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Abstract

In this paper we obtain a unique common fixed point theorem for six weakly compatible mappings
in G-metric spaces.
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1. Introduction

Dhage [1, 2, 3, 4]et al. introduced the concept of D-metric spaces as generalization of ordinary metric
functions and went on to presentseveral fixed point results for single and multivalued mappings.
Mustafa and Sims [12] and Naidu et al. [8, [0, 10] demonstrated that most of the claims concerning
the fundamental topological structure of D-metric space are incorrect,alternatively, Mustafa and
Sims introduced in [I3] more appropriate notion of generalized metric space which called G-metric
spaces, and obtained some topological properties. Later Zead Mustafa , Hamed Obiedat and Fadi
Awawdeh [I3], Mustafa , Shatanawi and Bataineh [I5], Mustafa and Sims [I6], Shatanawi [11] and
Renu Chugh, Tamanna Kadian, Anju Rani and B.E.Rhoades [7] et al. obtained some fixed point
theorems for a single map in G-metric spaces. In this paper, we obtain a unique common fixed point
theorem for six weakly compatible mappings in G-metric spaces and obtain some theorems of [11] as
corollaries to our theorem. First, we present some known definitions and propositions in G-metric
spaces.
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Definition 1.1. [13]. Let X be a nonempty set and let G : X x X x X — RT be a function
satisfying the following properties :

(G1): G(z,y,2)=0ifr=y=2z,

(Gy): 0 < G(z,x,y) for all z,y € X with x # vy,

(G3): G(z,x,y) < G(x,y,z) forall z,y,z € X withy # z,

(Gy): G(z,y,2) =Gz, z,y) = Gy, z,x) = ...,symmetry in all three variables,

(Gs5): G(z,y,2) < G(z,a,a) + G(a,y, z) for all x,y,z,a € X.

Then the function G is called a generalized metric or a G-metric on X and the pair (X, G) is called
a G-metric space.

Definition 1.2. [13]. Let (X, G) be a G-metric space and {x,} be a sequence in X. A point x € X
is said to be limit of {x,} ff lim G(x,x,,2,) = 0. In this case, the sequence {x,} is said to be
7,1M—00

G-convergent to x.

Definition 1.3. [13]. Let (X, G) be a G-metric space and {x,} be a sequence in X. {x,} is called
G-Cauchy iff  lim (@1, Ty ) = 0. (X, Q) is called G-complete if every G-Cauchy sequence in

m, |—oco

(X, Q) is G—com;érgent in (X, Q).

Proposition 1.4. [13] In a G-metric space, (X, G), the following are equivalent.
(1) The sequence {z,} is G-Cauchy.
(2) For every € > 0, there exists N € N such that G(xp, Tpm, Tm) < €, for alln,m > N.

Proposition 1.5. [13].Let (X,G) be a G-metric space. Then the function G(x,y,z) is jointly con-
tinuous in all three of its variables.

Proposition 1.6. [13]. Let (X, G) be a G-metric space. Then for any x,y,z,a € X, it follows that
(i) if G(x,y,2) =0 thenx =y = z,

(it) G(z,y,2) < G(z,2,y) + G(z,2,2) ,

(iii) G(z,y,y) < 2G(x,x,y),

() G(z,y,z) < G(x,a,z) + G(a,y, z),

(v) G(x,y,2) < 2[G(x,a,a) + G(y,a,a) + G(z,a,a)] .

Proposition 1.7. [13].Let (X, G) be a G-metric space. Then for a
sequence {z,} € X and a point x € X, the following are equivalent
(i) {xzn} is G-convergent to x,

(i1) G(xp, xp,x) = 0 as n — oo,

(i11) G(xp, x,x) — 0 as n — oo,

(iv) G(Zp, Tp, ) = 0 as m,n — 00.

