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Abstract

Owing to the notion of L-fuzzy mapping, we establish some common L-fuzzy fixed point results for almost Θ-
contraction in the setting of complete metric spaces. An application to theoretical computer science is also provided
to show the significance of the investigations.

Keywords: Fixed point, Θ-contraction, metric space, L-fuzzy mappings.
2010 MSC: Primary 26A25; Secondary 39B62.

1 Introduction and preliminaries

Answering real-world problems becomes evidently uncomplicated with the initiation of fuzzy set theory in 1965 by
Zadeh [35], as it helps in making the explanation of obscurity and inaccuracy fair and more accurate. subsequently,
Goguen [17] modified this concept to L-fuzzy set theory by replacing the interval [0, 1] in 1967. There are fundamentally
two perceptive of the meaning of L, one is when L is a complete lattice equipped with a multiplication ∗ operator
satisfying certain assumptions as shown in the basic paper [17] and the second perceptive of the meaning of L is that
L is a completely distributive complete lattice with an order-reversing involution .

Definition 1.1. [17] A partially ordered set (L,≾L) is called

i) a lattice, if a1 ∨ a2 ∈ L, a1 ∧ a2 ∈ L for each a1, a2 ∈ L.

ii) a complete lattice, if ∨A ∈ L, ∧A ∈ L for any A ⊆ L.

iii) distributive lattice if a1 ∨ (a2 ∧ a3) = (a1 ∨ a2) ∧ (a1 ∨ a3), a1 ∧ (a2 ∨ a3) = (a1 ∧ a2) ∨ (a1 ∧ a3), for any
a1, a2, a3 ∈ L.

Definition 1.2. [17] Let L be a lattice with top element 1L and bottom element 0L and let a1, a2 ∈ L. Then a2 is
said to be a complement of a1, if a1 ∨a2 = 1L, and a1 ∧a2 = 0L. If a ∈ L has a complement element, then it is unique.
It is denoted by á.
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Definition 1.3. [17] A L−fuzzy set A on a nonempty set S is a function A : S → L, where L is complete distributive
lattice with 1L and 0L.

Remark 1.4. An L−fuzzy set is a fuzzy set if L = [0, 1], so the family of L−fuzzy sets is larger than the family of
fuzzy sets.

The αL-level set of L−fuzzy set A, is designated by AαL
, and is given in this way.

AαL
= {u : αL≾LA(u)} if αL ∈ L\{0L},

A0L
= {u : 0L≾LA(u)}.

Here cl(B) stands for the closure of the set B. The characteristic function of a L-fuzzy set A is denoted by χLA

and is defined as follows:

χLA
:=

{
0L if u /∈ A
1L if u ∈ A

.

In 2014, Azam et al. [29] initiated the concept of βFL
-admissible for a pair of L-fuzzy mappings and exploited it

to establish a common L-fuzzy fixed point theorem.

Definition 1.5. [29] Let S1 be an arbitrary set, S2 be a metric space. A mapping Q is said to be an L−fuzzy
mapping if Q is a mapping from S1 into ℑL(S2 ). An L−fuzzy mapping Q is a L−fuzzy subset on S1 × S2 with
membership function Q(u)(v). The function Q(u)(v) is the grade of membership of v in Q(u).

Definition 1.6. [29] Let (S, σ) be a metric space and P,Q be L−fuzzy mappings from S into ℑL(S). A point z ∈ S
is called a L−fuzzy fixed point of Q if u∗ ∈ [Qu∗]αL

, where αL ∈ L\{0L}. The point u∗ ∈ S is called a common
L−fuzzy fixed point of P and Q if u∗ ∈ [Pu∗]αL

∩ [Qu∗]αL
. When αL = 1L, it is called a common fixed point of

L−fuzzy mappings.

In 2015, Jleli et al. [24]gave the notion of Θ-contractions and proved some new fixed point results for such
contractions in the setting of generalized metric spaces.

Definition 1.7. Let Θ : (0,∞) → (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;

(Θ2) for each sequence {αn} ⊆ R+, limn→∞ Θ(αn) = 1 if and only if limn→∞(αn) = 0;

(Θ3) there exists 0 < r < 1 and l ∈ (0,∞] such that limα→0+
Θ(α)−1

αr = l.

