Int. J. Nonlinear Anal. Appl. 3 (2012) No. 1, 17-23 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

A Unique Common Fixed Point Theorem for Six Maps in G-metric Spaces

K. P. R. Rao^{a,*}, K. B. Lakshmi^a, Z. Mustafa^b

^aDepartment of Applied Mathematics, Acharya Nagarjuna University-Dr. M. R. Appa Row Campus, Nuzvid-521 201,Andhra Pradesh,India. ^bDepartment of Mathematics, The Hashemite University, P.O. 330127, Zarqa 13115, Jordan.

(Communicated by M. B. Ghaemi)

Abstract

In this paper we obtain a unique common fixed point theorem for six weakly compatible mappings in G-metric spaces.

Keywords: G-metric, Common Fixed Points, Compatible Mappings. 2010 MSC: 47H10, 54H25.

1. Introduction

Dhage [1, 2, 3, 4]et al. introduced the concept of D-metric spaces as generalization of ordinary metric functions and went on to presentseveral fixed point results for single and multivalued mappings. Mustafa and Sims [12] and Naidu et al. [8, 9, 10] demonstrated that most of the claims concerning the fundamental topological structure of D-metric space are incorrect, alternatively, Mustafa and Sims introduced in [13] more appropriate notion of generalized metric space which called G-metric spaces, and obtained some topological properties. Later Zead Mustafa , Hamed Obiedat and Fadi Awawdeh [13], Mustafa , Shatanawi and Bataineh [15], Mustafa and Sims [16], Shatanawi [11] and Renu Chugh, Tamanna Kadian, Anju Rani and B.E.Rhoades [7] et al. obtained some fixed point theorems for a single map in G-metric spaces. In this paper, we obtain a unique common fixed point theorem for six weakly compatible mappings in G-metric spaces and obtain some theorems of [11] as corollaries to our theorem. First, we present some known definitions and propositions in G-metric spaces.

^{*}Corresponding author

Email addresses: kprrao2004@yahoo.com (K. P. R. Rao), zmagablh@hu.edu.jo (Z. Mustafa)

Definition 1.1. [13]. Let X be a nonempty set and let $G : X \times X \times X \to R^+$ be a function satisfying the following properties :

 $(G_1): G(x, y, z) = 0 \text{ if } x = y = z ,$

 (G_2) : 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,

 (G_3) : $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,

 (G_4) : $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$, symmetry in all three variables,

 $(G_5): G(x, y, z) \leq G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X.$

Then the function G is called a generalized metric or a G-metric on X and the pair (X,G) is called a G-metric space.

Definition 1.2. [13]. Let (X, G) be a *G*-metric space and $\{x_n\}$ be a sequence in *X*. A point $x \in X$ is said to be limit of $\{x_n\}$ iff $\lim_{n,m\to\infty} G(x, x_n, x_m) = 0$. In this case, the sequence $\{x_n\}$ is said to be *G*-convergent to *x*.

Definition 1.3. [13]. Let (X, G) be a G-metric space and $\{x_n\}$ be a sequence in X. $\{x_n\}$ is called G-Cauchy iff $\lim_{n, m, l \to \infty} G(x_l, x_n, x_m) = 0$. (X, G) is called G-complete if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 1.4. [13] In a G-metric space, (X, G), the following are equivalent.

(1) The sequence $\{x_n\}$ is G-Cauchy.

(2) For every $\epsilon > 0$, there exists $N \in \mathbf{N}$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $n, m \ge N$.

Proposition 1.5. [13].Let (X, G) be a G-metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Proposition 1.6. [13]. Let (X, G) be a *G*-metric space. Then for any $x, y, z, a \in X$, it follows that (i) if G(x, y, z) = 0 then x = y = z, (ii) $G(x, y, z) \leq G(x, x, y) + G(x, x, z)$, (iii) $G(x, y, y) \leq 2G(x, x, y)$, (iv) $G(x, y, z) \leq G(x, a, z) + G(a, y, z)$, (v) $G(x, y, z) \leq \frac{2}{3}[G(x, a, a) + G(y, a, a) + G(z, a, a)]$.

