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Abstract

In this paper, by using C-sequentially sign property for bifunctions, we provide sufficient conditions
that ensure the existence of solutions of some vector equilibrium problems in Hausdorff topological
vector spaces which ordered by a cone. The conditions which we consider are not imposed on the
whole domain of the operators involved, but just on a locally segment-dense subset of the domain.
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1. Introduction

Let X be a real Hausdorff, locally convex topological vector space and K be a nonempty subset of
X. An equilibrium problem associated to f and K, or briefly EP (f,K) in the sense of Blum and
Oettli [6], is stated as follows:

find x∗∈K such that f(x∗, x) ≥ 0 for all x∈K,

that f : K ×K −→ R is a bifunction. We denote the set of solutions EP (f,K), by S(f,K). This
problem is also called Ky Fan inequality due to his contribution to this field [10]. It is well known
that some important problems such as convex programs, variational inequalities, fixed point, Nash
equilibrium models and minimax problems can be formulated as an equilibrium problem (see e.g.
[6, 9, 25, 27]).

In 2000, Giannessi [14], formulated the equilibrium problem for the case of vector bifunction and
several extensions of the scalar equilibrium problem to the vector case have been considered. These
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vector equilibrium problems, much like their scalar counterpart, offer a unified framework for treating
vector optimization, vector variational inequalities and cone saddle point problems, to name just a
few [15, 16, 1, 3, 4, 5].

In 2015 László and Viorel [23] introduced a notion of a self-segment-dense set in order to establish
some existence results for set-valued equilibrium problems, where the conditions are imposed on a
self-segment-dense subset of the domain of the involved bifunction. Jafari et al. in [19], presented a
new concept ”locally segment-dense set” and study existence results for equilibrium problems where
the conditions are imposed only on a locally segment-dense subset in the domain of the involved
bifunction. The natural question that comes to mind is that whether this results can be also true
for vector equilibrium problems or not.

Recently, László [22] has shown that the results obtained in [23] are exactly true on vector cases.
In this paper, we consider the results obtained in [19] where the bifunction is vector-valued. The
paper is organized as follows. In Sect.2, we recall and introduce some definitions and auxiliary results
needed for the definitions and proofs of results in the next sections. Afterwards, we provide some
definitions of C-convexity, C-quasimonotonity and C-sequentially sign property. Section 3 is devoted
to the main result of the paper, where we obtained existence results for vector equilibrium problems.

2. Preliminaries

Let X be a real Hausdorff, locally convex topological vector space. For a nonempty set D ⊆ X, we
denote by intD its interior, by clD its closure, by convD its convex hull. We say that P ⊆ D is dense
in D iff D ⊆ clP . Recall that a set C ⊆ X is a cone iff tc∈C for all c∈C and t > 0. The cone C is
called a convex cone iff C+C=C. The cone C is called a pointed cone iff C

⋂
(−C) = {0}. Note that

a closed, convex and pointed cone C induces a partial ordering on X, that is, z1 6 z2 ⇔ z2 − z1∈C
and z1 < z2 ⇔ z2− z1∈intC. In the sequel, when we use intC, we assume implicitly that the cone C
has nonempty interior. It is obvious that C +C\{0} = C\{0} and intC +C = intC. A well-known
example of a closed, convex and pointed cone, with nonempty interior, is the nonnegative orthant of
Rn, that is,

Rn
+ := {(x1, x2, . . . , xn)∈Rn : xi ≥ 0, i∈{1, 2, . . . , n}}.

Let Z be a locally convex Hausdorff topological vector spaces, K ⊆ X be a nonempty subset and
C ⊆ Z be a convex and pointed cone with nonempty interior. For the bifunction f : K ×K −→ Z,
the vector equilibrium problem (VEP) introduced in [5], consists in finding x0∈K, such that

f(x0, y) /∈ −intC, ∀y∈K. (2.1)

Also, the strong vector equilibrium problem (SVEP) consists in finding x0∈K, such that

f(x0, y) /∈ −C\{0},∀y∈K. (2.2)

It can easily be observed that for Z = R and C = R+ = [0,+∞), the previous problems reduce to
the classical scalar equilibrium problem. Note that, if intC 6= ∅ and x0∈K is a solution of strong
vector equilibrium problem, then x0 is also a solution of vector equilibrium problem.