A mapping P : S → S is said to be Θ-contraction if there exist the function Θ satisfying (Θ1)-(Θ3) and a constant
k ∈ (0, 1) such that for all u, v ∈ S,

σ(Pu,Pv) > 0 =⇒ Θ(σ(Pu,Pv)) ≤ [Θ(σ(u, v))]k. (1.1)

Theorem 1.8. [24] Let (S, σ) be a complete metric space and P : S → S be a Θ-contraction, then P has a unique
fixed point.

They demonstrated that any Banach contraction is a specific case of Θ-contraction while there are Θ-contractions
which are not Banach contractions. We express by Ψ the set of all functions Θ : (0,∞) → (1,∞) satisfying the above
assertions (Θ1)-(Θ3), consistent with Jleli et al. [24],.

Later on Altune et al.[18] modified the above definitions by adding a general condition (Θ4) which is given as
follows.
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(Θ4) Θ(inf A) = inf Θ(A) for all A ⊂ (0,∞) with inf A > 0.

Following Altune et al.[18], we represent the set of all continuous functions Θ : R+ → R satisfying (Θ1) − (Θ4)
conditions by 𭟋. For more details on Θ-contraction, we refer the reader to [4, 27]. For the sake of convenience, we
first state the following lemma for subsequent use in the next section. Let (S, σ) be a metric space and CB(S) be the
family of nonempty, closed and bounded subsets of S. ForA,B ∈ CB(S), define

H(A,B) = max

{
sup
a∈A

σ(a,B), sup
b∈B

σ(b, A)

}
where

σ(u,A) = inf
v∈A

σ(u, v).

Lemma 1.9. [29]Let (S, σ) be a metric space and A,B ∈ CB(S), then for each a ∈ A,

σ(a,B) ≤ H(A,B).

In this paper, we obtain common L-fuzzy fixed point theorems for almost Θ-contraction in the setting of complete
metric spaces. A significant example is also given to illustrate the validity of main result.

2 Main Results

In this way, we state and prove a common fixed point theorem for L-fuzzy mappings.

Theorem 2.1. Let (S, σ) be a complete metric space and {P,Q} be a pair of L-fuzzy mappings from S into ℑL(S)
and for each αL ∈ L\{0L}, [Pu]αL(u)

, [Qv]αL(v)
are nonempty closed bounded subsets of S. If there exist some Θ ∈ 𭟋,

k ∈ (0, 1) and L ≥ 0 such that

H
(
[Pu]αL(u)

, [Qv]αL(v)

)
> 0 =⇒ Θ

(
H

(
[Pu]αL(u)

, [Qv]αL(v)

))
≤ Θ(σ(u, v))k + Lm(u, v) (2.1)

for all u, v ∈ S , where

m(u, v) = min
{
σ
(
u, [Pu]αL(u)

)
, σ

(
v, [Qv]αL(v)

)
, σ

(
u, [Qv]αL(v)

)
, σ

(
v, [Pu]αL(u)

)}
. (2.2)

Then P and Q have a common L-fuzzy fixed point.

Proof . Let u0 be an arbitrary point in S, then by hypotheses there exists αL(u0) ∈ L\{0L} such that [Pu0]αL(u0)
is

a nonempty closed bounded subset of S and let u1 ∈ [Pu0]αL(u0)
. For this u1 there exists αL(u1) ∈ L\{0L} such that

[Qu1]αL(u1)
is a nonempty, closed and bounded subset of S. By Lemma 1.9, ( Θ1) and (2.1), we have

Θ(σ
(
u1, [Qu1]αL(u1)

)
≤ Θ

(
H

(
[Pu0]αL(u0)

, [Qu1]αL(u1)

))
≤ Θ(σ(u0, u1))

k + Lm(u0, u1) (2.3)

where

m(u0, u1) = min
{
σ
(
u0, [Pu0]αL(u0)

)
, σ

(
u1, [Qu1]αL(u1)

)
, σ

(
u0, [Qu1]αL(u1)

)
, σ

(
u1, [Pu0]αL(u0)

)}
.

From ( Θ4), we know that

Θ
(
σ
(
u1, [Qu1]αL(u1)

))
= inf

v∈[Qu1]αL(u1)

Θ(σ(u1, v)).

