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Abstract

In this paper, seventh-order iterative methods for the solution of nonlinear equations are presented.
The new iterative methods are developed by using weight function method and using an approx-
imation for the last derivative, which reduces the required number of functional evaluations per
step. Several examples are given to illustrate the efficiency and the performance of the new iterative
methods.
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1. Introduction

The nonlinear equations, often arise from the numerical modeling of problems in many branches

of science and engineering [1]. These equations more often are not solved analytically hence resort

to numerical solutions. More robust and efficient methods for solving the nonlinear equations are

continuously being sought. There are many papers that deal with nonlinear algebraic equations, such

as, improving Newton Raphson method for nonlinear equations by modified Adomian decomposition

method [2], iterative method improving Newton’s method by the decomposition method [3], new

family of Iterative methods for nonlinear equations [4], iterative Methods for the solution of Equations
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[5], a third-oredr Newton-type method to solve system of nonlinear equations [6] and and other

methods (see [7]-[19]).

In this paper, we recommend iterative methods to solve the nonlinear equations. We show that our

proposed methods are of convergence order seven. The obtained results suggested that these new

proposed methods introduce a powerful improvement for solving nonlinear equations.

2. Development of Seventh-Order Algorithm

Consider the well-known Traub-Ostrowski’s method{
ym = xm − f(xm)

f ′ (xm)
,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
.

(2.1)

It is known that the iterative algorithm defined by (2.1) converges with fourth order [20].

We consider the following three-step iteration scheme by using the method of weight functions (see

[16, 17])
ym = xm − f(xm)

f
′
(xm)

,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
.

xm+1 = zm −H(µm) f(zm)

f ′ (zm)
,

(2.2)

where µm = f(zm)
f(xm)

and H(t) represents a real-valued function.

Let us express f
′
(zm) as a linear combination of f [ym, xm], f [zm, ym] and f [zm, xm]

f
′
(zm) = θ1f [ym, xm] + θ2f [zm, ym] + (1− θ1 − θ2)f [zm, xm], (2.3)

where θ1 and θ2 are a real numbers.

By using (2.3), we propose the following iterative scheme
ym = xm − f(xm)

f ′ (xm)
,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
,

xm+1 = zm −H(µm) f(zm)
θ1f [ym,xm]+θ2f [zm,ym]+(1−θ1−θ2)f [zm,xm]

.

(2.4)

3. Convergence Analysis

Theorem 3.1. Let r be a simple zero of a sufficiently differentiable function f : D ⊆ < → <. If

the initial point x0 is sufficiently close to r, then the sequence xm generated by any method of the

family (2.4) converges to r. If H(t) is any function with H(0) = 1 and H
′
(0) = A < ∞, then the

convergence order of any method of the family (2.4) is seven if and only if θ1 = −1 and θ2 = 1.
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Proof . Let, em = xm − r. Denotes cm = 1
m!

f (m)(r)

f ′ (r)
, m=2,3,. . . . Using the Taylor series, we have:

f(xm) = f
′
(r)[em + c2e

2
m + c3e

3
m + c4e

4
m + c5e

5
m + c6e

6
m + c7e

7
m +O(e8m)], (3.1)

f
′
(xm) = f

′
(r)[1 + 2c2em + 3c3e

2
m + 4c4e

3
m + 5c5e

4
m + 6c6e

5
m

+ 7c7e
6
m + 8c8e

7
m +O(e8m)], (3.2)

Now, from (3.1) and (3.2), we have

ym = r + c2e
2
m + (2c3 − 2c22)e

3
m + (3c4 − 3c2c3 − 2(2c3 − 2c22)c2)e

4
m

+ (4c5 − 10c2c4 − 6c23 + 20c3c
2
2 − 8c42)e

5
m + (−17c4c3 + 28c4c

2
2

− 13c2c5 + 33c2c
2
3 + 5c6 − 52c3c

3
2 + 16c52)e

6
m + (−22c5c3 + 36c5c

2
2

+ 6c7 − 16c2c6 + 92c4c2c3 − 12c24 − 72c4c
3
2 + 18c33 − 126c23c

2
2

+ 128c3c
4
2 − 32c62)e

7
m +O(e8m)], (3.3)

