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Abstract

Using a generalized spherical mean operator, we obtain the generalization of Titchmarsh’s theorem
for the Dunkl transform for functions satisfying the Lipschitz condition in L2(Rd, wk), where wk is a
weight function invariant under the action of an associated reflection groups.
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1. Introduction

Titchmarsh ([9], Theorem 85) characterized the set of functions in L2(R) satisfying the cauchy
Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform,
namely we have

Theorem 1.1. [9] Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the following are equivalents:

(1) ‖f(t+ h)− f(t)‖L2(R) = O(hα) as h −→ 0

(2)
∫
|λ|≥r |F(f)(λ)|2dλ = O(r−2α) as r −→∞

where F(f) stands for the Fourier transform of f .

In this paper, we prove the generalization of Theorem 1.1 in the Dunkl transform setting by
means of the generalized spherical mean operator.
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2. Preliminaries

In order to confirm the basic and standard notation, we briefly overview the theory of Dunkl
operators and related harmonic analysis. Main references are [1, 2, 3, 4, 7, 8, 9].

Let Rd be the Euclidean space equipped with a scalar product 〈, 〉 and let |x| =
√
〈x, x〉. For α in

Rd\{0}, let σα be the reflection in the hyperplane Hα ⊂ Rd orthogonal to α. A finite set R ⊂ Rd\{0}
is called a root system if R ∩ Rα = {α,−α} and σR = R for all α ∈ R. For a given root system R,
reflections σα, α ∈ R, generate a finite group W ⊂ O(d), called the reflection group associated with
R. We fix a β ∈ Rd\ ∪α∈R Hα and define a positive root system R+ = {α ∈ R/〈α, β〉 > 0}.
A function k : R −→ C on R is called a multiplicity function if it is invariant under the action of W.
Throughout this paper, we will assume that k(α) ≥ 0 for all α ∈ R.

We consider the weight function

wk(x) =
∏
α∈R+

|〈α, x〉|2k(α),

where wk is W-invariant and homogeneous of degree 2γ where

γ =
∑
α∈R+

k(α).

We let η be the normalized surface measure on the unit sphere Sd−1 in Rd and set

dηk(y) = wk(y)dη(y).

Then ηk is a W-invariant measure on Sd−1, we let dk = ηk(Sd−1).

The Dunkl operators Tj, 1 ≤ j ≤ d, on Rd associated with the reflection group W and the
multiplicity function k are the first-order differential-difference operators given by

Tjf(x) =
∂f

∂xj
(x) +

∑
α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
, f ∈ C1(Rd).

where αj = 〈α, ej〉; (e1, ...., ed) being the canonical basis of Rd and C1(Rd) is the space of functions
of class C1 on Rd.

The Dunkl kernel Ek on Rd × Rd has been introduced by C.F. Dunkl in [2]. For y ∈ Rd the
function x 7−→ Ek(x, y) can be viewed as the solution on Rd of the following initial problem{

Tju(x, y) = yju(x, y) for 1 ≤ j ≤ d
u(0, y) = 1 for all y ∈ Rd

This kernel has unique holomorphic extension to Cd × Cd.

M. Röler has proved in [6] the following integral representation for the Dunkl kernel

Ek(x, z) =

∫
Rd
e〈y,z〉dµx(y), x ∈ Rd, z ∈ Cd (2.1)

where µx is a probability measure on Rd with support in the closed ball B(0, |x|) of center 0 and
raduis |x|.
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Proposition 2.1. [4] Let z, w ∈ Cd and λ ∈ C. Then

1. Ek(z, 0) = 1

2. Ek(z, w) = Ek(w, z)

3. Ek(λz, w) = Ek(z, λw)

4. For all ν = (ν1, ....., νd) ∈ N, x ∈ Rd, z ∈ Cd, we have

|Dν
zEk(x, z)| ≤ |x||ν|exp(|x||Rez|)

where

Dν
z =

∂|ν|

∂zν11 .....∂z
νd
d

; |ν| = ν1 + ...+ νd.