Thus from (2.3), we get

inf
v∈[Qu1]αL(u1)

Θ(σ(u1, v)) ≤ Θ(σ(u0, u1)
k +min

 σ
(
u0, [Pu0]αL(u0)

)
, σ

(
u1, [Qu1]αL(u1)

)
,

σ
(
u0, [Qu1]αL(u1)

)
, σ

(
u1, [Pu0]αL(u0)

)  (2.4)
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Then, from (2.4), there exists u2 ∈ [Qu1]αL(u1)
such that

Θ(σ(u1, u2)) ≤ [Θ(σ(u0, u1)]
k +min {σ (u0, u1) , σ (u1, u2) , σ (u0, u2) , σ (u1, u1)} .

Thus we have
Θ(σ(u1, u2)) ≤ [Θ(σ(u0, u1)]

k. (2.5)

For this u2 there exists αL(u2) ∈ L\{0L} such that [Pu2]αL(u2)
is a nonempty closed bounded subset of S. By

Lemma 1.9, ( Θ1) and (2.1), we have

Θ
(
σ
(
u2, [Pu2]αL(u2)

))
≤ Θ(H

(
[Qu1]αL(u1)

, [Pu2]αL(u2)

)
= Θ(H

(
[Pu2]αL(u2)

, [Qu1]αL(u1)

)
≤ [Θ(σ(u2, u1)]

k + Lm(u2, u1)

thus we get

Θ
(
σ
(
u2, [Pu2]αL(u2)

))
≤≤ [Θ(σ(u2, u1)]

k + Lm(u2, u1) (2.6)

where

m(u2, u1) = min
{
σ
(
u2, [Pu2]αL(u2)

)
, σ

(
u1, [Qu1]αL(u1)

)
, σ

(
u2, [Qu1]αL(u1)

)
, σ

(
u1, [Pu2]αL(u2)

)}
which further implies that

Θ
(
σ
(
u2, [Pu2]αL(u2)

))
≤ Θ [σ(u1, u2)]

k
+min

 σ
(
u2, [Pu2]αL(u2)

)
, σ

(
u1, [Qu1]αL(u1)

)
,

σ
(
u2, [Qu1]αL(u1)

)
, σ

(
u1, [Pu2]αL(u2)

)  . (2.7)

From ( Θ4), we know that

Θ
[
σ
(
u2, [Pu2]αL(u2)

)]
= inf

v1∈[Pu2]αL(u2)

Θ(σ(u2, v1))

inf
v1∈[Pu2]αL(u2)

Θ(σ(u2, v1)) ≤ Θ [σ(u1, u2)]
k
+min

 σ
(
u2, [Pu2]αL(u2)

)
, σ

(
u1, [Qu1]αL(u1)

)
,

σ
(
u2, [Qu1]αL(u1)

)
, σ

(
u1, [Pu2]αL(u2)

)  . (2.8)

Then, from (2.8), there exists u3 ∈ [Pu2]αL(u2)
such that

Θ(σ(u2, u3)) ≤ [Θ(σ(u1, u2)]
k

+min {σ (u2, u3) , σ (u1, u2) , σ (u2, u2) , σ (u1, u3)} .

Thus we have
Θ(σ(u2, u3)) ≤ [Θ(σ(u1, u2)]

k. (2.9)

So, continuing recursively, we obtain a sequence {un} in S such that u2n+1 ∈ [Pu2n]αL(u2n)
and u2n+2 ∈

[Qu2n+1]αL(u2n+1)
and

Θ(σ(u2n+1, u2n+2)) ≤ [Θ(σ(u2n, u2n+1)]
k (2.10)

and
Θ(σ(u2n+2, u2n+3)) ≤ [Θ(σ(u2n+1, u2n+2)]

k (2.11)

for all n ∈ N. From (2.10) and (2.11), we have

Θ(σ(un, un+1)) ≤ [Θ(σ(un−1, un)]
k (2.12)

which further implies that

Θ(σ(un, un+1)) ≤ [Θ(σ(un−1, un)]
k ≤ [Θ(σ(un−2, un−1)]

k2

≤ ... ≤ [Θ(σ(u0, u1)]
kn

(2.13)
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for all n ∈ N. Since Θ ∈ 𭟋, so by taking limit as n→ ∞ in (2.13) we have,

lim
n→∞

Θ(σ(un, un+1)) = 1 (2.14)

which implies that
lim

n→∞
σ(un, un+1) = 0 (2.15)

by (Θ2). From the condition (Θ3), there exist 0 < r < 1 and l ∈ (0,∞] such that

lim
n→∞

Θ(σ(un, un+1))− 1

σ(un, un+1)r
= l. (2.16)