Proposition 1.7. [13].Let (X, G) be a G-metric space. Then for a sequence $\{x_n\} \subseteq X$ and a point $x \in X$, the following are equivalent (i) $\{x_n\}$ is G-convergent to x, (ii) $G(x_n, x_n, x) \to 0$ as $n \to \infty$, (iii) $G(x_n, x, x) \to 0$ as $n \to \infty$, (iv) $G(x_m, x_n, x) \to 0$ as $m, n \to \infty$.

Definition 1.8. [13] Let (X, G) and (X', G') be two *G*-metric spaces, and let $f : (X, G) \to (X', G')$ be a function, then f is said to be *G*-continuous at a point $a \in X$ if and only if, given $\epsilon > 0$, there exists $\delta > 0$ such that $x, y \in X$; and $G(a, x, y) < \delta$ implies $G'(f(a), f(x), f(y)) < \epsilon$. A function f is *G*-continuous at X if and only if it is *G*-continuous at all $a \in X$.

Proposition 1.9. [13] Let (X, G), and (X', G') be two G-metric spaces. Then a function $f : X \to X'$ is G-continuous at a point $x \in X$ if and only if it is G-sequentially continuous at x; that is, whenever (x_n) is G-convergent to x we have $(f(x_n))$ is G-convergent to f(x).

Definition 1.10. [5] A pair of self mappings is called weakly compatible if they commute at their coincidence points.

2. Main Results

Following to Matkowski [6], let Φ denote the set of all continuous nondecreasing functions ϕ : $[0,\infty) \to [0,\infty)$ such that $\phi^n(t) \to 0$ as $n \to \infty$ for all t > 0. It is clear that $\phi(t) < t$ for all t > 0and $\phi(0) = 0$.

Theorem 2.1. Let (X,G) be a G-metric space and $S,T,R,f,g,h:X \to X$ be satisfying (i) $S(X) \subseteq q(X), T(X) \subseteq h(X)$ and $R(X) \subseteq f(X)$, (ii) one of f(X), g(X) and h(X) is a complete subspace of X, (iii) the pairs (S, f), (T, g) and (R, h) are weakly compatible, and

$$\begin{array}{l} (iv) \ G(Sx, Ty, Rz) \\ \leq \phi \left(\max \left\{ \begin{array}{c} G(fx, gy, hz), \\ \frac{1}{3}[G(fx, Sx, Ty) + G(gy, Ty, Rz) + G(hz, Rz, Sx)], \\ \frac{1}{4}[G(fx, Ty, hz) + G(Sx, gy, hz) + G(fx, gy, Rz)] \end{array} \right\} \right) \end{array}$$

for all $x, y, z \in X$, where $\phi \in \Phi$.

Then either one of the pairs (S, f), (T, g) and (R, h) has a coincidence point or the maps S, T, R, f, gand h have a unique common fixed point in X.

