>>Z

Jensen’s inequality for GG-convex functions

G. Zabandan
Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get inequalities alike
to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
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1. Introduction

Let u be a positive measure on X such that u(X) = 1. If f is a real-valued function in L'(u),
a < f(xr) <bforall x € X and ¢ is convex on (a,b), then

w(/xfdu) S/X(so-f)dﬂ (1.1)

The inequality (1.1]) is known as Jensen’s inequality [4], [7].

Definition 1.1. A function ¢ : (a,b) — (0,00), where 0 < a < b < 00, is called GG-convex or
multiplicatively-convex (according to the geometric mean) if the inequality

p('y' ™) < M)A () (1.2)
holds, where a < x <b, a <y <b, and 0 <\ < 1.

In this paper, first we prove Jensen’s inequality for GG-convex functions. Then as a result of
Jensen’s inequality, we prove the geometric mean of positive numbers is not greater than the mean
power of the same numbers of order o > 0, that is

«

“a”)é (> 0,ay,az--a, >0).

By GG-convexity of Gamma function on [1, 00|, we obtain several interesting inequalities. Finally,
we prove alike to Hermit-Hadamard inequality for GG-convex functions.
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2. Main results
First we need the following theorem.

Theorem 2.1. A function ¢ is GG-conver on (a,b) if for 0 < a < s <t < u < b the following
inequality holds
o) —Inp(s) _ ) —Inp(t)

2.1
Int —1Ins - Inu—1Int (21)
Inu—Int
Proof . Let ¢ be GG-convex and A = u, then t = s*u!~*. Hence
Inu—Ins
Inu—Int Inu—1Int

olt) < [p(s)mu—Ins[p(u) mu—Ins

It follows that

Inu —1Int Int—1Ins
< /- =
mp(t) < lnu—lnslnws)—i_lnu—lnslngo(u)

Inu—1Int Int—1Ins Inu—1Int Int—1Ins
— 1 t — 1 H —— 1 — 1
Inu —1Ins n )+lnu—1ns ne(t) < Inu —1Ins ngp(S)—'—lnu—lns np(u)

Inu—1Int Int —1Ins

s _ < -2 _

S () — I p(s)) < o (Inp(u) — (1)

since s < t < u, we obtain
o) —Inp(s) _ np(u) —Inp(t)
Int —1Ins - Inu —Int
Conversely let the inequality (2.1)) holds, and A € [0,1], a < z < y < b, then x < 'y < y. By
inequality (2.1 we have

np(aty'™) —np() _ ne(y) —np(ty'™)
Inz*y!=* —Inz = Iny—Inary!-A
np(zty'™) —Inp(r) _ np(y) —np@ty'™)
(1-=XN)(Iny —Inz) — AMIny —Inz)
= Inp(z*y' ™) < (1= N Inp(y) + Anp(z)
— o’y ) < M) (Y)

Thus ¢ is GG-convex. [J
By similar way to the convex functions we can prove that if ¢ is GG-convex on (a,b), then ¢ is
continuous on (a, b).

Theorem 2.2. Let p be a positive measure on a o-algebra m in a set X, so that u(X) = 1. If f is
a real function in L'(p), 0 < a < f(x) <b for all z € X, and if p is GG-convez on (a,b), then

In fd In(p o f)d
. e/anu Se/Xn(so fdp 22)
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Proof . Put t = e/x™fdt Then a < t < b. If M is the supremum of quotients on the left side of
(2.1), where a < s < t, then for any u € (¢,b) we have

1 < me(u) —Ine(t)
- lnu —Int

It follows that
In(t) — Inp(s)

<
ot Ins M (a<s<b)

SO
Inp(s) > Inp(t)+ M(Ins —Int).

Hence, for any = € X, we have

ne(f(2)) = ne(t) + M(In f(x) —Int)

since ¢ is continuous, ¢ o f is measureable, and since f € L'(u), by cancavity of ¢)(z) = Inx and
Jensen inequality (1.1) In f € L*(u). By integrating both sides with respect to measure p we obtain

/Xln(gp o f)du > Inp(t) + M (/X In fdu — lnt) (W(X) =1)

/ In fdu
Now set t = e/ X , it follows that

/lnfdu /lnd,u
/ln(cpof)d,uZlnap el x + M /lnfd,u—lne X
X

X

SO
lnsO(efxlnfd“) S/ln(wf)du
X
or
/lnfdu /hl(soOf)du
p|e/X <elX .
O

In [6], the author proved the following assertion.
Here we prove it in another way and a result of theorem 2.2.

Corollary 2.3. Let f : [a,b] — (0,00) (b > a > 0) be a continuous function and ¢ : J — (0, 00)
be a GG-conver function defined on an interval J which includes the image of f. Then

1 /blnf(:v)dx 1 /blnw(f(x))dx

enb—1Ina x <elnb—Ina x (2.3)

¥

d
Proof . In theorem 2.2, put X = [a,b] and du = g
x

In the following theorem we prove a version for the inverse of corollary 2.3.
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Theorem 2.4. Let ¢ : (0,00) — (0,00) be a function such that the inequality (2.3) holds, for every
positive real bounded measureable function f. Then ¢ is GG-conver.