Suppose that l <∞. In this case, let β = l
2 > 0. From the definition of the limit, there exists n0 ∈ N such that

|Θ(σ(un, un+1))− 1

σ(un, un+1)r
− l| ≤ β

for all n > n0. This implies that
Θ(σ(un, un+1))− 1

σ(un, un+1)r
≥ l − β =

l

2
= β

for all n > n0. Then
nσ(un, un+1)

r ≤ αn[Θ(σ(un, un+1))− 1] (2.17)

for all n > n0, where α = 1
β . Now we suppose that l = ∞. Let β > 0 be an arbitrary positive number. From the

definition of the limit, there exists n0 ∈ N such that

β ≤ Θ(σ(un, un+1))− 1

σ(un, un+1)r

for all n > n0. This implies that
nσ(un, un+1)

r ≤ αn[Θ(σ(un, un+1))− 1]

for all n > n0, where α = 1
β . Thus, in all cases, there exist α > 0 and n0 ∈ N such that

nσ(un, un+1)
r ≤ αn[Θ(σ(un, un+1))− 1] (2.18)

for all n > n0. Thus by (2.13) and (2.18), we get

nσ(un, un+1)
r ≤ αn([(Θσ(u0, u1))]

rn − 1). (2.19)

Letting n→ ∞ in the above inequality, we obtain

lim
n→∞

nσ(un, un+1)
r = 0.

Thus, there exists n1 ∈ N such that

σ(un, un+1) ≤
1

n1/r
(2.20)

for all n > n1. Now we prove that {un} is a Cauchy sequence. For m > n > n1 we have,

σ(un, um) ≤
m−1∑
i=n

σ(ui, ui+1) ≤
m−1∑
i=n

1

i1/r
≤

∞∑
i=1

1

i1/r
. (2.21)

Since, 0 < r < 1,
∑∞

i=1
1

i1/r
converges. Therefore, σ(un, um) → 0 as m,n → ∞. Thus we proved that {un} is a

Cauchy sequence in (S, σ). The completeness of (S, σ) ensures that there exists u∗ ∈ S such that, limn→∞ un → u∗.
Now, we prove that u∗ ∈ [Qu∗]αL(u∗) .We suppose on the contrary that u∗ ̸∈ [Qu∗]αL(u), then there exist a n0 ∈ N and
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a subsequence {unk
} of {un} such that σ(u2nk+1, [Qu∗]αL(u∗)) > 0 for all nk ≥ n0. Since σ(u2nk+1, [Qu∗]αL(u)) > 0

for all nk ≥ n0, so by (Θ1), we have

1 < Θ
[
σ(u2nk+1, [Qu∗]αL(u∗))

]
≤ Θ

[
H([Pu2nk

]αL(u2nk
) , [Qu

∗]αL(u∗))
]

≤ [Θ(σ(u2nk
, u∗))]

k
+min

 σ
(
u2nk

, [Pu2nk
]αL(u2nk

)

)
, σ

(
u∗, [Qu∗]αL(u∗)

)
,

σ
(
u2nk

, [Qu∗]αL(u∗)

)
, σ

(
u∗, [Pu2nk

]αL(u2nk
)

) 
≤ [Θ(σ(u2nk

, u∗))]
k
+ Lmin

 σ (u2nk
, u2nk+1) , σ

(
u∗, [Qu∗]αL(u∗)

)
,

σ
(
u2nk

, [Qu∗]αL(u∗)

)
, σ (u∗, u2nk+1)

 .

Letting n→ ∞, in above inequality and using the continuity of Θ, we have

1 < Θ
[
σ(u∗, [Qu∗]αL(u∗))

]
≤ 1

which is a conradiction. Hence u∗ ∈ [Qu∗]αL(u∗) . Similarly, one can easily prove that u∗ ∈ [Pu∗]αL(u∗) . Thus

u∗ ∈ [Pu∗]αL(u∗) ∩ [Qu∗]αL(u∗) . □

The following result is a direct consequence of above theorem by taking L = 0.