In this paper we mainly focus on vector equilibrium problems (VEP) which have attracted by
many authors in recent years within the fields of vector optimization and vector variational inequal-
ities (see, for instance, [7, 12, 17, 28] and the references therein).

The set of solutions of vector equilibrium problems (VEP) is denoted by S(f,K,C). We say that
an element x̄∈K is a local Minty solution, if there exists a neighbourhood U of x̄ such that

f(y, x̄) /∈ intC, ∀y∈K ∩ U.
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The set of all local Minty solutions is denoted by ML(f,K,C). Notice that if A ⊆ B, then
ML(f,B,C) ∩ A ⊆ML(f, A,C) and S(f,B,C) ∩ A ⊆ S(f, A,C).

Definition 2.1. [29] A map f : K −→ Z is said to be C-lower semicontinuous (C-upper semicon-
tinuous) at x∈K, iff for any neighbourhood V of f(x) there exists a neighbourhood U of x such that

f(u)∈V + C
(
f(u)∈V − C

)
for all u∈U ∩K.

Obviously, if f is continuous at x∈K, then it is also C-lower semicontinuous at x∈K. Assume that
C has nonempty interior. According to[31], f is C-lower semicontinuous at x∈K iff for any k∈intC,
there exists a neighbourhood U of x, such that f(u)∈f(x) + k + intC for all u∈U ∩ K. Even if
intC = ∅ the strongly C-lower semicontinuity of f can be introduced as follows: f is strongly C-
lower semicontinuous at x∈K iff for any k∈C\{0}, there exists a neighbourhood U of x such that
f(u)∈f(x) + k + C\{0} for all u∈U ∩K.

Remark 2.2. The map f :K −→ Z is C-upper semicontinuous, (strongly C-upper semicontinuous)
at x∈K iff the map −f is C-lower semicontinuous, (strongly C-lower semicontinuous) at x∈K.

We say that f is C-lower semicontinuous, (strongly C-lower semicontinuous, C-upper semicontinuous,
strongly C-upper semicontinuous) on K, if f is C-lower semicontinuous, (strongly C-lower semicon-
tinuous, C-upper semicontinuous, strongly C-upper semicontinuous) at every x∈K. Obviously, if f
is C-lower (resp. upper) semicontinuous on a subset A of X, then the restriction f |A : A −→ Z of f
on A is C-lower (resp. upper) semicontinuous on A. The function f is said to be C-continuous on
D, if it is C-lower semicontinuous and C-upper semicontinuous on D.

Lemma 2.3. [29] If f : K −→ Z is a C-lower semicontinuous function, then the set {x∈K : f(x) /∈
intC} is closed in K.

The following definition will be used in the sequel.

Definition 2.4. [8] Let X be a real Hilbert space, and let S be a nonempty subset of X. Suppose
that x is a point not lying in S. Suppose further that there exists a point s∈S whose distance to x is
minimal. Then s is called a closest point or a projection of x onto S. The vector x − s is called a
proximal normal direction to S at s. Any nonnegative multiple of such a vector is called a proximal
normal to S at s, and the set of all proximal normals to S at s is denoted by NP

S (s). It is clear that
NP
S (s) is in fact a cone.

2.1. Locally Segment-Dense Sets

Let X be a real Hausdorff locally convex topological vector space and x, y∈X. Suppose that
[x, y]:={(1− t)x+ ty : t∈[0, 1]} is the closed segment joining x and y. The semiopen segments [x, y[,
]x, y] and the open segment ]x, y[ are defined analogously. The well-known segment-dense sets have
been introduced by Luc [24]. Let K ⊆ X be a convex set. We say that U ⊆ K is segment-dense in
K iff for each x∈K, there exists y∈U such that x is a cluster point of the set [x, y] ∩ U .

Recently, Lászlá and Viorel [23] introduced a notion of a self-segment-dense set, which is slightly
different from the notion of the segment-dense set introduced by Luc [24]. Let K be a convex subset
of X and U ⊆ K ⊆ X. The set U is called self segment-dense in K iff U is dense in K and for every
x, y∈U, cl([x, y] ∩ U) = [x, y].