Proof. Choose $x_0 \in X$. By (i), there exist $x_1, x_2, x_3 \in X$ such that $Sx_0 = gx_1 = y_0, say$, $Tx_1 = hx_2 = y_1$, say and $Rx_2 = fx_3 = y_2$, say. Inductively, there exist sequences $\{x_n\}$ and $\{y_n\}$ in X such that $y_{3n} = Sx_{3n} = gx_{3n+1}, y_{3n+1} = Tx_{3n+1} = hx_{3n+2}$, and $y_{3n+2} = Rx_{3n+2} = fx_{3n+3}$, where $n = 0, 1, 2, \dots$ If $y_{3n} = y_{3n+1}$ then x_{3n+1} is a coincidence point of g and T. If $y_{3n+1} = y_{3n+2}$ then x_{3n+2} is a coincidence point of h and R. If $y_{3n+2} = y_{3n+3}$ then x_{3n+3} is a coincidence point of f and S. Now assume that $y_n \neq y_{n+1}$ for all n. Denote $d_n = G(y_n, y_{n+1}, y_{n+2}).$ Putting $x = x_{3n}, y = x_{3n+1}, z = x_{3n+2}$ in (iv), we get $d_{3n} = G(y_{3n}, y_{3n+1}, y_{3n+2}) =$ $G(Sx_{3n}, Tx_{3n+1}, Rx_{3n+2})$ $G(Sx_{3n}, Tx_{3n+1}, Rx_{3n+2}) = G(fx_{3n}, gx_{3n+1}, hx_{3n+2}), \frac{1}{3}[G(fx_{3n}, Sx_{3n}, Tx_{3n+1}) + G(gx_{3n+1}, Tx_{3n+1}, Rx_{3n+2}) + G(hx_{3n+2}, Rx_{3n+2}, Sx_{3n})], \frac{1}{4}[G(fx_{3n}, Tx_{3n+1}, hx_{3n+2}) + G(Sx_{3n}, gx_{3n+1}, hx_{3n+2}) + G(fx_{3n}, gx_{3n+1}, hx_{3n+2})] + G(fx_{3n}, gx_{3n+1}, Rx_{3n+2})]$ $= \phi \left(\max \left\{ \begin{array}{c} G(y_{3n-1}, y_{3n}, y_{3n+1}), \frac{1}{3}[G(y_{3n-1}, y_{3n}, y_{3n+1}) + G(y_{3n+1}, y_{3n+2}, y_{3n})], \\ \frac{1}{4}[G(y_{3n-1}, y_{3n+1}, y_{3n+2}) + G(y_{3n}, y_{3n}, y_{3n+1}) + G(y_{3n-1}, y_{3n}, y_{3n+2})] \\ + G(y_{3n-1}, y_{3n+1}, y_{3n+2}) + G(y_{3n-1}, y_{3n}, y_{3n+1}) \\ \frac{1}{4}[G(y_{3n-1}, y_{3n+1}, y_{3n+2}) + G(y_{3n}, y_{3n}, y_{3n+1}) \\ + G(y_{3n-1}, y_{3n}, y_{3n+2})] \end{array} \right)$ (1)If $d_{3n} \geq d_{3n-1}$ then from (1), we have $d_{3n} \leq \phi(d_{3n}) < d_{3n}$. It is a contradiction. Hence $d_{3n} \leq d_{3n-1}$. Now from (1), $d_{2n} \leq \phi(d_{2n-1})$.

Now from (1), $d_{3n} \leq \phi(d_{3n-1})$.

Similarly, by putting $x = x_{3n+3}, y = x_{3n+1}, z = x_{3n+2}$ and $x = x_{3n+3}$, $y = x_{3n+4}, z = x_{3n+2}$ in (iv), we get $d_{3n+1} \le \phi(d_{3n})$ (2)and $d_{3n+2} \le \phi(d_{3n+1})$ (3)

(5)

$$G(y_n, y_n, y_m) \leq G(y_n, y_n, y_{n+1}) + G(y_{n+1}, y_{n+1}, y_{n+2}) + \dots + G(y_{m-1}, y_{m-1}, y_m)$$

$$\leq \phi^n(G(y_0, y_1, y_2)) + \phi^{n+1}(G(y_0, y_1, y_2)) + \dots + \phi^{m-1}(G(y_0, y_1, y_2))$$

$$\to 0 \quad as \quad n \to \infty, \text{ since } \phi^n(t) \to 0 \quad as \quad n \to \infty \quad for \quad all \quad t > 0 \ .$$

Hence $\{y_n\}$ is G-Cauchy. Suppose f(X) is G-complete. Then there exist $p, t \in X$ such that $y_{3n+2} \to p = ft$. Since $\{y_n\}$ is G-Cauchy, it follows that $y_{3n} \to p$