Corollary 2.2. Let (S, σ) be a complete metric space and {P,Q} be a pair of L-fuzzy mappings from S into ℑL(S)
and for each αL ∈ L\{0L}, [Pu]αL(u)

, [Qv]αL(v)
are nonempty closed bounded subsets of S. If there exist some Θ ∈ 𭟋

and k ∈ (0, 1) such that

H
(
[Pu]αL(u)

, [Qv]αL(v)

)
> 0 =⇒ Θ

(
H

(
[Pu]αL(u)

, [Qv]αL(v)

))
≤ Θ(σ(u, v))k

for all u, v ∈ S. Then P and Q have a common L-fuzzy fixed point.

If we take a single L-fuzzy mapping, we get the following result.

Corollary 2.3. Let (S, σ) be a complete metric space and let P be L-fuzzy mapping from S into ℑL(S) and for each
αL ∈ L\{0L}, [Pu]αL(u)

, [Pv]αL(v)
are nonempty closed bounded subsets of S. If there exist some Θ ∈ 𭟋, k ∈ (0, 1)

and L ≥ 0 such that

Θ
(
H

(
[Pu]αL(u)

, [Pv]αL(v)

))
≤ Θ(σ(u, v))k + Lm(u, v)

where
m(u, v) = min

{
σ
(
u, [Pu]αL(u)

)
, σ

(
v, [Pv]αL(v)

)
, σ

(
u, [Pv]αL(v)

)
, σ

(
v, [Pu]αL(u)

)}
.

for all u, v ∈ S with H
(
[Pu]αL(u)

, [Pv]αL(v)

)
> 0. Then P has an L-fuzzy fixed point.

Corollary 2.4. Let (S, σ) be a complete metric space and let P be L-fuzzy mapping from S into ℑL(S) and for
each αL ∈ L\{0L}, [Pu]αL(u)

, [Pv]αL(v)
are nonempty closed bounded subsets of S. If there exist some Θ ∈ 𭟋 and

k ∈ (0, 1) such that

Θ
(
H

(
[Pu]αL(u)

, [Pv]αL(v)

))
≤ Θ(σ(u, v))k

for all u, v ∈ S with H
(
[Pu]αL(u)

, [Pv]αL(v)

)
> 0. Then P has an L-fuzzy fixed point.

L-fuzzy fixed point results are real generalization of fuzzy fixed point theorems. It can be shown in the following
Theorem.

Theorem 2.5. Let (S, σ) be a complete metric space and let P,Q be fuzzy mappings from S into ℑ(S) and for each
α(u) ∈ (0 , 1 ], [Pu]α(u) , [Qv]α(v) are nonempty closed bounded subsets of S. If there exist some Θ ∈ 𭟋, k ∈ (0, 1) and
L ≥ 0 such that

Θ
(
H

(
[Pu]α(u) , [Qv]α(v)

))
≤ Θ(σ(u, v))k + Lm(u, v)
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where
m(u, v) = min

{
σ
(
u, [Pu]α(u)

)
, σ

(
v, [Qv]α(v)

)
, σ

(
u, [Qv]α(v)

)
, σ

(
v, [Pu]α(u)

)}
.

for all u, v ∈ S with H
(
[Pu]α(u) , [Qv]α(v)

)
> 0. Then P and Q have a common fuzzy fixed point.

Proof . Consider an L-fuzzy mapping J : S → ℑL(S) defined by

J u = χLP(u)
.

Then for αL ∈ L\{0L} , we have
[J u]αL(u) = Pu.

Hence by Theorem 2.1 we follow the result. □

Taking L = 0 in above result, we have following corollary.

Corollary 2.6. Let (S, σ) be a complete metric space and let P,Q be fuzzy mappings from S into ℑ(S) and for each
α(u) ∈ (0 , 1 ], [Pu]α(u) , [Qv]α(v) are nonempty closed bounded subsets of S. If there exist some Θ ∈ 𭟋 and k ∈ (0, 1)
such that

Θ
(
H

(
[Pu]α(u) , [Qv]α(v)

))
≤ Θ(σ(u, v))k

for all u, v ∈ S with H
(
[Pu]α(u) , [Qv]α(v)

)
> 0. Then P and Q have a common fuzzy fixed point.

