaped set U at the origin in a normed linear space X can be separated
from U by means of a continuous super-linear function p defined on X such that p(x) > 1 and
p(u) ≤ 1 for all u ∈ U. Recently, separability of two disjoint star-shaped sets in terms of separation
by a sequence of linear functionals {x∗i }i∈N ⊂ X∗ defined on a Banach space X was given in [8].

Now, we use the later separability for two star-shaped sets and give various characterizations of the
set containment in a Banach space X. The set containment problem consists of characterizing the
inclusion F ⊆ G, motivated by general non-polyhedral knowledge-based data classification, where

F := {x ∈ X : fi(x) < 0, ∀ i ∈ I, fj(x) ≤ 0, ∀ j ∈ J},

G := {x ∈ X : gs(x) ≤ 0, ∀ s ∈ S, gt(x) ≥ 0, ∀ t ∈ T},

and I, J, S, T are index sets, I∩J = ∅, I∪J 6= ∅, S∩T = ∅, S∪T 6= ∅, and fr, g` : X −→ [−∞,+∞]
are functions.

The set containment characterizations have been studied by many researchers, see [3, 4, 5, 6, 14]. The
first characterizations were given by Mangasarian [6] for linear systems and for systems involving
differentiable convex functions, with finite index sets I and J. These dual characterizations are
provided in terms of Farkas’ Lemma and the duality theorems of convex programming problems.
Also, Goberna and Rodŕıguez [4] provided characterizations of the set containment for linear systems
containing strict inequalities and weak inequalities as well as equalities. Furthermore, Goberna,
Jeyakumar and Dinh [3] characterized set containments with convex inequalities which can be either
weak or strict. These dual characterizations are also provided by the Fenchel’s conjugate. Recently,
dual characterizations of the set containments with strict cone-convex inequalities in Banach spaces
were given in [2].

It is well known that the Fenchel’s conjugate plays very important roles to consider dual problems of
convex minimization problems. Similar researches of conjugates of quasi-convex functions have been
studied. But the epigraph of a star-shaped function is no longer convex. This causes a fundamental
difference between convex and star-shaped duality. For general star-shaped functions, we have to
use extra-parameters to obtain dual representations. Similar to the λ-quasi-conjugate, we have to
use the λ-star-shaped-conjugate (λ ∈ R). The λ-quasi-conjugate has been used by Greenberg and
Pierskalla [3], which has an extra-parameter, and plays an important role in quasi-convex optimization
and in the theory of surrogate duality corresponding to that of the Fenchel’s conjugate in convex
optimization and Lagrangian duality. Singer [12, 13] introduced the λ-semi-conjugate, which also has
an extra-parameter, and studied the level set of the λ-semi-conjugate and quasi-convex optimization.
If we want to avoid the extra-parameter, then we often need to restrict the class of quasi-convex
functions. Thach [17, 18] established two dualities without the extra-parameter for a general quasi-
convex minimization (maximization) problem by using concepts of H-quasi-conjugate and R-quasi-
conjugate.

More recently, Suzuki and Kuroiwa [14] established the set containment characterizations with I a
finite set and J an arbitrary set, assuming the quasi-convexity of fi for each i ∈ I, the linearity
(or the quasi-concavity) of hj for each j ∈ J, and inequalities in F are strict and in G are strict
(or weak, respectively). These dual characterizations are provided in terms of level sets of H-quasi-
conjugate and R-quasi-conjugate functions. Moreover, they established [15] the set containment
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characterizations, assuming that all fi are quasi-convex, all hj are linear, I and J are possibly
infinite, and the inequalities in F and G can be either weak or strict. Furthermore, they considered
a reverse convex system (i.e., all fi are quasi-convex and all hj are quasi-concave), containing both
weak and strict inequalities. These dual characterizations are provided in terms of level sets of
λ-quasi-conjugate and λ-semi-conjugate functions.

In this paper, we establish the set containment characterizations, assuming that all fi are star-shaped
functions, all hj are upper semi-continuous and super-linear functions, I and J are arbitrary index
sets, and the inequalities in F and G can be either weak or strict. Furthermore, we consider a
reverse star-shaped system (i.e., all fi are upper semi-continuous and radiant functions and all hj are
co-star-shaped functions), containing both weak or strict inequalities. These dual characterizations
are provided in terms of level sets of ν-star-shaped-conjugation functions.

The structure of the paper is as follows. In Section 2, we provide definitions, notations and pre-
liminary results related to star-shaped functions and their ν-conjugate functions. In Section 3, we
first give a separation theorem for a closed star-shaped set at the origin and a point outside it,
and by using this fact, we present characterizations of the set containment with infinite star-shaped
constraints. A separation theorem for a closed star-shaped set at the origin and a point outside it
in terms of separation by an upper semi-continuous and super-linear function is given in Section 4,
and moreover, by using this fact, the characterizations of the set containment with infinite evenly
radiant constraints (strict or weak inequalities) are presented in Section 4. In Section 5, we give a
characterization of the set containment with an upper semi-continuous and radiant constraint, in a
reverse star-shaped set, defined by a co-star-shaped constraint.

2. Preliminaries

We start this section by fixing notations and preliminaries that will be used later. Let X be a
real Banach space with a Schauder basis {xn}n≥1 ⊂ X, and let X∗ be its dual space with 〈·, ·〉 :
X ×X∗ −→ R is the duality pairing between X and X∗. For any subset A of X, we denote by intA
the interior of A and by clA the closure of A.

We recall that a function f : X −→ R is said to be super-linear if
(1) f(x+ y) ≥ f(x) + f(y) for all x, y ∈ X.
(2) f(λx) = λf(x) for all x ∈ X and all λ > 0.

Definition 2.1. Let L be the set of all upper semi-continuous (u.s.c) and super-linear functions
f : X −→ R.

Remark 2.1. It should be noted that 0 ∈ L and L is a convex cone that contains X∗, where X∗ is
the dual space of the Banach space X.

Definition 2.2. [10] A subset U of X is called a radiant set if λU ⊆ U for all λ ∈ (0, 1].

Definition 2.3. [10] A function f : X −→ [−∞,+∞] is called radiant if

f(λx) ≤ λf(x), ∀ x ∈ X, ∀ λ ∈ (0, 1].