Obviously, a segment-dense set is always dense, but the converse is not always true, except in
one-dimensional setting. It is easy to see that in one dimension, the notions of a segment-dense set
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and a self-segment-dense set reduce to the notion of a dense set. The difference between the notions
of a segment-dense set and a self-segment-dense set in example 2.1 was demonstrated by László and
Viorel [23], while an example of a subset that is dense but not self-segment-dense was also provided
in example 2.2 in [23]. Jafari et al. in [19], presented a concept of ”locally segment-dense sets”. Let
K be a convex subset of X and D ⊆ K ⊆ X. The set D is called locally segmentdense in K, iff
for every x, y∈D, cl([x, y] ∩D)=[x, y]; and for every x∈D and y∈K, the set ]x, y] ∩D is nonempty.
Notice that it can be concluded from condition (i), cl([x, z]∩D)=[x, z] for every z∈]x, y]∩D. As the
next example shows, we can find locally segment-dense sets in K, which is neither segment-dense in
K nor self-segment-dense in it.

Example 2.5. Let X=K:=R2, and let D:={(x, y) : x∈Q∩]− 1, 1[, y∈]− 1, 1[}, where Q denotes the
set of all rational numbers. It is clear that D is locally segment-dense in K, but not dense in K.

It must be noted that even in one dimension, the concept of a locally segment-dense is different from
the concepts of a segment-dense set and a self-segment-dense set. For example, let X=K:=R and
D:=]−1, 1[ ∩Q. Then D is a locally segment-dense set in K, while it is neither segment-dense in K
nor self-segment-dense in K.

Remark 2.6. [19] It is worth mentioning that if U is a convex open neighbourhood of an element
x∈X, then U is locally segment-dense in X. Indeed, every convex algebraically open subset U ⊆ X
is locally segment-dense in X. We recall that U is algebraically open (due to [20]) if U = core(U),
where

core(U) := {x̄∈U : ∀x∈X ∃t > 0 such that x̄+ tx∈U, ∀t∈[0, t]}.

Remark 2.7. Suppose D be a locally segment-dense set in K. If x∈D and y∈K, then there can
be found {zn} ⊂]x, y] ∩ D such that zn →x as n→ + ∞. This is due to the definition of locally
segment-dense set D in K, which allows us to find z∈]x, y] ∩D such that cl([x, z] ∩D) = [x, z].

The next result obtained in [23] is also valid for locally segment-dense sets.

Lemma 2.8. Let X be a real Hausdorff locally convex topological vector space, K be a convex subset
of X, and let U ⊆ K be such that for every x, y∈U , it holds that cl([x, y] ∩ U) = [x, y]. Then for all
finite subsets {u1, u2, . . . , un} ⊆ U , one has

cl(conv{u1, u2, . . . , un} ∩ U) = conv{u1, u2, . . . , un}.

2.2. C-convexity, C-quasimonotone and C-sequentially sign property

In the sequal, we suppose X and Z are real Hausdorff locally convex topological vector spaces, D
is a locally segment-dense set in K (a nonempty subset of X) and f : X −→ Z is a function. Assume
also that C ⊆ Z is a convex and pointed cone with intC 6= ∅ that C induces a partial ordering on Z.

Definition 2.9. [26, 21] The function f is C-convex on D, iff for all x, y∈D and t∈[0, 1] such that
tx+ (1− t)y∈D, then tf(x) + (1− t)f(y)− f(tx+ (1− t)y)∈C, ∀t∈[0, 1]. f is said to be C-concave
iff -f is C-convex.

Definition 2.10. [13, 2] The function f is C-quasimonotone on D, iff for x, y∈D,

f(x, y)∈intC ⇒ f(y, x) /∈ intC.
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Definition 2.11. [2] The function f is properly C-quasimonotone on D, iff for every subset of finite
elements {x1, x2, . . . , xn} ⊆ D and every x̄∈conv{x1, x2, . . . , xn}∩D, there exists i∈{1, 2, . . . , n} such
that f(xi, x̄) /∈ intC.

Motivated by the notion of the strong upper sign property recently introduced in [18], we define C-
strong upper sign property and a useful notion of C-sequentially sign property for vector bifunctions.
The following definitions are vector versions of the definitions introduced in [18].

Definition 2.12. We say that f has the C-strong upper sign property with respect to the first
variable at x∈K ⊆ X, iff for every y∈K the following implication holds:

∃δ∈]0, 1] : f(zt, x) /∈ intC, ∀t∈]0, δ[⇒ f(x, y) /∈ −intC

where zt = tx+ (1− t)y.