Definition 1.8. [13] Let (X, G) and (X', G") be two G-metric spaces, and let f : (X,G) — (X', G")
be a function, then f is said to be G-continuous at a point a € X if and only if, given € > 0, there
exists 0 > 0 such that x,y € X; and G(a,x,y) < 0 implies G'(f(a), f(z), f(y)) < e. A function f is
G-continuous at X if and only if it is G-continuous at all a € X.

Proposition 1.9. [73] Let (X, G), and (X', G") be two G-metric spaces. Then a function f : X —>
X' is G-continuous at a point x € X if and only if it is G-sequentially continuous at z; that is,
whenever (x,,) is G-convergent to x we have (f(x,)) is G-convergent to f(z).

Definition 1.10. [5] A pair of self mappings is called weakly compatible if they commute at their
cotncidence points.
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2. Main Results

Following to Matkowski [6], let ® denote the set of all continuous nondecreasing functions ¢ :
[0,00) — [0, 00) such that ¢™(t) — 0 as n — oo for all ¢ > 0 . It is clear that ¢(t) < ¢ for all t > 0
and ¢(0) = 0.

Theorem 2.1. Let (X,G) be a G-metric space and S, T, R, f,g,h : X — X be satisfying
(1) S(X) € g(X), T(X) € h(X) and R(X) C f(X),

(ii) one of f(X),g(X) and h(X) is a complete subspace of X,

(i) the pairs (S, f), (T, g) and (R, h) are weakly compatible, and

(iv) G(Sz, Ty, Rz)
G(fx, gy, hz),
3[G(fz, Sz, Ty) + G(gy, Ty, Rz) + G(hz, Rz, Sx)],
1G(fx, Ty, hz) + G(Sz, gy, hz) + G(fz, gy, Rz)]

< ¢ | max

forall z,y,z € X, where ¢ € ®.
Then either one of the pairs (S, f), (T, g) and (R, h) has a coincidence point or the maps S, T, R, f, g
and h have a unique common fixed point in X.

Proof . Choose zy € X. By (i), there exist xq1,29,23 € X such that Szg = gx; = yo, say ,
Txy = hzy = y1, say and Rzy = fxs = 1o, say.
Inductively, there exist sequences {x,} and {y,} in X such that
Ysn = STan = 9T3n+1, Y3n+1 = TT3p41 = NT3np2, and yspio = RTznyo = fT3,43, Where n =0,1,2, ...
If y3,, = Y311 then 3,1 is a coincidence point of g and T'.
If Y301 = Y3nso then zs,. o is a coincidence point of A and R.
If Y3502 = Y3n+3 then z3,. 5 is a coincidence point of f and S.
Now assume that y,, # y,41 for all n.
Denote d,, = G(yna Yn+1, yn+2)'
Putting & = 3,y = T3n41, 2 = T3p42 in (iv), we get
dsn = G(Y3n, Y3nt1, Ysnt2) =

G(Sfﬁ:sm Tx3n41, Rl’3n+2)

G(f T3, 9T3n41, hsnia), 5(G(f T30, STan, TTan41)+

G(gr3nt1, TT3n41, Rsnio) + G(hasnio, RTsnia, STs,)],

< ma.
=¢ * i[G<f$3n, Tw3p41, hzsnio) + G(ST3n, gTant1, hzni2)
+G(f23n, 9T3n11, RT3012)]
G (Y3n—1,Y3n, Y3n+1), %[G(yznfl, Y3n, Y3nt1)+
= ¢ | max lG(yiim Ysn+1 Ysnv2) + G(Ysnt1, Ysnr2, Ysn)),

G Wsn—1, Y3n+1, Y3n+1) + G (Y3n: Y3n, Yan+1)
+G (Y301, Y3ns Y3n+2)]
d3n717 %[d?mfl + d3n + dSn]a })
=¢ (max{ %[di’m—l + dsn 4 (d3n—1 + d3y,)] (1)
If d3,, > ds,—1 then from (1),we have ds, < ¢(ds,) < ds,. It is a contradiction. Hence d3, < d3,—;.
Now from (1), ds, < ¢(dspn—1)-
Similarly, by putting z = x3,.13,Y = T3p11, 2 = T3pi2 and & = X343,
Y = T3p44,2 = T342 in (iv), we get
dant1 < ¢(d3n) (2)
and
dsnt2 < @(dsny1) (3)
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respectively. Thus from (1),(2) and (3), we have