Remark 2.2. It is easy to see that if the function f : X −→ [−∞,+∞] is radiant, then every lower
level set of f,

[f ≤ α] := {x ∈ X : f(x) ≤ α}
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is a radiant set for each α ≥ 0. Moreover, every strict lower level set of f,

[f < α] := {x ∈ X : f(x) < α}

is a radiant set for each α ≥ 0.

Definition 2.4. [10] Let S be a non-empty subset of X.
(1) The kernel of S is the set of all points s ∈ S such that s + λ(x − s) ∈ S for all x ∈ S and all
λ ∈ [0, 1], i.e.,

kernS := {s ∈ S : s+ λ(x− s) ∈ S, ∀ x ∈ S, ∀ λ ∈ [0, 1]}.

(2) A non-empty subset S of X is called star-shaped if kernS 6= ∅.

Definition 2.5. [10] A subset U of X is called a star-shaped set at the origin (at 0 ∈ X), if 0 ∈
kernU, or equivalently, λU ⊆ U for all λ ∈ [0, 1].

Definition 2.6. A function f : X −→ [−∞,+∞] is called star-shaped if every lower level set of f,

[f ≤ α] := {x ∈ X : f(x) ≤ α},

is a star-shaped set at the origin for each α ≥ f(0).

The proof of the following proposition is similar to that of Proposition 2.4 in [19], and therefore, we
omit its proof.

Proposition 2.1. A function f : X −→ [−∞,+∞] is star-shaped if and only if every strict lower
level set of f,

[f < α] := {x ∈ X : f(x) < α},

is a star-shaped set at the origin for each α > f(0).

It is worth noting that if f : X −→ [−∞,+∞] is a star-shaped function, then, f(0) = −∞ or
f(0) = minx∈X f(x) or f ≡ +∞. The usefulness of star-shaped functions in Mathematical Economics
(particularly in Utility Theory) has been shown in [21].

Definition 2.7. A subset U of X is called reverse star-shaped if its complement U c := X \ U is a
star-shaped set at the origin, i.e., if either U = X or 0 /∈ U and x ∈ U, λ ≥ 1 imply that λx ∈ U.

Remark 2.3. It should be noted that the empty set ∅ and the space X are both star-shaped and
reverse star-shaped. In the sequel, we will at times refer to star-shaped sets at the origin and to
reverse star-shaped sets to mean proper star-shaped and proper reverse star-shaped sets, i.e., sets
which are different from both ∅ and X.

Definition 2.8. A function f : X −→ [−∞,+∞] is called co-star-shaped if every upper level set of
f,

[f ≥ α] := {x ∈ X : f(x) ≥ α},

is a reverse star-shaped set for each α > f(0).
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Definition 2.9. Let A be a non-empty subset of X, and let ν ∈ R. We define the following different
ν-polarities for the set A.

A∨ν := {p ∈ L : p(a) ≤ ν, ∀ a ∈ A},
A∧ν := {p ∈ L : p(a) < ν, ∀ a ∈ A},
AO
ν := {p ∈ L : p(a) ≥ ν, ∀ a ∈ A},

AM
ν := {p ∈ L : p(a) > ν, ∀ a ∈ A}.

Remark 2.4. It is easy to check that A∨ν and A∧ν are star-shaped sets at the origin for each ν ∈
(0,+∞) (also, see Remark 2.1). Moreover, A∨ν is closed in L under the point-wise convergence of
functions for each ν ∈ R. Consequently, A∨ν is a closed star-shaped set at the origin in L for each
ν ∈ (0,+∞).

Remark 2.5. Let A ⊆ B ⊆ X, and let ? ∈ {∨,∧,O,M} and ν ∈ R. Then, B?
ν ⊆ A?ν.

Proof: This is an immediate consequence of Definition 2.9.

In the following, we define the ν-star-shaped-conjugation (ν-star-shaped-duality) of functions based
upon the ν-polarities, which given in Definition 2.9 (also, for similar definitions, see [9, 20]).

Definition 2.10. Let f : X −→ [−∞,+∞] be a function, and let ν ∈ R. We define the ν-star-
shaped-conjugates of the function f as follows.

f∨ν : L −→ [−∞,+∞], by f∨ν (p) := ν + sup{−f(x) : x ∈ X, p(x) > ν},
f∧ν : L −→ [−∞,+∞], by f∧ν (p) := ν + sup{−f(x) : x ∈ X, p(x) ≥ ν},
fO
ν : L −→ [−∞,+∞], by fO

ν (p) := ν + sup{−f(x) : x ∈ X, p(x) < −ν},
fM
ν : L −→ [−∞,+∞], by fM

ν (p) := ν + sup{−f(x) : x ∈ X, p(x) < ν}.

Proposition 2.2. Let f : X −→ [−∞,+∞] be a function, and let ? ∈ {∨,∧,O,M} and ν ∈ R.
Then,

{x ∈ X : f(x) < α}?ν = {p ∈ L : f ?ν (p) ≤ ν − α},

for each α ∈ R.

Proof: This is an immediate consequence of Definition 2.10.

The proof of the following result is similar to that one of [9], and therefore, we omit its proof.

Proposition 2.3. Let I be an arbitrary index set, and let ν ∈ R. Let {Ai}i∈I be a collection of
subsets of X and ? ∈ {∨,∧,O,M}. Then,(⋃

i∈I

Ai

)?
ν

=
⋂
i∈I

A?i,ν .
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3. Characterizations of the Set Containment with Infinite Star-Shaped Constraints

In this section, we first define the closed star-shaped hull of a subset A of X. Next, we give a
separation theorem for a closed star-shaped set at the origin and a point outside it. Finally, by using
this fact, we present characterizations of the set containment with infinite star-shaped constraints
defined by weak inequalities. We start with the following definition.

Definition 3.1. Let ν ∈ R. The ν-bipolar of a subset A of X, denoted by A∨∨ν , and defined as follows:

A∨∨ν := {x ∈ X : p(x) ≤ ν, ∀ p ∈ A∨ν }.

Remark 3.1. In view of Remark 2.4, A∨∨ν is a closed star-shaped set at the origin in X for each
ν ∈ (0,+∞). Moreover, it is clear that A ⊆ A∨∨ν for each ν ∈ R. Note that 0 ∈ A∨∨ν for each
ν ∈ (0,+∞) (because p(0) = 0 for each p ∈ L). Also, in view of Definition 2.2, it follows that A∨∨ν is
a closed radiant set for each ν ∈ (0,+∞).