 $G(St, Tx_{3n+1}, Rx_{3n+2}) \\ \leq \phi \left(\max \left\{ \begin{array}{c} G(ft, gx_{3n+1}, hx_{3n+2}), \frac{1}{3}[G(ft, St, Tx_{3n+1}) + \\ G(gx_{3n+1}, Tx_{3n+1}, Rx_{3n+2}) + G(hx_{3n+2}, Rx_{3n+2}, St)], \\ \frac{1}{4}[G(ft, Tx_{3n+1}, hx_{3n+2}) + G(St, gx_{3n+1}, hx_{3n+2}) \\ + G(ft, gx_{3n+1}, Rx_{3n+2})] \end{array} \right\} \right)$

Letting $n \to \infty$, we get

and $y_{3n+1} \to p$ as $n \to \infty$.

$$G(St, p, p) \le \phi \left(\max \left\{ \begin{array}{c} 0, \frac{1}{3} [G(p, St, p) + 0 + G(p, p, St)], \\ \frac{1}{4} [0 + G(St, p, p) + 0)] \end{array} \right\} \right).$$

 $G(St, p, p) \leq \phi(G(St, p, p))$, since ϕ is nondecreasing. Hence St = p. Thus p = ft = St. Since the pair (S, f) is weakly compatible, we have fp = Sp. Putting $x = p, y = x_{3n+1}, z = x_{3n+2}$ in (iv), we get

$$G(Sp, Tx_{3n+1}, Rx_{3n+2}) \\ \leq \phi \left(\max \left\{ \begin{array}{c} G(fp, gx_{3n+1}, hx_{3n+2}), \frac{1}{3}[G(fp, Sp, Tx_{3n+1}) + \\ G(gx_{3n+1}, Tx_{3n+1}, Rx_{3n+2}) + G(hx_{3n+2}, Rx_{3n+2}, Sp)], \\ \frac{1}{4}[G(fp, Tx_{3n+1}, hx_{3n+2}) + G(Sp, gx_{3n+1}, hx_{3n+2}) \\ + G(fp, gx_{3n+1}, Rx_{3n+2})] \end{array} \right\} \right)$$

Letting $n \to \infty$, we have

$$G(Sp, p, p) \le \phi \left(\max \left\{ \begin{array}{l} G(Sp, p, p), \frac{1}{3}[G(Sp, Sp, p) + 0 + G(p, p, Sp)], \\ \frac{1}{4}[G(Sp, p, p) + G(Sp, p, p) + G(Sp, p, p)] \end{array} \right\} \right)$$

Since $G(Sp, Sp, p) \leq 2G(Sp, p, p)$, we have $G(Sp, p, p) \leq \phi(G(Sp, p, p))$ Thus Sp = p. Hence fp = Sp = p. Since $p = Sp \in g(X)$, there exists $v \in X$ such that p = gv. Putting $x = p, y = v, z = x_{3n+2}$ in (iv), we get

$$G(Sp, Tv, Rx_{3n+2}) \leq \phi \left(\max \left\{ \begin{array}{c} G(fp, gv, hx_{3n+2}), \frac{1}{3}[G(fp, Sp, Tv) + \\ G(gv, Tv, Rx_{3n+2}) + G(hx_{3n+2}, Rx_{3n+2}, Sp)], \\ \frac{1}{4}[G(fp, Tv, hx_{3n+2}) + G(Sp, gv, hx_{3n+2}) \\ + G(fp, gv, Rx_{3n+2})] \end{array} \right\} \right)$$

Letting $n \to \infty$, we deduce that

$$G(p, Tv, p) \le \phi \left(\max \left\{ \begin{array}{c} 0, \frac{1}{3}[G(p, p, Tv) + G(p, Tv, p) + 0], \\ \frac{1}{4}[G(p, Tv, p) + 0 + 0] \end{array} \right\} \right)$$

