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Abstract

Let (X,d) be a complete metric space and let f,g : X — X be two mappings which satisfy a
(1 — p)-weak contraction condition or generalized (i) — p)-weak contraction condition. Then f and
g have a unique common fixed point. Our results extend previous results given by Ciri¢ (1971),
Rhoades (2001), Branciari (2002), Rhoades (2003), Abbas and Ali Khan (2009), Zhang and Song
(2009) and Moradi at. el. (2011).
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1. Introduction

Let (X, d) be a metric space. A mapping f : X — X is said to be p—weak contraction if there
exists a map ¢ : [0, +00) — [0, 4+00) with ¢(0) = 0 and ¢(t) > 0 for all ¢ > 0 such that

d(fz, fy) < d(z,y) — (d(z,y)), (1.1)

for all z,y € X.
Also a mapping f : X — X is said to be generalized p—weak contraction if there exists a map
¢ : [0, 400) — [0, +00) with ¢(0) = 0 and (t) > 0 for all ¢ > 0 such that

d(fz, fy) < N(z,y) — o(N(z,y)), (1.2)
for all x,y € X, where

o)+ 0. 5)y

N(z,y) i= max {d(z.y).d(z, fz).d(y, fy), .
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The concept of the p—weak contraction was defined by Alber and Guerre-Delabriere [2] in 1997, and
the generalized p—weak contraction was defined by Zhang and Song [15] in 2009. In the following
theorem Rhoades [12] extended the Banach Contraction Principle to 1»—weak contraction mappings.

Theorem 1.1. Let (X, d) be a complete metric space, and let T : X — X be a mapping such that

for every z,y € X (i.e. p-weak contractive), where ¢ : [0,400) — [0,+00) is a continuous and
nondecreasing function with ¢(0) =0 and ¢(t) > 0 for allt > 0. Then T has a unique fized point.

In 2009 Zhang and Song [15] extended the Rhoades’s Theorem. After that Moradi at. el. [9] gener-
alized the Zhang and Song’s result. Their result also, extended Ciri¢’s theorem [5].

Sessa [14] defined the concept of weakly commuting to obtain common fixed point for pairs of map-
pings. Jungck generalized this idea, first to compatible mapping [6] and then to weakly compatible
mappings [7].

Definition 1.2. Two mapping f,g: X — X are said to be weakly compatible if they commute at
their coincidence points (a point x is said to be a coincidence point of f and g if and only if fr = gx).

Recently, Abass and Ali Khan [1] proved the following theorem on the existence of a common fixed
point for two mappings. Their result extended the Rhoades’s Theorem.

Theorem 1.3. Let f,g be two self maps of a metric space (X, d) satisfying,
v(d(fz, fy)) < ¥(d(gz, gy)) — (d(gz, gy)), (1.4)

for all z,y € X, where 1, ¢ : [0,+00) — [0,4+00) are two continuous and nondecreasing functions
with (0) = ¢(0) = 0 and Y(t) > 0 and (t) > 0 for all t > 0. If range of g contains the range
of f and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X .
Moreover, if f and g are weakly compatible, then f and g have a unique common fized point.

Many authors have studied fixed point and common fixed point for weak and generalized weak
contraction mappings. Among many others, see, for example [3-8-10-13], and the references therein.
The aim of this paper is to present common fixed point theorems for weakly compatible mappings
satisfying a (1)—p)-weak and generalized (1)—p)-weak contractive condition. Our results substantially
extend the previous results given by Ciri¢ [5], Rhoades [12], Branciari [4], Rhoades [11], Abbas and
Ali Khan [1], Zhang and Song [15] and Moradi at. el. [9].

2. Preliminaries

In this work, (X, d) denotes a complete metric space.
Let G denotes the class of all nondecreasing and continuous mapping ¢ : [0, +00) — [0, +00) with
¥(0) = 0 and ¥(t) > 0 for all ¢ > 0. Also let D denotes the class of all nondecreasing and lower
semi-continuous from the right mapping ¢ : [0, +00) — [0, +00) with ¢(t) = 0 and (t) > 0 for all
t > 0. Obviously, G C D.

Definition 2.1. Let (X, d) be a metric space and let f,g: X — X be two self mappings. The pair
(f,g) are said to be (v — p)—weak contraction, if there exist 1 € G and ¢ € D such that

Y(d(fz, fy) < ¥(d(gz, gy)) — e(d(gz, 9v)), (2.1)
forall z,y € X.
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Definition 2.2. Let (X, d) be a metric space and let f,g: X — X be two self mappings. The pair
(f,g) are said to be generalized (¢ — @)—weak contraction, if there exist ¢ € G and ¢ € D such that

d(fz, fy) < P(M(z,y)) — (M (z,y)), (2.2)
for all x,y € X, where

d(gz, fy) + d(gy, fz) }

M (z,y) = max {d(gﬁm g9y),d(gz, fx),d(gy, fy), 5

3. Main Results

In this section we aim to present our main result. At first we generalized the Abbas and Ali Khan’s
theorem for generalized (¢ — p)—weak contraction mappings. After that, by a similar method, we
can extend the Abbas and Ali Khan’s theorem for (i) — ¢)—weak contraction mappings. These
generalizations also extend Ciri¢, Rhoades, Branciari, Zhang and Song and Moradi at. el.’s theorems