Definition 3.2. The closed star-shaped hull of a subset A of X, denoted by clsA, and defined as
follows:

clsA :=
⋂
{B ⊆ X : B is a closed star-shaped set at the origin and B ⊇ A},

i.e., clsA is the smallest closed star-shaped subset of X at the origin that contains A.

In the following, we give a separation theorem that separates strictly a closed star-shaped set at the
origin and a point outside it. The proof is similar to that of Theorem 3.1 in [20], and therefore, we
omit its proof.

Theorem 3.1. Let A be a closed star-shaped subset of X at the origin, and let x ∈ X be a point such
that x /∈ A. Then there exists a continuous super-linear function p1 : X −→ R such that p1(x) > 1
and p1(a) ≤ 1 for all a ∈ A. It should be noted that p1 ∈ L, where L defined in Definition 2.1.

Corollary 3.1. Let A be a closed star-shaped subset of X at the origin, and let x ∈ X be a point
such that x /∈ A. Let ν ∈ (0,+∞). Then there exists p ∈ L such that p(x) > ν and p(a) ≤ ν for all
a ∈ A.

Proof: By Theorem 3.1, there exists a continuous super-linear function p1 : X −→ R such that
p1(x) > 1 and p1(a) ≤ 1 for all a ∈ A. Now, put p := νp1. Then, by using Remark 2.1, p ∈ L.
Moreover, p(x) > ν and p(a) ≤ ν for all a ∈ A.

Theorem 3.2. Let A be a subset of X, and let ν ∈ (0,+∞). Then, clsA = A∨∨ν , and hence, in
particular, A = A∨∨ν if and only if A is closed and star-shaped set at the origin. (It is worth noting
that clsA = A if and only if A is closed and star-shaped set at the origin.)

Proof: Since, in view of Remark 3.1, A∨∨ν is a closed and star-shaped set at the origin and A ⊆ A∨∨ν ,
it follows from Definition 3.2 that clsA ⊆ A∨∨ν . Conversely, assume that x /∈ clsA. Then, by Corollary
3.1, there exists p ∈ L such that p(x) > ν and p(a) ≤ ν for all a ∈ A. So, by using Definition 2.9,
there exists p ∈ A∨ν such that p(x) > ν. Therefore, we conclude from Definition 3.1 that x /∈ A∨∨ν .
Hence, A∨∨ν ⊆ clsA, which implies that clsA = A∨∨ν .



796 Hedayat, Mohebi

Proposition 3.1. Let I be an arbitrary index set, and let Ai be a closed star-shaped subset of X at
the origin (i ∈ I) and ν ∈ (0,+∞). Then,(⋂

i∈I

Ai

)∨
ν

= cls
⋃
i∈I

A∨i,ν .

Proof: Due to Proposition 2.3, we have(⋃
i∈I

A∨i,ν

)∨
ν

=
⋂
i∈I

A∨∨i,ν . (3.1)

Since Ai is a closed and star-shaped set at the origin, it follows from Theorem 3.2 that A∨∨i,ν = Ai for
each i ∈ I. Therefore, by using (3.1), we obtain(⋃

i∈I

A∨i,ν

)∨
ν

=
⋂
i∈I

Ai. (3.2)

Now, put B :=
⋃
i∈I A

∨
i,ν . So, it follows from (3.2) that

B∨ν =
⋂
i∈I

Ai. (3.3)

On the other hand, in view of Theorem 3.2, one has

clsB = B∨∨ν .

This together with (3.3) implies that

clsB =

(⋂
i∈I

Ai

)∨
ν

,

which completes the proof.

Proposition 3.2. Let A be a subset of X, and let 0 6= p ∈ L be arbitrary and ν ∈ R. Then the
following assertions are equivalent.
(i) A ⊆ {x ∈ X : p(x) ≤ ν}.
(ii) p ∈ A∨ν .

Proof: [(i)⇐⇒ (ii)]. We have, by Definition 2.9,

A ⊆ {x ∈ X : p(x) ≤ ν} ⇐⇒ (x ∈ A =⇒ p(x) ≤ ν)

⇐⇒ (p(x) ≤ ν, ∀ x ∈ A)

⇐⇒ p ∈ A∨ν .

Theorem 3.3. Let f : X −→ (−∞,+∞] be a function, and let 0 6= p ∈ L and ν, α ∈ R be arbitrary.
Then the following assertions are equivalent.
(i) {x ∈ X : f(x) < α} ⊆ {x ∈ X : p(x) ≤ ν}.
(ii) p ∈ {x ∈ X : f(x) < α}∨ν .
(iii) −p ∈ {p ∈ L : fO

ν (p) ≤ ν − α}.
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Proof: The implication [(i)⇐⇒ (ii)] follows from Proposition 3.2.
[(i) =⇒ (iii)]. Suppose that (i) holds. Then the implication (f(x) < α =⇒ p(x) ≤ ν) holds, or
equivalently, the implication (p(x) > ν =⇒ f(x) ≥ α) holds. This together with Definition 2.10
implies that

fO
ν (−p) = ν + sup{−f(x) : x ∈ X, −p(x) < −ν}

= ν + sup{−f(x) : x ∈ X, p(x) > ν}
≤ ν − α,

and hence, (iii) holds.
[(iii) =⇒ (i)]. Assume that (iii) holds. Then, by Definition 2.10, one has

ν − α ≥ fO
ν (−p)

= ν + sup{−f(x) : x ∈ X, −p(x) < −ν}
= ν + sup{−f(x) : x ∈ X, p(x) > ν}.

This implies that the implication (p(x) > ν =⇒ f(x) ≥ α) holds, or equivalently, the implication
(f(x) < α =⇒ p(x) ≤ ν) holds, which implies (i) holds.

Lemma 3.1. Let f : X −→ (−∞,+∞] be a function, and let ν ∈ R. Then,

∞⋃
n=1

{x ∈ X : f(x) ≤ α +
1

n
}∨ν =

∞⋃
n=1

{x ∈ X : f(x) < α +
1

n
}∨ν , (α ∈ R).

Proof: It is obvious.