G(yna Yn+1, yn+2) S ¢(G(yn71> Yn, yn+1)
S ¢2(G(yn727 Yn—1, yn)

< 6"(Cluo.vr, ) 4)
From (G3) and (4), we have

G(yn7 Yn, yn—f—l) < G(ym Yn+1, yn+2) < ¢n(G(y07 Y1, y?))
Now for m > n, from (G5) and (4), we have

GYn, Yns Ym) < G(Yns Yn Ynt1) + G(Ynt1s Ynt1s Yns2) + o + G(Ym—1, Ym—1, Ym)

< 6"(G (Yo, y1,42)) + 0" G (Yo, Y1, ¥2)) + - + 8™ G (Yo, Y1, ¥2))
— 0 as n— oo, since ¢"(t) -0 as n— o0 for all t>0.

Hence {y,} is G-Cauchy. Suppose f(X) is G-complete.
Then there exist p,t € X such that ys,10 — p = ft. Since {y,} is G-Cauchy, it follows that ys, — p
and Ys,11 — p as n — o0.

G(St, Tl‘3n+1, Rl’g,H_Q)

G(ftv 9gT3n+1, h$3n+2), %[G(fta St? Tx3n+1)+
G(923n+1, TTan+1, RTsni2) + G(haznso, Ruspya, St)),
[ll[G(ft, T$3n+1, hx3n+2) + G(St, gI3ni1, h$3n+2)
+G(ft, gT3n+1, RI3n+2)]

< ¢ | max

Letting n — oo, we get

0, 2[G(p, St,p) + 0+ G(p,p, St)],
G(St,p,p) < ¢ (max{ ;[)0 + CZ;(St,p,p) _|_p()ﬁ }) :

G(St,p,p) < ¢(G(St,p,p)) , since ¢ is nondecreasing,.
Hence St =p . Thus p = ft = St .
Since the pair (S, f) is weakly compatible, we have fp = Sp .
Putting * = p,y = T3,41,2 = T3,42 in (iv), we get

G<Spa T$3n+17 Rx3n+2)
G(fp; 973011, h3nia), %[G(fpa Sp, Tx3n11)+
G (973011, TT3n11, RT3n12) + G(hzni2, RTznp2, SD)],
i[G(fp, Txzni1, h$3n+2) + G(S]% gT3n+1, hI3n+2)
+G(fp, 973n+1, Rr3n42)]

< ¢ | max

Letting n — oo, we have

G(Sp,p.p), 2[G(Sp, Sp,p) + 0+ G(p, p, Sp)],
CSp.pp) <0 (max{ i[G(Sp,p,gp) + G(Sp,p,p) + G(Sp, p, p)] })

Since G(Sp, Sp,p) < 2G(Sp, p, p), we have G(Sp,p,p) < ¢(G(Sp, p,p))
Thus Sp = p. Hence fp = Sp=p. (5)
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Since p = Sp € g(X), there exists v € X such that p = gv.
Putting * = p,y = v,z = 3,12 in (iv), we get

G(Sp, Tv, Rrgpio)

G(fp, gv, htgnio), 5[G(fp, Sp, Tv)+
G(gv, Tv, Rx3,.2) + G(hxspio, Rrsnya, Sp)],
1 G(fp,Tv, hasnis) + G(Sp, gu, has,is)
+G(fp7 guv, Rx3n+2)]

< ¢ | max

Letting n — oo, we deduce that

0,3[G(p.p,Tv) + G(p,Tv, p) + 0],
Glp.Tv.p) < ¢ (max{ ig(p,Tv,p) f0+02]? })

< ¢(G(p,Tv,p)) , since ¢ is nondecreasing.
Thus Tv = p, so that p =Tv = gv.
Since the pair (7, g) is weakly compatible, we have T'p = gp.