Theorem 3.1. Let (X,d) be a metric space and let f,g : X — X be two self mappings, which
satisfying,

bld(f, fy)) < O(M(z,y)) — o(M(z,y)), (3.1)

for all z,y € X (i.e. generalized (¢ — p)—weak contraction), where ¥ € G and ¢ € D. If f(X) C
9(X) and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X
(there exists x € X such that fx = gx). Moreover, if f and g are weakly compatible, then f and g
have a unique common fized point.

Proof . Let 2y € X. Using f(X) C g(X) there exist tow sequences {z,}>°, and {y,}>2, such that
Yn = fr, = gr,q for all n > 0.

At first we prove that f and g have a unique point of coincidence.

Unicity of the point of coincidence follows from (3.1). Suppose, for any n, y,, # y,+1, since, otherwise,
f and ¢ have a point of coincidence. We break the argument into four steps.

Step 1. nh—{{olo d(Yns1,Yn) = 0.

proof. Using (3.1),

U(d(Yn+1,9n)) = (d(fTnsr, frn))
¢(M($n+1,$n)) - @(M(anrluxn))a (32)

IN

where,

d(yna yn—l) S M(xn—f—l; xn) = max {d<yn7 yn—l)a d(y’m yn+1)7 d(yn—la yn)v
1
5[dYn, yn) + d(yn-1, Yns1)]}

< max {d(Yn, Yn-1), dWYn: Yn+1)} = dWn, yn-1).  (by 3.2) (3.3)
So M(xp41, ) = d(Yn, Yn—1). Hence, by (3.2)
d}(d(yn—i-la yn)) < w(d(ym yn—l))- (34)

Since v is nondecreasing

d(yn+17 yn) < d(?/n, yn71)7 (35)
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for all n € N. Therefore the sequence {d(y,+1,y»)} is monotone nondecreasing and bounded below.
So there exists r > 0 such that

d(Yns1,yn) — rt as n — oo. (3.6)

Since v is nondecreasing, from 3.2

¢(T> S w(d(yn—i-la yn)) S w(d(yn’yn—l)) - Qo(d(ym yn—l))' (37)
forall n € N. By ¢ € G, ¢ € D and using 3.6
P(r) < (r) —o(r), (3.8)

and so ¢ (r) = 0. Hence r = 0.

Step 2. {y,} is Cauchy.

proof.If {y,} is not a Cauchy sequence, then there exists an € > 0 such that for each k£ € N there
are m(k),n(k) € N, with k& < n(k) < m(k), such that d(Y,(k), Ymx)) = €, then we chose the sequences
{m(k)} and n(k) such that for each k& € N, m(k) is minimal in the sense that d(ynw), Ymx)) > € but
A(Yn(k) Ym) < € for each k € {n(k) + 1,n(k) +2,...,m(k) — 1}.

From Step 1, for large enough k, we have d(Ynx)+1, Unr)) < 5 and d(Ymr)+1, Ymx)) < 5. Hence, for
large enough k, m(k) —n(k) > 2 and
€< d(yn(k)7ym(k)) < d(yn(k)a ym(kz)—l) + d(ym(k)—la ym(k))
< e+ d(ym(k)—h ym(k)> (39)

This inequality shows that d(yn), Ymx)) — €t as k — oo. Furthermore

d(yn(k:)7 ym(k)) - d(yn(k)a yn(k)+1) - d(ym(k)a ym(k)-i—l)
A(Yn(k)+15 Ym(k)+1) (3.10)

<
< d(Yn(k), Ymk)) + AYnik)> Ynk)+1) + AYmk)> Ymk)+1),

and this shows that n — oolimd(¥yn(x)+1, Yr(k)+1) = €. Also from (3.1)

V(A Yn(k)+15 Ym)+1)) < V(M (Trg) 15 Tmk)+1)) — PM (Tr)+15 T 1)) (3.11)

where

VAN

d(yn(k)a ym(k)) M(xn(k)+la $m(k)+1>
= max {d(yn(k): Ym(k))s A(Yn(k)s Yn(e)+1)s AYmk)s Ym(k)+1)

A(Yn (k) Ymk)+1) + QY Ynk)+1) }
2
max {d(yn(k)a Ym(k))> A Yn (k) Yn(e)+1) > A Yy Ymi)+1)

Qd(yn(k)a ym(k)) + d(ym(k)Jrla ym(k)) + d(yn(k)Jrla yn(k)) }
2
< d(Ynk)s Ymk)) + A Ym)+15 Ymk)) + A Yne)y+15 Yn(r))- (3.12)

IN

Letting £ — oo in above inequality, we conclude that M(:cn(k)H, :L'm(k)+1) — et as k — oo.
Hence from 3.14,

P(e) < P(e) — (o). (3.13)
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Therefore () = 0 and this is a contradiction.