Theorem 3.4. Let I and J be arbitrary index sets. Let fi : X −→ (−∞,+∞] be a lower semi-
continuous (l.s.c) and star-shaped function (i ∈ I), and let 0 6= pj ∈ L (j ∈ J) and ν ∈ (0,+∞).
Then the following assertions are equivalent.
(i) We have,⋂

i∈I

{x ∈ X : fi(x) ≤ α} ⊆
⋂
j∈J

{x ∈ X : pj(x) ≤ ν}, (α ≥ fi(0), for each i ∈ I).

(ii) We have,

pj ∈ cls
⋃
i∈I

A∨∨i,ν , ∀ j ∈ J,

where

Ai := {p ∈ L : f∨i,ν(p) < ν − α}, (i ∈ I).

Proof: First, note that since fi is a lower semi-continuous function, it follows that

Bi := {x ∈ X : fi(x) ≤ α}, (i ∈ I)

is a closed set for each i ∈ I. Moreover, since fi is a star-shaped function, it follows from Definition
2.6 that

Bi := {x ∈ X : fi(x) ≤ α}, (i ∈ I)
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is a star-shaped set at the origin, and hence, Bi is a closed star-shaped set at the origin for each
i ∈ I. Now, let

Dα :=
⋂
i∈I

{x ∈ X : fi(x) ≤ α}.

Thus, due to Proposition 3.2, we have (i) is equivalent to [pj ∈ D∨α,ν for each j ∈ J ].
On the other hand, since Bi is a closed star-shaped set at the origin for each i ∈ I, so one has

D∨α,ν

= cls
⋃
i∈I

{x ∈ X : fi(x) ≤ α}∨ν (by Proposition 3.1)

= cls
⋃
i∈I

( ∞⋂
n=1

{x ∈ X : fi(x) ≤ α +
1

n
}
)∨
ν

= cls
⋃
i∈I

(
cls

∞⋃
n=1

{x ∈ X : fi(x) ≤ α +
1

n
}∨ν
)

(by (3.4) and Proposition 3.1)

= cls
⋃
i∈I

(
cls

∞⋃
n=1

{x ∈ X : fi(x) < α +
1

n
}∨ν
)

(by Lemma 3.1)

= cls
⋃
i∈I

(
cls

∞⋃
n=1

{p ∈ L : f∨i,ν(p) ≤ ν − α− 1

n
}
)

(by Proposition 2.2)

= cls
⋃
i∈I

(
cls {p ∈ L : f∨i,ν(p) < ν − α}

)
= cls

⋃
i∈I

clsAi

= cls
⋃
i∈I

A∨∨i,ν . (by Theorem 3.2)

Hence, (i) is equivalent to (ii).
Note that since fi is a lower semi-continuous and star-shaped function and α ≥ fi(0) for each i ∈ I
(and hence, α + 1

n
≥ fi(0) for each i ∈ I), it follows from Definition 2.6 that

{x ∈ X : fi(x) ≤ α +
1

n
} (3.4)

is a closed star-shaped set at the origin for each i ∈ I.

4. Characterizations of the Set Containment with Infinite Evenly Radiant Constraints

In this section, we first give a separation theorem for a closed star-shaped set at the origin and
a point outside it in terms of separation by an upper semi-continuous and super-linear function.
Finally, by using this fact, we present characterizations of the set containment with infinite evenly
radiant constraints defined by strict or weak inequalities.

Throughout this section, we assume that X is a real Banach space with a Schauder basis {xn}n∈N.
We recall (for more details, see [1, 7]) that a sequence {xn}n∈N in a Banach space X is called a
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Schauder basis for X if for each x ∈ X there exists a unique sequence {αn}n∈N ⊂ R of scalars such
that

x =
∞∑
n=1

αnxn.

It is convenient to present the separability in terms of a collection of linear functionals. Consider a
sequence of linear functionals F := {x∗n}n∈N in X∗ (the dual space of X), and let

TF :=
⋂
n∈N

{x ∈ X : 〈x∗n, x〉 < 0}, (4.1)

and
TF :=

⋂
n∈N

{x ∈ X : 〈x∗n, x〉 > 0}. (4.2)

It should be noted that if the elements x∗n (n ∈ N) are linearly independent, then both TF and TF

are non-empty sets.

Definition 4.1. [8] Let A ⊆ X and x /∈ A. We say that a sequence {x∗i }i∈N of linearly independent
elements in X∗ strictly separates A and x if there exists ε ∈ (0, 1) with the following property: for
each a ∈ A, there exists ia ∈ N such that 〈x∗ia , a〉 < 1− ε and 〈x∗i , x〉 = 1 for all i ∈ N.

Definition 4.2. [8] Let U and V be subsets of X and {x∗i }i∈N be a sequence of linearly independent
elements in X∗. The sets U and V are said to be weakly separated by {x∗i }i∈N if for each pair (u, v) ∈
U × V there exists j ∈ N such that 〈x∗j , u〉 ≤ 〈x∗j , v〉.

The following theorem shows that each point, which does not belong to a closed star-shaped set at
the origin, can be strictly separated from this set. The proof is similar to that of Theorem 4.1 in [8],
and therefore, we omit its proof.

Theorem 4.1. Let U ⊂ X be a closed star-shaped set at the origin, and let x /∈ U. Then, U and x
are strictly separated by a sequence {x∗i }i∈N of linearly independent elements in X∗.

Proposition 4.1. Let A ⊂ X be a closed star-shaped set at the origin, and let x ∈ X be such that
x /∈ A. Then there exists p1 ∈ L such that p1(a) < 1 for all a ∈ A and p1(x) = 1.

Proof: Since A is a closed and star-shaped set at the origin and x /∈ A, it follows from Theorem
4.1 that there exists a sequence {x∗i }i∈N of linearly independent elements in X∗ such that strictly
separates A and x. Therefore, in view of Definition 4.1, there exists ε ∈ (0, 1) with the following
property: for each a ∈ A, there exists ia ∈ N such that 〈x∗ia , a〉 < 1− ε and 〈x∗i , x〉 = 1 for all i ∈ N.
Now, we define the function p1 : X −→ R by

p1(z) := inf
i∈N
〈x∗i , z〉, ∀ z ∈ X.