 $\leq \phi(G(p, Tv, p))$, since ϕ is nondecreasing. Thus Tv = p, so that p = Tv = gv. Since the pair (T, q) is weakly compatible, we have Tr =

Since the pair (T, g) is weakly compatible, we have Tp = gp.

$$G(Sp, Tp, Rx_{3n+2}) \leq \phi \left(\max \left\{ \begin{array}{c} G(fp, gp, hx_{3n+2}), \frac{1}{3}[G(fp, Sp, Tp) + \\ G(gp, Tp, Rx_{3n+2}) + G(hx_{3n+2}, Rx_{3n+2}, Sp)], \\ \frac{1}{4}[G(fp, Tp, hx_{3n+2}) + G(Sp, gp, hx_{3n+2}) \\ + G(fp, gp, Rx_{3n+2})] \end{array} \right\} \right)$$

Letting $n \to \infty$, we have

$$G(p, Tp, p) \le \phi \left(\max \left\{ \begin{array}{l} G(p, Tp, p), \frac{1}{3}[G(p, p, Tp) + G(Tp, Tp, p) + 0], \\ \frac{1}{4}[G(p, Tp, p) + G(p, Tp, p) + G(p, Tp, p)] \end{array} \right\} \right),$$

Since $G(Tp, Tp, p) \leq 2G(Tp, p, p)$, we have, $G(p, Tp, p) \leq \phi(G(p, Tp, p))$. Thus Tp = p. Hence gp = Tp = p. (6) Since $p = Tp \in h(X)$, there exists $w \in X$ such that p = hw.

Putting x = p, y = p, z = w in (iv), we get

$$\begin{split} G(Sp, Tp, Rw) \\ &\leq \phi \left(\max \left\{ \begin{array}{l} G(fp, gp, hw), \frac{1}{3}[G(fp, Sp, Tp) + \\ G(gp, Tp, Rw) + G(hw, Rw, Sp)], \\ \frac{1}{4}[G(fp, Tp, hw) + G(Sp, gp, hw) \\ + G(fp, gp, Rw)] \end{array} \right\} \right) \\ G(p, p, Rw) &\leq \phi \left(\max \left\{ \begin{array}{l} 0, \frac{1}{3}[0 + G(p, p, Rw) + G(p, Rw, p)], \\ \frac{1}{4}[0 + 0 + G(p, p, Rw)] \end{array} \right\} \right) \end{split}$$

 $\leq \phi(G(p,p,Rw)) \ , \ {\rm since} \ \phi \ {\rm is \ nondecreasing}.$ Thus Rw=p , so that p=hw=Rw.

Since the pair (R, h) is weakly compatible, we have Rp = hp. Putting x = p, y = p, z = p in (iv), we get

$$\begin{split} G(p, p, Rp) &= G(Sp, Tp, Rp) \\ &\leq \phi \left(\max \left\{ \begin{array}{l} G(fp, gp, Rp), \frac{1}{3}[0+\\ G(p, p, Rp) + G(Rp, Rp, p)], \\ \frac{1}{4}[G(p, p, Rp) + G(p, p, Rp) \\ + G(p, p, Rp)] \end{array} \right\} \right) \end{split}$$

(7)

Since $G(Rp, Rp, p) \leq 2G(p, p, Rp)$, we have $G(p, p, Rp) \leq \phi(G(p, p, Rp))$. Thus Rp = p so that Rp = hp = p.

From (5),(6) and (7), it follows that p is a common fixed point of S, T, R, f, g and h. Uniqueness of common fixed point follows easily from (iv). Similarly, we can prove the theorem when g(X) or h(X) is a complete subspace of $X \square$

Corollary 2.2. Let (X,G) be a *G*-metric space and $S,T,R,f,g,h: X \to X$ be satisfying (i) $S(X) \subseteq g(X), T(X) \subseteq h(X)$ and $R(X) \subseteq f(X)$, (ii) and $f(X) = g(X), x \in h(X)$ and h(X) = g(X).