Proof . Let A € [0,1] and ¢,d € (0,00). Define

fa) = {c a<z<ba?

d ba'r<zx<b

we have

pral—A

1 In f(z) 1 dx b dx
lnb—lna/a x do = Inb—Ina /a (lnc)?—k/bAal_A(lnd)?

=Anc+ (1—- M) Ind

SO

1 /bln f(z) "

") elnb —Ina X = (6)\1n0+(1—)\)lnd) — S0(cz\dl—/\) (*)

on the other hand we have

bkal—A

1 /ablnw(f(x))dx b [/a lngo(C)@Jr/bb 1ngo(d)d?x]

Inb—1Ina x " Inb—Ina x Agl-A

= Ang(c) + (1 = A) Ine(d)

Hence

L [l

emb—Inafy & _ Alel@ru-Nneld) _ o (0ol (q) (%)

Now the (*), (**) and (2.3) show that ¢ is GG-convex. [

1
Example 2.5. (1) Let X = {x1,29,..., 2.}, u({z;}) = — and f(x;) = a; > 0. Then (2.2) becomes
n

1 1
—(lna; +Inay + -+ +1Inay,) —

1 1 | .
o en < en(w(al)Jr ne(az) +--- +Ine(a,))

Hence

o (Varay .. an) < /p(a)p(as) . .. o(ay) (2.4)
Now we inestigate this inequality for o(z) = e*" and p(z) = I'(z)
(i) o(z) = ™ (a > 0) is GG-convez on (0,00) (see [1]). The inequality (2.4) implies that
1
el Varaz—an)® < {feaf gag  eafi = (e Fazttan)n

1
a a DY a -
:«"/alag...ang(al—%a?—i_ +an)a (a>0)

n
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(i1) o(x) = T'(z) is GG-convex on [1,00). The inequality (2.4) follows that

k —mx
By Gauss multipication formula [[}-y T(x + —) = (2r) 2 m2  T(ma) [8] we obtain
m

m

1 1 m-—1 L.
r(’(/x(ﬁa)..«ﬁm—_)) < (@2r) 2m m2m ° %/T(mz)

Especially for x =1 we have

B ! m—1 1 )
] m— 3 o, 90 m
(2) T'(x) is GG-convez on [1,00). Hence (2.3) becomes

1 b dt 1 dt
— [ mf= o a
. elnb_lna/a Ft) Selnb—lnaf“l U

Especially for f(t) =1Int (e < a <t <b) we have

1 b dt 1 b dt
—/ In(lnt)— —/ In(lnt)—
I'| elnb—1Ina/, t Selnb—lna “ t
: dt
By change of variable Int = x, 7= dx,
1 Inbd 1 Inbd
—_— In zd —_— Inl(z)d
T elnb—lnaAa frar <elnb—lnaAla nl(z)de

Now put a = € and b = e (

p=1)
p+1 pH
/ In zdx / In['(z)dx
I'|e/r < e’p
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By easy calculations we see that

p+1 1)p+1 p+1
/ lnxdm:ln% —1 and / Inl'(z)de = —p+plnp+Inv2r
P P

50
O
r en P Se—p—i—plnp—t—lnx/%r

or

r (M) < Vo

epp

In the following theorem we obtain inequalities alike to Hermite-Hadamard inequality for GG-
convex functions.

Theorem 2.6. Let f : [a,b] — (0,00) be a GG-convex function (b > a > 0). Then the following
iequalities hold:

(L’ €T

1 /blnf( ) 4o —
f(ab) < elmb—Inaly o T 1 / O <Vi@fe 25

Proof . Since f is GG-convex, the corollary 2.3 implies that

b b
1 /lnf(x)daj 1 / lnxdx
emb—Ina/, = > f emb—Ina/, =«

1
———————(In2b—1In2q)
:f 62(111[)—111@ :f(*’ab)
For the proof of middle part, since ¢(f) = Int is concave, by Jensen’s inequality (1.1) we get

" I1 1 b.]d
g M AR ] K
b

/ ab da:
lnb—lna _lnb—lna
1 dx

_ m/ In f()

b b
Because by change of variable, @ t, dr = t_zdt we see that
x

[ msh - /blnf( )&

1 , dx
T [, Inf(z)— ab dx

elnb—1Ina x
lnb—lna 1: T

SO
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b b b
For the proof of right side of 1' by change of variable x = a' =0 = a(-)!, dv = aln —(=)'dt and
a a'a
GG-convexity of f we obtain

b b

aln —(—)

1 b ab dx
- - — = 1- tbt tbl t ——aa
lnb—lna/a f@) x) x lnb—lna/ Vi fla )—% a(é)t

a

- | VIR
< / VI @ F O @) o 0t = /Fa) (D).

O
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