Since F := {x∗i }i∈N is a sequence of linearly independent elements in X∗, we conclude from (4.1)
and (4.2) that TF 6= ∅ and TF 6= ∅, and hence, p1 is a real valued function. Clearly, p1 is an upper
semi-continuous and super-linear function, and so, p1 ∈ L. It is easy to check that p1(a) < 1 for all
a ∈ A, and moreover, p1(x) = 1, which completes the proof.
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Corollary 4.1. Let ν ∈ (0,+∞). Let A ⊂ X be a closed and star-shaped set at the origin, and let
x ∈ X be such that x /∈ A. Then there exists p ∈ L such that p ∈ A∧ν and p(x) = ν.

Proof: By Proposition 4.1, there exists p1 ∈ L such that p1(a) < 1 for all a ∈ A and p1(x) = 1. Let
p := νp1. Then, in view of Remark 2.1, p ∈ L and p(a) < ν for all a ∈ A and p(x) = ν. Therefore, in
view of Definition 2.9, one has p ∈ A∧ν , and moreover, p(x) = ν.

Definition 4.3. Let A be a subset of X, and let ν ∈ R. We say that A is an ν-evenly radiant set if,
for each x ∈ Ac := X \ A, there exists p ∈ L such that p ∈ A∧ν and p(x) ≥ ν.

Remark 4.1. In view of Corollary 4.1, every closed star-shaped set at the origin is ν-evenly radiant
for each ν ∈ (0,+∞).

By the following lemma, we present examples of ν-evenly radiant sets.

Lemma 4.1. Let f : X −→ [−∞, 0] be a function, and let ν ∈ (0,+∞). Let

B := {p ∈ L : f∧ν (p) ≤ ν − α}, (α ≤ 0).

Then, B is an ν-evenly radiant set.

Proof: If we show that B is a closed star-shaped set at the origin, then the result follows from
Remark 4.1. First, we show that B is a closed set. To this end, let {pn}n≥1 ⊂ B and p ∈ L be such
that pn −→ p point-wise, as n −→ +∞, i.e., pn(t) −→ p(t) for each t ∈ X, as n −→ +∞. Since
pn ∈ B for all n ≥ 1, it follows that f∧ν (pn) ≤ ν − α for all n ≥ 1. This together with Definition 2.10
implies that

ν − α ≥ f∧ν (pn) = ν + sup{[−f(x)] : x ∈ X, pn(x) ≥ ν}, ∀ n ≥ 1.

This implies that

ν − α ≥ ν − f(x), ∀ x ∈ X with pn(x) ≥ ν, n = 1, 2, · · · .

Since pn(t) −→ p(t) for each t ∈ X, as n −→ +∞, we conclude that

ν − α ≥ ν − f(x), ∀ x ∈ X with p(x) ≥ ν.

So, by using Definition 2.10, we have

ν − α ≥ ν + sup{[−f(x)] : x ∈ X, p(x) ≥ ν} = f∧ν (p).

This implies that p ∈ B, and so, B is closed.

Now, we show that B is a radiant set. Let p ∈ B and λ ∈ (0, 1] be arbitrary. In view of Definition
2.10 and the fact that 0 < λ ≤ 1, one has

f∧ν (λp) = ν + sup{[−f(x)] : x ∈ X, λp(x) ≥ ν}
= ν + sup{[−f(x)] : x ∈ X, p(x) ≥ ν

λ
}

≤ ν + sup{[−f(x)] : x ∈ X, p(x) ≥ ν}
= f∧ν (p)

≤ ν − α.
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This implies that f∧ν (λp) ≤ ν − α, and hence, λp ∈ B, i.e., B is a radiant set. Also, 0 ∈ B because
0 ∈ L, ν > 0 and α ≤ 0, and so, by Definition 2.10, we have

f∧ν (0) = ν + sup{−f(x) : x ∈ X, 0(x) ≥ ν}
= ν + 0

= ν

≤ ν − α.

That is, 0 ∈ B. Therefore, in view of Definition 2.5, B is a closed star-shaped set at the origin, which
completes the proof.

Definition 4.4. Let A be a subset of X, and let ν ∈ R. We define the wedge ν-bipolar of A by

A∧∧ν := {x ∈ X : p(x) < ν, ∀ p ∈ A∧ν }.

Theorem 4.2. Let A be a subset of X, and let ν ∈ R. Then, A is ν-evenly radiant if and only if
A = A∧∧ν .

Proof: Assume that A is an ν-evenly radiant set. Let x ∈ Ac be arbitrary. Then, by Definition 4.3,
there exists p ∈ L such that p ∈ A∧ν and p(x) ≥ ν. So, in view of Definition 4.4, x /∈ A∧∧ν , and hence,
A∧∧ν ⊆ A. Clearly, A ⊆ A∧∧ν . Thus, A = A∧∧ν .
Conversely, suppose that A = A∧∧ν . But, it follows from Definition 4.4 that

A∧∧ν =
⋂
p∈A∧

ν

{x ∈ X : p(x) < ν}.

So, this together with the fact that A = A∧∧ν implies that, for each x ∈ Ac (and so, x /∈ A∧∧ν ), there
exists p ∈ A∧ν such that p(x) ≥ ν. Therefore, by using Definition 4.3, A is an ν-evenly radiant set.

Definition 4.5. Let ν ∈ R. The ν-evenly radiant hull of a subset A of X is defined by

eradA :=
⋂
p∈A∧

ν

{x ∈ X : p(x) < ν}.

In view of Definition 4.4, we have eradA = A∧∧ν . Clearly, A ⊆ eradA.

It is worth noting that, in view of Theorem 4.2, A is ν-evenly radiant if and only if A = eradA.

Proposition 4.2. Let I be an arbitrary index set, and let ν ∈ R. Let Ai be an ν-evenly radiant
subset of X (i ∈ I). Then,(⋂

i∈I

Ai

)∧
ν

= erad
⋃
i∈I

A∧i,ν .

Proof: Due to Proposition 2.3, we have(⋃
i∈I

A∧i,ν

)∧
ν

=
⋂
i∈I

A∧∧i,ν . (4.3)
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Since Ai is an ν-evenly radiant set, it follows from Theorem 4.2 that A∧∧i,ν = Ai for each i ∈ I.
Therefore, by using (4.3), we obtain (⋃

i∈I

A∧i,ν

)∧
ν

=
⋂
i∈I

Ai. (4.4)

Now, put C :=
⋃
i∈I A

∧
i,ν . So, it follows from (4.4) that

C∧ν =
⋂
i∈I

Ai. (4.5)

On the other hand, in view of Definition 4.5, one has

eradC = C∧∧ν .