Definition 2.13. Let K a convex subset of X and D be a locally segment-dense set in K. We say
that f has the C-sequentially sign property with respect to the first variable at x∈K ⊆ X, iff for
every y∈K the following implication holds:

if {zn} ⊂]x, y] ∩D : zn → x and f(zn, x) /∈ intC, for all n∈N then f(x, y) /∈ −intC.

We say that f has the C-sequentially sign property on D, iff f has this property at every x∈D. The
following result highlights a large class of bifunctions, which have the C-sequentially sign property
and is a vector version of proposition 2.2 in [19].

Proposition 2.14. Let K a convex subset of X and D be a locally segment-dense set in K and
f : K ×K −→ Z a bifunction, which satisfies the following conditions:

(1) for every x∈D, f(x, x)∈C;

(2) for every y∈K, f(·, y) is C-upper semicontinuous on D;

(3) for every x, y1∈D and y2∈K the following implication holds:

f(x, y1) /∈ intC, f(x, y2) /∈ C ⇒ f(x, zt) /∈ C, ∀t∈]0, 1[, (2.3)

where zt = ty1 + (1− t)y2.

Then f has the C-sequentially sign property on D.

Proof . Suppose by contradiction that f does not have the C- sequentially sign property at some
x0∈D. Hence, there exists y0∈K, for which there is a sequence {zn} ⊂]x0, y0] ∩ D with zn −→ x0

such that f(zn, x0) /∈ intC for all n∈N and f(x0, y0)∈− intC. So there exists a neighbourhood V of
f(x0, y0) that V ⊆ −intC. Since f(·, y0) is C-upper semicontinuous, there exists a neighbourhood U
of x0 such that,

f(u, y0) ⊆ V − C ⊆ −intC, ∀u∈U ∩D.
Since zn −→ x0, there exists n0∈N that for all n > n0, f(zn, y0)∈ − intC. Now, for every n > n0,
if we take x:=zn, y1:=x0 and y2:=y0 in (3.2), we deduce that f(zn, zt) /∈ C, for all t∈]0, 1[, where
zt=(1 − t)x + ty. The latter contradicts to f(zn, zn)∈C for all n > n0. Thus, f(x0, y0) /∈ −intC
and this completes the proof. � The following definition is a common generalization of locally
segment-dense Minty solution to the vector case.
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Definition 2.15. Let K a convex subset of X and D be a locally segment-dense set in K and
f : K ×K −→ R a bifunction. We say that x̄∈D is a locally segment-dense Minty solution, iff there
exists a neighbourhood U of x̄ such that

f(y, x̄) /∈ intC, ∀y∈D ∩ U.

The set of all locally segment-dense Minty solution is denoted by MD
L (f,K,C). It is worth noting

that if K be a subset convex of X, then ML(f,K,C) ∩ D⊆MD
L (f,K,C) and the inclusion may be

strict. Hence, there are more possibilities that MD(f,K,C) can be nonempty. For example, let
X = K := R and D :=]− 1, 1[∩Q. Consider the bifunction f : R× R −→ R defined by

f(x, y) =


−2, x, y∈D

2, otherwise
(2.4)

It is easy to check that ML(f,K,C)=∅ while MD
L (f,K,C)6=∅.

In the following lemma, we show that the rather large set MD
L (f,K,C) is a subset of S(f,K,C)

under the condition of the C-sequentially sign property of the involved bifunction.

Lemma 2.16. Let K a convex subset of X and D be a locally segment-dense set in K and f :
K ×K −→ Z a bifunction with the C-sequentially sign property. Then MD(f,K,C) ⊆ S(f,K,C).

Proof . Let x̄ be an element of MD
L (f,K,C). Then there exists a neighbourhood U of x̄ such that

f(y, x̄) /∈ intC, ∀y∈D ∩ U. (2.5)

To verify that x̄∈S(f,K,C), take y0∈K. It follows from Remark 2.7, there is a sequence {zn} ⊂
]x̄, y] ∩D such that zn −→ x̄. Choose n0∈N such that zn∈U for every n ≥ n0. It follows from (2.5)
that for all n ≥ n0, f(zn, x̄) /∈ intC. Now, employing the C-sequentially sign property, we conclude
that f(x̄, y0) /∈ −intC and this completes the proof. �

3. Existence Results for Vector Equilibrium Problems

The purpose of this section is to use locally segment-dense sets to obtain some existence results
for vector equilibrium problems with unnecessarily compact domains. Hence, we use a kind of a
coercivity condition upon the bifunction involved. In the sequel let F : K ⇒ K be a set-valued
mapping defined by

F (y) := {x∈K : f(y, x) /∈ intC} ∀y∈K. (3.1)

Theorem 3.1. Let K be a convex subset of X and D be a locally segment-dense set in K and
f : K ×K −→ Z a bifunction satisfying the following conditions:

(1) f is C-quasimonotone on D, which is not properly C-quasimonotone on D;

(2) for every y∈D, F (y) is closed in K\D, i.e.,

cl(F (y)) ∩ (K\D) = F (y) ∩ (K\D) = {x∈K\D : f(y, x) /∈ intC}; (3.2)

(3) for every y∈D, F (y) is convex on D. Namely, for every x1, x2∈F (y)∩D and t∈[0, 1] such that
x̄ = tx1 + (1− t)x2∈D, then x̄∈F (y).
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Then MD
L (f,K,C) 6= ∅.

Proof . Since f is not properly C-quasimonotone onD, there exist x1, x2, . . . , xn∈D and x̄∈conv{x1, x2, . . . , xn}∩
D such that

f(xi, x̄)∈intC, i = 1, 2, . . . , n.

Thus, from x̄ /∈ F (xi) ∩ (K\D) and condition (2), we derive that x̄ /∈ cl(F (xi)) ∩ (K\D) for all
i∈{1, 2, . . . , n}. Hence, for each i∈{1, 2, . . . , n} there exists a neighbourhood Ui of x̄ such that
Ui ∩D ⊆ (X\(F (xi) ∩D)). If we set U = ∩ni=1Ui , then we get

f(xi, y)∈intC, ∀y∈U ∩D, i = 1, . . . , n.

Now, the C-quasimonotonicity of f on D implies that

f(y, xi) /∈ intC, ∀y∈U ∩D, i = 1, . . . , n.

Furthermore, for arbitrary and fixed y∈U ∩ D, we have xi∈F (y) for all i = 1, 2, . . . , n. Using the
convexity of F (y) on D, we deduce that f(y, x̄) /∈ intC for all y∈U ∩D. Hence, x̄∈MD

L (f,K,C). �
Now, the existence of solutions for vector equilibrium problems (VEP) can be obtained.

Corollary 3.2. Let X be a real Hausdorff locally convex topological vector space, K be a convex
subset of X and D be a locally segment-dense set in K, that satisfies the conditions of Theorem
3.1. If f have the C-sequentially sign property, then for every subset convex K of X, that D ⊆ K,
S(f,K,C) 6= ∅.

Remark 3.3. We note that if f be a real bifunction, the quasiconvexity of f implies the convexity
of F (y) [19], but in topological vector spaces we can not conclude the convexity of F (y) even if f
is convex. The following examples show that the convexity of F (y) is related to the cone as well as
the function. It means that for the convex function f with values in R2 is convex with respect to the
ordering induced by the cone C1 and is not convex with respect to the ordering induced by the cone
C2.

Example 3.4. Let X = Z = K = D = R2, g : R −→ R with g(x) =| x | and C1 = NP
epig(0, 0). Let

f : K ×K −→ Z is defined by f(x, y) = y. It is easy to check that f is convex on D with respect to
the second variable. We claim that F (y) is not convex for every y∈K. Let y∈K, we have

F (y) := {x∈K : f(y, x) /∈ intC1} ∀y∈K.

Now suppose that x1 = (−1,−1) and x2 = (1,−1). Obviously x1, x2∈F (y), for all y∈K. On the
other hand, x̄ = (0,−1)∈intC1, where x̄ = 1

2
x1 + 1

2
x2. Note that in fact x̄ = (1 − t)x1 + tx2∈intC1

for all t∈]0, 1[.

Example 3.5. In the previous example let cone C2 = {(x, y) : x∈R, y∈]−∞, 0]}. It is easy to check
that F (y) is convex.