Example 2.7. Let S = [0, 1], σ(u, v) = |u − v|, whenever u, v ∈ S. Then (S, σ) is a complete metric space. Let
L = {η, ω, τ, κ} with η ⪯L ω ⪯L κ and η ⪯L τ ⪯L κ, where ω and τ are not comparable, then (L,⪯L) is a complete
distributive lattice. Define P,Q : S → ℑL(S) as follows:

P(u)(t) =


κ if 0 ≤ t ≤ u

6
ω if u

6 < t ≤ u
3

τ if u
3 < t ≤ u

2
η if u

2 < t ≤ 1

,

Q(u)(t) =


κ if 0 ≤ t ≤ u

12
η if u

12 < t ≤ u
8

ω if u
8 < t ≤ u

4
τ if u

4 < t ≤ 1

.

Let Θ(t) = e
√
t ∈ 𭟋 for t > 0. And for all u ∈ S, there exists αL (u) = κ, such that

[Pu]αL(u)
=

[
0,
u

6

]
, [Qu]αL(u)

=
[
0,
u

12

]
.

and all conditions of Theorem 2.1 are satisfied. And 0 is a common fixed point of P and Q.

3 Applications to domain of words

Suppose Ω be a nonempty alphabet and Ω∞ be the collection of all finite and infinite sequences (“words”) over Ω,
where we adopt the convention that the empty sequence ∅ is an element of Ω∞. Moreover, on Ω∞, we consider the
prefix order ≎ given by:

u ≎ v if and only if u is a prefix of v.

For each nonempty u ∈ Ω∞ denote by l(u) the length of u. Then l(u) ∈ [0,∞], whenever u ̸= ∅ and l(∅) = 0.
For each u, v ∈ Ω∞, let u ⊓ v be the common prefix of u and v. Clearly, u = v if and only if u ≎ v and v ≎ u and
l(u) = l(v). Then, the the Baire metric σ≎ is defined on Ω∞ × Ω∞ by{

σ≎(u, v) = 0, if u=v
σ≎(u, v) = 2−l(u⊓v), otherwise
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such that the metric space (Ω∞, σ≎) is complete. Certainly, we assign to the average case time complexity analysis of
the Quicksort divide-and-conquer sorting algorithm in [32]. Exactly, we deal with the following recurrence relation:

R(1) = 0 and R(n) =
2(n− 1)

n
+
n+ 1

n
R(n− 1), n ≥ 2. (3.1)

Consider as an alphabet Ω the set of nonnegative real numbers, i.e., Ω = R+. We accomplice to R the functional
Φ : Ω∞ → Ω∞ given by

(Φ(u))1 = R(1)

and

(Φ(u))n =
2(n− 1)

n
+
n+ 1

n
un−1

for all n ≥ 2 (if u ∈ Ω∞ has length n <∞, we write u := u1u2...un, and if u is an infinite word we write u := u1u2 . . .).
It follows by the construction that l(Φ(u)) = l(u)+1 for all u ∈ Ω∞ and l(Φ(u)) = +∞ whenever l(u) = +∞. We will
prove that the functional Φ has an L-fuzzy fixed point by an application of 2.4. Let P : Ω∞ → ℑ(Ω∞) be the L-fuzzy
mapping given by

Pu = (Φ(u))αL
for all u ∈ Ω∞ and αL ∈ L\{0L}.

and analyze the following two cases:

Case 01: If u = v, then we have

H≎((Φ(u))αL
, (Φ(u))αL

) = 0 = σ≎(u, u).

Case 02: If u ̸= v, then we write

H≎((Φ(u))αL
, (Φ(v))αL

) = σ≎((Φ(u))αL
, (Φ(v))αL

) = 2−(l(Φ(u))αL
⊓(Φ(v))αL

)

≤ 2−(l(Φ(u⊓v))αL
) = 2−(l(u⊓v)+1)

=
1

2
2−l(u⊓v) = (

1√
2
)2σ≎(u, v).

It is immediate to achieve that all the assertions of the Corollary 2.4 are satisfied with Θ(t) = e
√
t and k = 1√

2
.

Consequently, the L- fuzzy mapping P has a L- fuzzy fixed point u = u1u2... ∈ Ω∞ that is, u ∈ (Pu)αL
. Also, in the

light of the definition of P, u is a fixed point of Φ, and hence, u solves the recurrence relation (3.1). We have

u1 = 0,

un =
2(n− 1)

n
+
n+ 1

n
un−1, n ≥ 2.

4 Conclusions

We proved some common L-fuzzy fixed point results for almost Θ-contraction in the setting of complete metric
spaces by using the notion of L-fuzzy mappings.We also presented an application to domain of words which shows the
significance of the investigation of this paper.
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