This together with (4.5) implies that

eradC =

(⋂
i∈I

Ai

)∧
ν

,

which completes the proof.

Proposition 4.3. Let A be a subset of X, and let 0 6= p ∈ L be arbitrary and ν ∈ R. Then the
following assertions are equivalent.
(1) A ⊆ {x ∈ X : p(x) < ν}.
(2) p ∈ A∧ν .

Proof: The proof is similar to that of Proposition 3.2.

Theorem 4.3. Let g : X −→ (−∞,+∞] be a function, and let 0 6= p ∈ L and ν, β ∈ R be arbitrary.
Then the following assertions are equivalent.
(i) {x ∈ X : g(x) < β} ⊆ {x ∈ X : p(x) ≥ ν}.
(ii) p ∈ {x ∈ X : g(x) < β}Oν .
(iii) p ∈ {p ∈ L : g4ν (p) ≤ ν − β}.

Proof: [(i)⇐⇒ (ii)]. We have, by Definition 2.9,

{x ∈ X : g(x) < β} ⊆ {x ∈ X : p(x) ≥ ν}

⇐⇒
(
x ∈ {x ∈ X : g(x) < β} =⇒ p(x) ≥ ν

)
⇐⇒

(
p(x) ≥ ν, ∀ x ∈ {x ∈ X : g(x) < β}

)
⇐⇒ p ∈ {x ∈ X : g(x) < β}Oν .

[(i) =⇒ (iii)]. Suppose that (i) holds. Then the implication (g(x) < β =⇒ p(x) ≥ ν) holds, or
equivalently, the implication (p(x) < ν =⇒ g(x) ≥ β) holds. This together with Definition 2.10
implies that

g4ν (p) = ν + sup{−g(x) : x ∈ X, p(x) < ν}
≤ ν − β,
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and hence, (iii) holds.
[(iii) =⇒ (i)]. Assume that (iii) holds. Then, by Definition 2.10, one has

ν − β ≥ g4ν (p)

= ν + sup{−g(x) : x ∈ X, p(x) < ν}.

This implies that the implication (p(x) < ν =⇒ g(x) ≥ β) holds, or equivalently, the implication
(g(x) < β =⇒ p(x) ≥ ν) holds. Hence, (i) follows.

Definition 4.6. Let ν ∈ R. A function f : X −→ [−∞,+∞] is called ν-evenly radiant if every
lower level set of f,

[f ≤ α] := {x ∈ X : f(x) ≤ α},

is an ν-evenly radiant set for each α ∈ R. Also, a function f : X −→ [−∞,+∞] is called strictly
ν-evenly radiant if every strict lower level set of f,

[f < α] := {x ∈ X : f(x) < α},

is an ν-evenly radiant set for each α ∈ R.

Theorem 4.4. Let I and J be arbitrary index sets, and let ν ∈ R. Let fi : X −→ (−∞,+∞] be a
strictly ν-evenly radiant function (i ∈ I), and let 0 6= pj ∈ L (j ∈ J). Then the following assertions
are equivalent.
(i) We have,⋂

i∈I

{x ∈ X : fi(x) < α} ⊆
⋂
j∈J

{x ∈ X : pj(x) < ν}, (α ∈ R).

(ii) We have,

pj ∈ erad
⋃
i∈I

{p ∈ L : f∧i,ν(p) ≤ ν − α}, ∀ j ∈ J.

Proof: Since fi is a strictly ν-evenly radiant function, it follows from Definition 4.6 that

Ci := {x ∈ X : fi(x) < α}

is an ν-evenly radiant set for each i ∈ I. Now, let

Gα :=
⋂
i∈I

{x ∈ X : fi(x) < α}.

Thus, due to Proposition 4.3, we have (i) is equivalent to [pj ∈ G∧α,ν for each j ∈ J ].
On the other hand, since Ci is an ν-evenly radiant set for each i ∈ I, we obtain

G∧α,ν = erad
⋃
i∈I

{x ∈ X : fi(x) < α}∧ν (by Proposition 4.2)

= erad
⋃
i∈I

{p ∈ L : f∧i,ν(p) ≤ ν − α}. (by Proposition 2.2)

Hence, (i) is equivalent to (ii).
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Lemma 4.2. Let f : X −→ (−∞,+∞] be a function, and let ν ∈ R. Then,

∞⋃
n=1

{x ∈ X : f(x) ≤ α +
1

n
}∧ν =

∞⋃
n=1

{x ∈ X : f(x) < α +
1

n
}∧ν , (α ∈ R).

Proof: It is obvious.

Theorem 4.5. Let I and J be arbitrary index sets, and let ν ∈ R. Let fi : X −→ (−∞,+∞] be
an ν-evenly radiant function (i ∈ I), and let 0 6= pj ∈ L (j ∈ J). Then the following assertions are
equivalent.
(i) We have,⋂

i∈I

{x ∈ X : fi(x) ≤ α} ⊆
⋂
j∈J

{x ∈ X : pj(x) < ν}, (α ∈ R).

(ii) We have,

pj ∈ erad
⋃
i∈I

B∧∧i,ν , ∀ j ∈ J,

where

Bi := {p ∈ L : f∧i,ν(p) < ν − α}, (i ∈ I, α ∈ R).

Proof: Since fi is an ν-evenly radiant function, it follows from Definition 4.6 that

Di := {x ∈ X : fi(x) ≤ α}

is an ν-evenly radiant set for each i ∈ I. Now, let

Hα :=
⋂
i∈I

{x ∈ X : fi(x) ≤ α}.

Thus, due to Proposition 4.3, we have (i) is equivalent to [pj ∈ H∧α,ν for each j ∈ J ].
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On the other hand, since Di is an ν-evenly radiant set for each i ∈ I, it follows that

H∧α,ν

= erad
⋃
i∈I

{x ∈ X : fi(x) ≤ α}∧ν (by Proposition 4.2)

= erad
⋃
i∈I

( ∞⋂
n=1

{x ∈ X : fi(x) ≤ α +
1

n
}
)∧
ν

= erad
⋃
i∈I

(
erad

∞⋃
n=1

{x ∈ X : fi(x) ≤ α +
1

n
}∧ν
)

(by (4.6) and Proposition 4.2)

= erad
⋃
i∈I

(
erad

∞⋃
n=1

{x ∈ X : fi(x) < α +
1

n
}∧ν
)

(by Lemma 4.2)

= erad
⋃
i∈I

(
erad

∞⋃
n=1

{p ∈ L : f∧i,ν(p) ≤ ν − α− 1

n
}
)

(by Proposition 2.2)

= erad
⋃
i∈I

(
erad {p ∈ L : f∧i,ν(p) < ν − α}

)
= erad

⋃
i∈I

eradBi

= erad
⋃
i∈I

B∧∧i,ν . (by Definition 4.5)

Hence, (i) is equivalent to (ii).
Note that since fi is an ν-evenly radiant function for each i ∈ I, then by Definition 4.6, the set

{x ∈ X : fi(x) ≤ α +
1

n
} (4.6)

is an ν-evenly radiant set for each i ∈ I.