It is worth noting that if C = [0,+∞[ then the example of Jafari et al. in [19] shows that the
properly C-quasimonotonicity of f is essential essential in Colorally 3.2 . Until now, we show the
nonemptiness of S(f,K,C), where f is C-quasimonotone on D and is not properly C-quasimonotone
on D. Now, we follow KKM technique to obtain existence results for vector equilibrium problems
when the bifunction f is properly C-quasimonotone on D. Ky Fan in 1984 extended the well-known
Fan-KKM theorem [10] in order to relax the compactness condition and obtained the following result,
which is known as Fan’s Lemma.
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Lemma 3.6. [11] Let K be a nonempty subset of a Hausdorff topological vector space X and Γ :
K ⇒ X be a set-valued mapping such that

(1) Γ has closed values;

(2) Γ is a KKM mapping, that is, for any n∈N and x1, . . . , xn∈K

conv{x1, . . . , xn} ⊆ ∪ni=1Γ(xi);

(3) there exists a nonempty compact convex subset B of K such that ∩x∈BΓ(x) is compact.

Then ∩x∈CΓ(x) 6= ∅.

We use following definitions and lemma to prove the vector version of theorem 3.2 in [19].

Definition 3.7. [30] Let Λ be a nonempty set and X be a topological space. A set-valued mapping
F : Λ⇒ X is said to be intersectionally closed on Λ iff

∩y∈Λcl(F (y)) = cl(∩y∈ΛF (y)).

Definition 3.8. [30] Let Λ be a nonempty set and X a topological space. A set-valued mapping
F : Λ⇒ X is said to be transfer closed on Λ iff

∩y∈Λcl(F (y)) = ∩y∈ΛF (y).

Definition 3.9. [30] Let Λ be a nonempty set and X a topological space. A set-valued mapping
F : Λ⇒ X is said to be unionly open on Λ iff

∪y∈Λint(F (y)) = int(∪y∈ΛF (y)).

It is clear that transfer closed maps are intersectionally closed. The converse is not true in general.
For instance, F (λ) =]0, 1[ for every λ∈[0, 1] is a constant set-valued map from Λ = [0, 1] to X = [0, 1]
and is intersectionally closed, but not transfer closed.

Proposition 3.10. [30] The set-valued map F is intersectionally closed iff its complement F c is
unionly open. Denote by F c the complement of F, that is F c(λ) = X\F (λ) for λ∈Λ.

Definition 3.11. The function f : K × K −→ Z is C-transfer lower semicontinuous on B if for
every x∈B and y∈K, f(x, y)∈intC implies that there exist some point x̄∈B and some neighbourhood
U of y such that f(x̄, z)∈intC for all z∈U ∩K.

Remark 3.12. It is easy to check that, if f is C-lower semicontinuous on B, then it is C-transfer
lower semicontinuous on B.

Lemma 3.13. If f : K × K −→ Z is C-transfer lower semicontinuous on B, then the set-valued
mapping F in relation (3.1) is intersectionally closed on B.
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Proof . It sufficient to show that the set F c(y) = {x∈K : f(y, x)∈intC} is unionly open. Let x̄ be
an element from the interior of the set ∪λ∈ΛF

c(λ). Then, there exists a neighbourhood V of x̄ such
that for every x∈V , there is some λ∈Λ for which we have f(λ, x)∈intC. Since f is C-transfer lower
semicontinuous, there are some λ0 and a neighbourhood V0 of x̄ such that V0 ⊆ F c(λ0). Consequently,

int(∪λ∈ΛF
c(λ)) ⊆ ∪λ∈Λint(F

c(λ)).

The converse inclusion being evident, we obtain equality, by which F c is transfer open. Due to
Proposition 3.10, the map F is intersectionally closed. � Note that according to Proposition 2.3 in
[30], if the set-valued mapping F is transfer closed-valued on B in the sense of Tian [32] or F (y) is
closed for every y∈B, then the set-valued mapping F is intersectionally closed on B.

Theorem 3.14. Let K a convex subset of X and D be a locally segment-dense set in K and f :
K ×K −→ Z be a properly C-quasimonotone bifunction on D satisfying the following conditions:

(1) there exist a nonempty compact subset K0 ⊆ K and nonempty convex compact subset B ⊆ D
such that for every x∈K\K0, there exists y∈B such that f(y, x)∈intC and F is intersectionally
closed on B;

(2) there exists a nonempty subset A ⊆ D such that for every x∈K\A, there exists y∈A such that
f(y, x)∈intC;

(3) for every x∈D, f(x, ·) is C-lower semicontinuous on K0.