G(Sp, Tp, R$3n+2)

G(fp, gp, hsny2), |G (fp, Sp, Tp)+
G(gp, Tp, Rr3n+2) + G(hasni2, RTn40, Sp)],
G (fp, Tp, hasnis) + G(Sp, gp, hrsnya)
+G(fp, gp, Rr3n12))

< ¢ | max

Letting n — oo, we have

G(p,Tp,p), 2[G(p.p,Tp) + G(Tp,Tp,p) + 0], })
¢ Tpp) <@ (mx{ LG(p Trip) + Gp.Tp.0) + . Tpp)] J )

Since G(Tp, Tp,p) < 2G(Tp, p,p),we have, G(p, Tp,p) < ¢(G(p, Tp,p)).
Thus Tp = p. Hence gp = Tp = p. (6)
Since p = T'p € h(X), there exists w € X such that p = hw.

Putting = p,y = p, z = w in (iv), we get

G(Sp, Tp, Rw)

G(fp, gp, hw), 5[G(fp, Sp, Tp)+

G(gp, Tp, Rw) + G(hw, Rw, Sp)],

LG (fp, Tp, hw) + G(Sp, gp, hw)
+G(fp, gp, Rw)]

0,110 + G(p. p, Rw) + G(p, Rw, p)].
G(p,p, Rw) < ¢ (max{ i[()—f(f—y Giop. R]Zu)] p })

< ¢(G(p, p, Rw)) , since ¢ is nondecreasing.
Thus Rw = p ,so that p = hw = Rw.
Since the pair (R, h) is weakly compatible, we have Rp = hp.
Putting * = p,y = p,z = p in (iv), we get

G(p,p, Rp) = G(Sp, Tp, Rp)
G(fp. gp, Rp), 1[0+
G(p, p, Rp) + G(Rp, Rp, p)],
1G(p. p. Rp) + G(p, p, Rp)
+G(p,p, Rp)]

< ¢ | max

< ¢ | max

21
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Since G(Rp, Rp,p) < 2G(p,p, Rp), we have G(p,p, Rp) < ¢(G(p, p, Rp)).
Thus Rp = pso that Rp = hp = p. (7)
From (5),(6) and (7), it follows that p is a common fixed point of S, T, R, f, g and h.
Uniqueness of common fixed point follows easily from (iv). Similarly, we can prove the theorem
when ¢(X) or h(X) is a complete subspace of X [

Corollary 2.2. Let (X,G) be a G-metric space and S, T, R, f,g,h : X — X be satisfying
(i) S(X) € g(X), T(X) € h(X) and R(X) C f(X).

(i) one of f(X),g(X) and h(X) is a complete subspace of X,

(i11) the pairs (S, f),(T,g) and (R,h) are weakly compatible and

(iv)G(Sx, Ty, Rz) < ¢(G(fx, gy, hz))

forall z,y, 2z € X, where ¢ € ®.

Then the maps S, T, R, f,g and h have a unique common fixed point in X.

Corollary 2.3. Let (X,G) be a complete G-metric space and S, T, R : X — X be satisfying
G(Sz, Ty, Rz) < ¢(G(x,y,2)) for all x,y,z € X, where ¢ € P.

Then the maps S, T and R have a unique common fized point,say, p € X and S,T and R are
G-continuous at p.

Proof . There exists p € X such that p is the unique common fized point of S,T and R as in
Theorem 2.1.

Let {y,} be any sequence in X which G-converges to p.

Then

G(SYn, Sp, Sp) = G(Syn, Tp, Rp) < ¢(G(yn,p,p)) — 0 as n — oo.

Hence S is G-continuous at p.

Similarly, we can show that T and R are also G-continuous at p. [

Remark 2.4. Theorem 3.1, Corollaries 3.2 to 3.5 of [11|] follows from
Corollary[2.3| with S =T = R.
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