5. Characterization of the Set Containment in a Reverse Star-Shaped Set

In this section, we give a characterization of the set containment with an upper semi-continuous and
radiant constraint, in a reverse star-shaped set, defined by a co-star-shaped constraint. Throughout
this section, we assume that X is a real Banach space with a Schauder basis {xn}n∈N. We start with
the following crucial result, which has been proved in [8, Theorem 4.3], and therefore, we omit its
proof.

Theorem 5.1. Let U and V be star-shaped sets in X such that int kernU 6= ∅ and intU ∩ V = ∅.
Then, U and V are weakly separated by a sequence {x∗i }i∈N of linearly independent elements in X∗.

Lemma 5.1. Let f : X −→ (−∞,+∞] be a radiant function, and let

U0 := {x ∈ X : f(x) < α}, (α ≥ 0).

Assume that 0 /∈ U0, and kernU0 6= ∅. Let U := U0 ∪ {0}. Then, U is a star-shaped set.
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Proof: Since kernU0 6= ∅, so there exists u0 ∈ kernU0. Therefore, it follows from Definition 2.4 that
U0 is a star-shaped set at u0. Now, we show that U is also a star-shaped set at u0. To this end, it is
enough to show that

u0 + λ(u− u0) ∈ U, ∀ u ∈ U, ∀ λ ∈ [0, 1].

Since u0 ∈ kernU0, it follows from definition 2.4 (1) that

u0 + λ(u− u0) ∈ U0, ∀ u ∈ U0, ∀ λ ∈ [0, 1],

and hence,
u0 + λ(u− u0) ∈ U, ∀ u ∈ U0, ∀ λ ∈ [0, 1]. (5.1)

On the other hand, since f is a radiant function, we conclude from Remark 2.2 that U0 is a radiant
set. Thus, in view of Definition 2.2, one has γx ∈ U0 for all x ∈ U0 and all γ ∈ (0, 1]. This together
with the fact that u0 ∈ U0 implies that (1− λ)u0 ∈ U0 for all λ ∈ [0, 1), and so,

(1− λ)u0 ∈ U, ∀ λ ∈ [0, 1).

Since 0 ∈ U, it follows that

u0 + λ(0− u0) = (1− λ)u0 ∈ U, ∀ λ ∈ [0, 1]. (5.2)

Hence, we conclude from (5.1) and (5.2) that

u0 + λ(u− u0) ∈ U, ∀ u ∈ U, ∀ λ ∈ [0, 1].

This together with Definition 2.4 (1) implies that u0 ∈ kernU, and so, by using Definition 2.4 (2), U
is a star-shaped set at u0.

Theorem 5.2. Let f : X −→ (−∞,+∞] be an upper semi-continuous and radiant function with
f(0) ≥ 0, and let g : X −→ (−∞,+∞] be a co-star-shaped function. Let β ∈ R be such that β > g(0),
and let

U0 := {x ∈ X : f(x) < 0}.

Suppose that

int kernU0 6= ∅.

Consider the following assertions.
(i) We have,

{x ∈ X : f(x) < 0} ⊆ {x ∈ X : g(x) ≥ β}.

(ii) We have,

{x ∈ X : f(x) < 0} ∩ {x ∈ X : g(x) < β} = ∅.

(iii) There exist ν ∈ R and

−p ∈ {p ∈ L : fO
ν (p) ≤ ν},

and

q ∈ {p ∈ L : g4ν (p) ≤ ν − β}
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such that q(x) ≤ p(x) for all x ∈ X.
Then, (i)⇐⇒ (ii) and (ii) =⇒ (iii). Hence, in the later implication, we have

q − p ∈ {p ∈ L : g4ν (p) ≤ ν − β}+ {p ∈ L : fO
ν (p) ≤ ν}.

Moreover, if (iii) holds with q < p on U0, then, (i) holds.

Note that since g is a co-star-shaped function, it follows from Definition 2.8 that the set {x ∈ X :
g(x) ≥ β} is a reverse star-shaped set.

Proof: Clearly, the assertions (i) and (ii) are equivalent. Now, suppose that the assertion (ii) holds.
We show that the assertion (iii) holds. To this end, let

V := {x ∈ X : g(x) < β},

and

U := U0 ∪ {0}.

Since 0 /∈ U0 (because f(0) ≥ 0), and also, by the hypothesis, kernU0 6= ∅ and f is a radiant
function, it follows from Lemma 5.1 (with α = 0) that U is a star-shaped set. Since f is an upper
semi-continuous function, it follows that U0 is an open subset of X, and so, intU0 = U0. Moreover,
since by the hypothesis, g is a co-star-shaped function, it follows from Definition 2.7 and Definition
2.8 that V is a star-shaped set at the origin because β > g(0). Furthermore, by the hypothesis (ii),
we have, U0 ∩ V = ∅, and hence,

intU ∩ V = intU0 ∩ V = U0 ∩ V = ∅,

and also, by the hypothesis, int kernU = int kernU0 6= ∅. Therefore, we conclude from Theorem 5.1
that U and V are weakly separated by a sequence {x∗i }i∈N of linearly independent elements in X∗.
Thus, in view of Definition 4.2, for each pair (u, v) ∈ U × V, there exists j ∈ N such that

〈x∗j , u〉 ≤ 〈x∗j , v〉. (5.3)

Now, let

A(u,v) := {j ∈ N : 〈x∗j , u〉 ≤ 〈x∗j , v〉}, for each (u, v) ∈ U × V,

A :=
⋂

(u,v)∈U×V

A(u,v),

B :=
⋂
u∈U

A(u,0),

C :=
⋂
v∈V

A(0,v).