Then MD(f,K,C) 6= ∅.
Proof . Define a set-valued mapping cl(F ) : D ⇒ K by

cl(F )(y) := cl(F (y)),∀y∈D.

Obviously, cl(F)(y) is closed for every y∈D. It is easy to conclude from the assumption (1) that
∩y∈BF (y) ⊆ K0 and

∩y∈Bcl(F )(y) = cl(∩y∈BF (y)) ⊆ K0.

Hence, ∩y∈B cl(F )(y) is compact. To verify that cl(F) is a KKM mapping, let y1, y2, . . . , yn∈D and
y∈conv{y1, y2, . . . , yn} ∩D. Since f is properly C-quasimonotone on D, there exists i0∈{1, 2, . . . , n}
such that f(yi0 , y) /∈ intC, which yields y∈ ∪ni=1 F (yi). This means that

conv{y1, y2, . . . , yn} ∩D ⊆ ∪ni=1 F (yi),

and then,
cl(conv{y1, y2, . . . , yn} ∩D) ⊆ cl(∪ni=1F (yi) = ∪ni=1cl(F )(yi).

It follows from Lemma 2.8 that

conv{y1, y2, . . . , yn} ⊆ ∪ni=1cl(F )(yi),

which means that cl(F) is a KKM mapping. Now it follows from lemma 3.6 that ∩y∈Dcl(F )(y) 6= ∅.
Since ∩y∈B F (y) ⊆ K0, we imply that

∩y∈Dcl(F )(y) = (∩y∈Dcl(F )(y)) ∩K0 = ∩y∈D(cl(F )(y) ∩K0).

Moreover, since for every y∈D, f(y, .) is C-lower semicontinuous on K0, by employing Lemma 2.3,
we have cl(F )(y) ∩ K0 = F (y) ∩ K0. Hence, ∩y∈DF (y) = ∩y∈D(F (y) ∩ K0) 6= ∅. In addition, the
assumption (2) allows us to find x̄∈(∩y∈DF (y)) ∩ D. This means that MD

L (f,K,C) 6= ∅. � In the
following theorem, by eliminating the condition involving ∩y∈B cl(F (y)) = ∩y∈BF (y), the same result
as Theorem 3.14 is achieved.
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Theorem 3.15. Let K a convex subset of X and D be a locally segment-dense set in K, and f :
X ×X −→ Z a properly C-quasimonotone bifunction on D satisfying the following conditions:

(1) there exist a nonempty compact subset K0 ⊆ K and y0∈D such that

f(y0, x)∈intC, ∀x∈K\K0;

(2) there exists a nonempty subset A ⊆ D such that for every x∈K\A, there exists y∈A such that
f(y, x)∈intC;

(3) for every x∈D, f(x, ·) is C-lower semicontinuous on K0.

Then MD
L (f,K,C) 6= ∅.

Proof . Let B = {y0} in the condition (1) of Theorem 3.14. �

Corollary 3.16. Let K a convex subset of X and D be a locally segment-dense set in K. Let
f : K × K −→ Z be a bifunction satisfying all conditions of Theorems 3.14 or 3.15. If f has
C-sequentially sign property, then S(f,K,C) 6= ∅.

Proof . The assertion immediately follows from Theorems 3.14 or 3.15 and then Lemma 2.16. �
Now, we are in a position to state our main result for C-quasimonotone equilibrium problems.

Theorem 3.17. Let K a convex subset of X and D be a locally segment-dense set in K. Let
f : K ×K −→ Z be a C-quasimonotone bifunction on D satisfying the following conditions:

(1) for every y∈D, F (y) is closed in K\D and convex on D;

(2) there exist a nonempty compact subset K0 ⊆ K and y0∈D such that

f(y0, x)∈intC, ∀x∈K\K0;

(3) there exists a nonempty subset A ⊆ D such that for every x∈K\A, there exists y∈A such that
f(y, x)∈intC;

(4) for every x∈D, f(x, ·) is C-lower semicontinuous on K0;

(5) f has sequentially sign property.

Then S(f,K,C) 6= ∅.
Proof . We split the proof into the following two cases.
Case 1: f is C-quasimonotone on D and not properly C-quasimonotone on D. It follows from
Corollary 3.2 that S(f,K,C) 6= ∅.
Case 2: f is properly C-quasimonotone on D. It follows from Corollary 3.16 that S(f,K,C) 6= ∅. �
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