In particulier

|Dν
zEk(ix, z)| ≤ |x||ν|

for all x, z ∈ Rd

We denote by L2
k(Rd) = L2(Rd, wk(x)dx) the space of measurable functions on Rd such that

‖f‖k,2 =

(∫
Rd
|f(x)|2wk(x)dx

)1/2

The Dunkl transform is defined for f ∈ L1
k(Rd) = L1(Rd, wk(x)dx) by

f̂(ξ) = c−1k

∫
Rd
f(x)Ek(−iξ, x)wk(x)dx.

where the constant ck is given by

ck =

∫
Rd
e−
|z|2
2 wk(z)dz.

According to [3, 4] we have the following results:

1. When both f and f̂ are in L1
k(Rd), we have the inversion formula

f(x) =

∫
Rd
f̂(ξ)Ek(ix, ξ)wk(ξ)dξ, x ∈ Rd

2. (Plancherel’s theorem) The Dunkl transform on S(Rd), the space of Schwartz functions, extends
uniquely to an isometric isomorphism on L2

k(Rd).

K. Trimèche has introduced [8] the Dunkl translation operators τx, x ∈ Rd. For f ∈ L2
k(Rd) and

we have

τ̂x(f)(ξ) = Ek(ix, ξ)f̂(ξ)

and

τx(f)(y) = c−1k

∫
Rd
f̂(ξ)Ek(ix, ξ)Ek(iy, ξ)wk(ξ)dξ.
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Applealing to Parseval theorem and Proposition 2.1 we see that

‖τxf‖k,2 ≤ ‖f‖k,2 ∀x ∈ Rd.

The generalized spherical mean operator for f ∈ L2
k(Rd) is defined by

Mhf(x) =
1

dk

∫
Sd−1

τx(hy)dηk(y), x ∈ Rd, h > 0

From [5], we have Mhf ∈ L2
k(Rd) whenever f ∈ L2

k(Rd) and

‖Mhf‖k,2 ≤ ‖f‖k,2

for all h > 0.

For p ≥ −1
2
, we introduce the normalized Bessel functuion jp defined by

jp(z) = Γ(p+ 1)
∞∑
n=0

(−1)n(z/2)2n

n!Γ(n+ p+ 1)
, z ∈ C (2.2)

where Γ is the gamma-function.

From [3] we have

1

dk

∫
Sd−1

Ek(iy, x)dηk(y) = jγ+ d
2
−1(|x|) (2.3)

for all x ∈ Rd. This shows in particular that x −→ jγ+ d
2
−1(|x|) is a smooth bounded function with

|jγ+ d
2
−1(|x|)| ≤ 1 (2.4)

From (2.2) we obtain

lim
z−→0

jγ+ d
2
−1(z)− 1

z2
6= 0

by consequence, there exist c > 0 and η > 0 such that

|z| ≤ η =⇒ |jγ+ d
2
−1(z)− 1| ≥ c|z|2 (2.5)

The integral representation of the Dunkl kernel (2.1) and (2.3) yield

|jγ+ d
2
−1(|x|)| ≤ |x|. (2.6)

Proposition 2.2. Let f ∈ L2
k(Rd). Then

M̂hf(ξ) = jγ+ d
2
−1(h|ξ|)f̂(ξ)

Proof .(See [5]).�
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3. Generalization of Titchmarsh’s Theorem

In this section we give the main result of this paper. We need first to define the ψ-Dunkl Lipschitz
class.