(ii) one of f(X), g(X) and h(X) is a complete subspace of X,

(iii) the pairs (S, f), (T, g) and (R, h) are weakly compatible and

 $(iv)G(Sx,Ty,Rz) \le \phi(G(fx,gy,hz))$

for all
$$x, y, z \in X$$
, where $\phi \in \Phi$.

Then the maps S, T, R, f, g and h have a unique common fixed point in X.

Corollary 2.3. Let (X, G) be a complete G-metric space and $S, T, R : X \to X$ be satisfying $G(Sx, Ty, Rz) \leq \phi(G(x, y, z))$ for all $x, y, z \in X$, where $\phi \in \Phi$.

Then the maps S, T and R have a unique common fixed point, say, $p \in X$ and S, T and R are G-continuous at p.

Proof. There exists $p \in X$ such that p is the unique common fixed point of S,T and R as in Theorem 2.1.

Let $\{y_n\}$ be any sequence in X which G-converges to p. Then

 $G(Sy_n, Sp, Sp) = G(Sy_n, Tp, Rp) \le \phi(G(y_n, p, p)) \to 0 \text{ as } n \to \infty.$

Hence S is G-continuous at p.

Similarly, we can show that T and R are also G-continuous at p. \Box

Remark 2.4. Theorem 3.1, Corollaries 3.2 to 3.5 of [11] follows from Corollary 2.3 with S = T = R.

3. Acknowledgement

The authors would like to thank the referee for his valuable suggestions on the manuscript.

References

- B. C. Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84 (4) (1992) 329–336.
- [2] B. C. Dhage, On generalized metric spaces and topological structure II, Pure.Appl.Math.Sci., 40 (1-2) (1994) 37-41.
- [3] B. C. Dhage, A common fixed point principle in D-metric spaces, Bull. Cal. Math. Soc., 91 (6) (1999) 475-480.
- [4] B. C. Dhage, Generalized metric spaces and topological structure I, Annalele Stiintifice ale Universitatii Al. I. Cuza, 46 (1) (2000) 3–24.
- [5] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity condition, Indian. J. Pure. Appl. Math., 29 (3) (1998) 227–238.
- [6] J. Matkowski, Fixed point theorems for mappings with contractive iterate at a point, Proceedings of the American Mathematical Society, 62 (2) (1977) 344–348.
- [7] R. Chugh, T. Kadian, A. Rani and B. E. Rhoades, Property P in G-metric spaces, Fixed point theory and Applications, 2010, Article ID 401684,12 Pages.
- [8] S. V. R. Naidu, K. P. R. Rao and N. Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Internat. J. Math. Math. Sci., 2004 (51) (2004) 2719–2740.

- S. V. R. Naidu, K. P. R. Rao and N. Srinivasa Rao, On the concepts of balls in a D-metric space, Internat. J. Math. Sci., 2005 (1) (2005) 133-141.
- [10] S. V. R. Naidu, K. P. R. Rao and N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-Metric spaces, Internat. J. Math. Sci., 2005 (12) (2005) 1969–1988.
- [11] W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ -maps in G-metric spaces, Fixed point theory and Applications, vol. 2010, Article ID 181650, 9 pages.
- [12] Z. Mustafa and B. Sims, Some Remarks Concerning D-Metric Spaces, Proceedings of the International Conferences on Fixed Point Theorem and Applications, Valencia (Spain), July (2003), 189–198.
- [13] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7 (2) (2006) 289–297.
- [14] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, Fixed point theory and Applications, vol. 2008, Article ID 189870, 12 pages.
- [15] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces, Internat. J. Math. Sci, vol. 2009, Article ID 283028, 10 pages.
- [16] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed point theory and Applications, vol. 2009, Article ID 917175, 10 pages.