Then, in view of (5.3), A(u,v) 6= ∅ for each (u, v) ∈ U × V. It is easy to see that A ⊆ B and A ⊆ C
because 0 ∈ U ∩ V.

Assumption (N): Assume that A 6= ∅.



808 Hedayat, Mohebi

It is clear that under the Assumption (N), B and C are non-empty sets. It should be noted that by
using (5.3), we obtain

〈x∗j , v〉 ≥ 0, ∀ v ∈ V, ∀ j ∈ C, (5.4)

and
〈x∗j , u〉 ≤ 0, ∀ u ∈ U, ∀ j ∈ B. (5.5)

Since A ⊆ C and A ⊆ B, it follows from (5.4) and (5.5) that

〈x∗j , v〉 ≥ 0, ∀ v ∈ V, ∀ j ∈ A, (5.6)

and

〈x∗j , u〉 ≤ 0, ∀ u ∈ U, ∀ j ∈ A.

The later inequality implies that

〈x∗j , u〉 ≤ 0, ∀ u ∈ U0, ∀ j ∈ A. (5.7)

Now, we define the function p : X −→ R by

p(x) := sup
j∈A
〈x∗j , x〉, ∀ x ∈ X,

and the function q : X −→ R by

q(x) = inf
j∈A
〈x∗j , x〉, ∀ x ∈ X.

Since F := {x∗i }i∈N is a sequence of linearly independent elements in X∗, we conclude from (4.1)
and (4.2) that TF 6= ∅ and TF 6= ∅. Thus, p and q are real valued functions, and also, there exist
x0, y0 ∈ X such that

〈x∗j , x0〉 < 0, and 〈x∗j , y0〉 > 0, ∀ j ∈ N. (5.8)

This implies that q(x0) < 0 < p(y0), i.e., p and q are not identically zero, and p 6= q. Also, it is easy
to check that −p, q ∈ L and q(x) ≤ p(x) for all x ∈ X. Furthermore, it follows from (5.6) and (5.7)
that

q(v) ≥ 0, ∀ v ∈ V, and p(u) ≤ 0, ∀ u ∈ U0. (5.9)

So, it follows from (5.9) that there exists ν ∈ R such that

p(u) ≤ ν ≤ q(v), ∀ u ∈ U0, ∀ v ∈ V. (5.10)

Therefore, we conclude from (5.10) that

U0 = {x ∈ X : f(x) < 0} ⊆ {x ∈ X : p(x) ≤ ν}, (5.11)

and
V = {x ∈ X : g(x) < β} ⊆ {x ∈ X : q(x) ≥ ν}. (5.12)

Thus, by using (5.11) and Theorem 3.3 (the implication (i) =⇒ (iii)), we obtain

− p ∈ {p ∈ L : fO
ν (p) ≤ ν}. (5.13)

Moreover, by using (5.12) and Theorem 4.3 (the implication (i) =⇒ (iii)), we get

q ∈ {p ∈ L : g4ν (p) ≤ ν − β}. (5.14)
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Therefore, we conclude from (5.13) and (5.14) that

q − p ∈ {p ∈ L : g4ν (p) ≤ ν − β}+ {p ∈ L : fO
ν (p) ≤ ν}.

This implies (iii) holds.

[(iii) =⇒ (i)]. Assume that there exist ν ∈ R and

− p ∈ {p ∈ L : fO
ν (p) ≤ ν}, (5.15)

and
q ∈ {p ∈ L : g4ν (p) ≤ ν − β} (5.16)

such that q < p on U0. So, in view of Definition 2.10 and (5.15), we deduce that

ν ≥ fO
ν (−p)

= ν + sup{−f(x) : x ∈ X, −p(x) < −ν}
= ν + sup{−f(x) : x ∈ X, p(x) > ν}.

This implies that the implication (p(x) > ν =⇒ f(x) ≥ 0) holds, or equivalently, the following
implication holds.

f(x) < 0 =⇒ p(x) ≤ ν. (5.17)

Also, we obtain from (5.16) and Definition 2.10 that

ν − β ≥ g4ν (q)

= ν + sup{−g(x) : x ∈ X, q(x) < ν}.

This implies that the following implication holds.

q(x) < ν =⇒ g(x) ≥ β. (5.18)

Now, let x ∈ U0 = {x ∈ X : f(x) < 0} be arbitrary. Then, f(x) < 0. Thus, it follows from (5.17)
that p(x) ≤ ν. This together with the fact that q < p on U0 (note that x ∈ U0) implies that q(x) < ν.
Therefore, in view of (5.18), we have g(x) ≥ β, i.e., x ∈ {x ∈ X : g(x) ≥ β}. Hence, (i) holds. This
completes the proof.

The following example shows that the set A in the proof of Theorem 5.2 may be non-empty, and
moreover, q < p on U0.

Example 5.1. We consider the following two radiant subsets U and V of R2. Let

U := co{(0, 0), (
1

4
, 1), (0, 1)} ∪ co{(0, 0), (

1

4
,
2

3
), (

1

4
, 1)},

and

V := co{(0, 0), (
1

4
, 0), (

1

4
,
1

5
)} ∪ co{(0, 0), (

3

4
,
1

3
), (

1

3
,
1

3
)}.

Also, we define the linear functionals x∗1, x
∗
2 : R2 −→ R by 〈x∗1, (x, y)〉 := x − y and 〈x∗2, (x, y)〉 := x

for all (x, y) ∈ R2. Since U and V are radiant sets and 0 ∈ U ∩ V, it follows from Definition
2.5 that U and V are star-shaped sets at the origin. It is not difficult to show that x∗1 and x∗2 are
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linearly independent, and moreover, U and V are weakly separated by {x∗1, x∗2}, i.e., for each pair
(u, v) ∈ U × V, there exists j ∈ {1, 2} such that

〈x∗j , u〉 ≤ 〈x∗j , v〉.

Also, int kernU 6= ∅ and intU ∩ V = ∅. Finally, it is easy to check that A = {1, 2}. Furthermore, we
have

p(x, y) = max{x− y, x}, ∀ (x, y) ∈ R2,

and

q(x, y) = min{x− y, x}, ∀ (x, y) ∈ R2.

But, we have U0 = U \ {(0, 0)}. It is easy to see that q < p on U0.
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