Definition 3.1. A function f ∈ L2
k(Rd) is said to be in the ψ-Dunkl Lipschitz class, denoted by

Lip(ψ, 2, k); if:

‖Mhf(.)− f(.)‖k,2 = O(ψ(h))

as h −→ 0.
where ψ(t) is a continuous increasing function on [0,∞), ψ(0) = 0 and ψ(ts) = ψ(t)ψ(s) for all

t, s ∈ [0,∞) and this function verify
∫ 1/h

0
sψ(s−2)ds = O( 1

h2
ψ(h2)) as h −→ 0

Theorem 3.2. Let f ∈ L2
k(Rd). Then the following are equivalents

1. f ∈ Lip(ψ, 2, k)

2.
∫
|x|≥r |f̂(x)|2wk(x)dx = O(ψ(r−2)) as r −→∞

Proof . 1) =⇒ 2) Suppose that f ∈ Lip(ψ, 2, k). Then we have

‖Mhf − f‖k,2 = O(ψ(h)) as h −→ 0.

Parseval Theorem and Proposition 2.2, we obtain

‖Mhf − f‖2k,2 =

∫
Rd
|1− jγ+ d

2
−1(h|x|)|

2|f̂(x)|2wk(x)dx

Formula (2.5) gives∫
η
2h
≤|x|≤ η

h

|1− jγ+ d
2
−1(h|x|)|

2|f̂(x)|2wk(x)dx ≥ c2η4

16

∫
η
2h
≤|x|≤ η

h

|f̂(x)|2wk(x)dx

There exists then a positive constant C such that

∫
η
2h
≤|x|≤ η

h

|f̂(x)|2wk(x)dx ≤ C

∫
Rd
|1− jγ+ d

2
−1(h|x|)|

2|f̂(x)|2wk(x)dx

≤ Cψ(h2).

For all h > 0, we obtain∫
r≤|x|≤2r

|f̂(x)|2wk(x)dx ≤ Cψ(2−2ηr−2)

Thus there exists K > 0 such that∫
r≤|x|≤2r

|f̂(x)|2wk(x)dx ≤ Kψ(r−2)

So that
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∫
|x|≥r
|f̂(x)|2wk(x)dx =

[∫
r≤|x|≤2r

+

∫
2r≤|x|≤4r

+

∫
4r≤|x|≤8r

....

]
|f̂(x)|2wk(x)dx

= O(ψ(r−2) + ψ(2−2r−2)......)

= O(ψ(r−2) + ψ(r−2) + .......)

= O(ψ(r−2)).

This proves that∫
|x|≥r
|f̂(x)|2wk(x)dx = O(ψ(r−2))

2) =⇒ 1) Suppose now that∫
|x|≥r
|f̂(x)|2wk(x)dx = O(ψ(r−2)) as r −→∞.

We have to show that∫ ∞
0

x2γ+d−1|1− jγ+ d
2
−1(hx)|2ϕ(x)dx = O(ψ(h2)) as h −→ 0,

where we have set

ϕ(x) =

∫
Sd−1

|f̂(xy)|2wk(y)dy

we write∫ ∞
0

x2γ+d−1|1− jγ+ d
2
−1(hx)|2ϕ(x)dx = I1 + I2

where

I1 =

∫ 1
h

0

x2γ+d−1|1− jγ+ d
2
−1(hx)|2ϕ(x)dx.

and

I2 =

∫ ∞
1
h

x2γ+d−1|1− jγ+ d
2
−1(hx)|2ϕ(x)dx.

From (2.4), we have

I2 ≤ 4

∫ ∞
1
h

x2γ+d−1ϕ(x)dx = O(ψ(h2)) as h −→ 0

Set

g(s) =

∫ ∞
s

x2γ+d−1ϕ(x)dx
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From (2.6) , with an integration by parts yields

I1 ≤ −h2
∫ 1

h

0

s2g′(s)ds

≤ −g(
1

h
) + 2h2

∫ 1
h

0

sg(s)ds

≤ Ch2
∫ 1

h

0

sψ(s−2)ds

≤ Ch2
1

h2
ψ(h2)

≤ Cψ(h2).

and this ends the proof. �
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