Step 3. f and g have a point of coincidence.

proof. Since (X,d) is complete and {y,} is a Cauchy sequence, there exists z € X such that
n — oolimy,, = z. Since g(X) is closed, then z € g(X). So there exists u € X such that g(u) = z.
From (3.1), we have

ld(fu, frn)) <YM (u, 20)) — (M (u, 7)), (3.14)

where

d(2,Yn) + d(Yn—1, fu) }

M (u, z,) = max {d(z, YUn—1),d(z, fu), d(Yn-1,Yn), 5

(3.15)

and this shows that M (u,x,) — d(z, fu)™ as n — oo.
Since ¢ € G, ¢ € D and (3.14) holds, we conclude that

P(d(fu,2)) <P(d(z, fu)) — (d(z, fu)), (3.16)

and hence d(z, fu) = 0. So fu = z = gu. Therefore z is a point of coincidence of f and g.
Now, if f and ¢ are weakly compatible, then we prove that z is a common fixed point of f and g.
Since fu = gu = z and f and g are weakly compatible, then fz = gz. Using (3.1)

(d(fz, frn)) < O(M(z,20)) = (M (2, 20)), (3.17)

where

d(9z, fn) + d(gzn, f2) } (3.18)

M (z,,) = max {d(g2, g2.), (9=, 2), d(g, fr), :
This inequality shows that n — ocolimM (z,x,) = d(z, fz). We need to show that z = fz.

If z # fz then for gg = %, there exists Ny € N such that for all n > Ny, M(z,z,) > &. Since ¢
is nondecreasing, from (3.17)

V(d(fz, fen)) < (M (z,24)) — ¢(0), (3.19)
for all n > Ny. Letting n — oo in above inequality, we conclude that
P(d(fz 2)) < P(d(z, f2)) — ¢(eo), (3.20)

and this shows that ¢(g9) = 0. This is a contradiction.
So z = fz, and hence, gz = fz = z. Therefore f and g have a common fixed point.
Uniquness of the common fixed point follows from (3.1), and this completes the proof. [J

The following corollary extend Ciri¢ and Rhoades’s Theorems.

Corollary 3.2. Let (X,d) be a metric space and let f,g : X — X be two self mappings, which
satisfying,

d(fz,fy) M (z,y) M(z,y)
/ n(t)dt < / n(t)dt — / O(t)dt, (3.21)
0 0 0

for all x,y € X, where n,0 : [0,400] — [0, +00] are two Lebesgue integrable mappings which are
summable and satisfy [ n(t)dt > 0 and [;0(t)dt > 0 for each e > 0. If f(X) C g(X) and g(X) is a
complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and
g are weakly compatible, then f and g have a unique common fized point.
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Proof . Define 9, ¢ : [0,+00) — [0,400) by ¥(z) = [ n(t)dt and p(z) = [ 0(t)dt. Obviously
Y € G and ¢ € D. Hence by Theorem 3.1 f and g have a unique point of coincidence and if f and
g are weakly compatible then have a unique common fixed point. []

The following theorem is another main result of this paper.

Theorem 3.3. Let (X,d) be a metric space and let f,g : X — X be two self mappings, which
satisfying,

Y(d(fz, fy)) < ¥(d(gz, gy)) — w(d(gz, gy)), (3.22)

for all x,y € X (i.e. (¢ —@)—weak contraction), where ¢ € G and ¢ € D. If f(X) C g(X) and
9(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover,
if f and g are weakly compatible, then f and g have a unique common fized point.

Proof . The proof is similar to the proof of Theorem 3.1, by replacing M (x,y) with d(gz, gy). O
The following corollary extends Branciari’s theorems.

Corollary 3.4. Let (X,d) be a metric space and let f,g : X — X be two self mappings, which
satisfying,

d(fz,fy) d(gz,gy) d(gz,g9y)
/ n(t)dt < / n(t)dt — / o(t)dt, (3.23)
0 0 0

for all z,y € X, where 77,(9 0, +00] — [O +00] are two Lebesgue integrable mappings which are
summable and satzsfy Jy n(t)dt >0 and [; 6(t)dt > 0 for each e > 0. If f(X) C g(X) and g(X) is a
complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and
g are weakly compatible, then f and g have a unique common fized point.

Proof . The proof is similar to the proof of Corollary 3.2. [J Now we present an example in the
support of Theorem 3.1.

Example 3.5. Let X = [0,2] be endowed with the Euclidean metric. Let f,g: X — X be defined
by gr = x and fx =0 for x € [0,5) and fr = L = forx € [ 2]. Also let ¢, ¢ : [0, +00) — [0, 4+00)
be defined by (t) = % and ¢(t) = 5. We have

Y5, 1) > PG, 1) = (1),

So we can not use Abbas and Ali Khan’s Theorem. But for all x,y € X
d(fr, fy)) < p(M(z,y)) — (M (z,y)).

Hence, from Theorem 3.1, f and g have a common fixed point.
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