From (3.3), we get

f(ym) = f
′
(r)[c2e

2 + (2c3 − 2c22)e
3
m + (3c4 − 7c2c3 + 5c32)e

4
m + (−6c23 + 24c3c

2
2

− 10c2c4 + 4c5 − 12c42)e
5 + (−17c4c3 + 34c4c

2
2 − 13c2c5 + 5c6 + 37c2c

2
3

− 73c3c
3
2 + 28c52)e

6
m + (−22c5c3 + 44c5c

2
2 + 6c7 − 16c2c6 − 12c24 + 104c4c2c3

− 104c4c
3
2 + 18c33 − 160c23c

2
2 + 206c3c

4
2 − 64c62)e

7
m +O(e7m)], (3.4)

Combining (3.1), (3.2), (3.3) and (3.4), we have

zm = r + (−c2c3 + c32)e
4
m + (−2c2c4 + 8c3c

2
2 − 4c42 − 2c23)e

5
m + (−3c2c5 + 10c52

− 7c4c3 + 12c4c
2
2 + 18c2c

2
3 − 30c3c

3
2)e

6
m + (−4c2c6 + 12c33 − 20c62 − 10c3c5

− 80c23c
2
2 + 80c3c

4
2 − 6c24 − 40c4c

3
2 + 16c5c

2
2 + 52c3c2c4)e

7
m +O(e8m), (3.5)

From (3.5), we get

f(zm) = f
′
(r)[(−c2c3 + c32)e

4
m + (−2c2c4 + 8c3c

2
2 − 4c42 − 2c23)e

5
m + (−3c2c5 + 10c52

− 7c4c3 + 12c4c
2
2 + 18c2c

2
3 − 30c3c

3
2)e

6
m + (−4c2c6 + 12c33 − 20c62 − 10c3c5

− 80c23c
2
2 + 80c3c

4
2 − 6c24 − 40c4c

3
2 + 16c5c

2
2 + 52c3c2c4)e

7
m +O(e8m)], (3.6)



34 Fardi, Ghasemi, Davari

From (3.1) and (3.6), we have

f(zm)

f(xm)
= (c32 − c2c3)e3m + (−2c23 + 9c3c

2
2 − 5c42 − 2c2c4)e

4
m + (−40c3c

3
2

+ 21c2c
2
3 − 3c2c5 + 15c52 − 7c4c3 + 14c4c

2
2)e

5
m + (−55c4c

3
2 + 62c3c2c4

− 4c2c6 + 14c33 − 35c62 − 10c3c5 − 110c23c
2
2 + 125c3c

4
2 − 6c24 + 19c5c

2
2)e

6
m

+ (82c5c2c3 − 294c4c3c
2
2 − 5c2c7 + 72c72 − 17c4c5 + 45c2c

2
4 + 59c4c

2
3 + 161c4c

4
2

− 71c5c
3
2 − 13c6c3 + 24c6c

2
2 − 126c2c

3
3 + 403c23c

3
2 − 320c3c

5
2)e

7
m +O(e8m) (3.7)

Using the Taylor expansion and (3.7), we get

H(µm) = H(0) +H
′
(0)µm +O(µ2

m) = H(0) +H
′
(0)(−c3 + c22)c2e

3
m

− H
′
(0)(2c2c4 − 9c3c

2
2 + 5c42 + 2c23)e

4
m +H

′
(0)(−3c2c5 + 15c52

− 7c4c3 + 14c4c
2
2 + 21c2c

2
3 − 40c3c

3
2)e

5
m +O(e6m) (3.8)

if H(0) = 1 and H
′
(0) = A <∞, by (3.1)-(3.8), we have

em+1 = −c22(−c3 + c22)(−1 + θ2)e
5
m + c2(−3c23 + 3θ2c

2
3 − 12θ2c3c

2
2 − θ1c3c22

+ 10c3c
2
2 + 7θ2c

4
2 + θ1c

4
2 − 2c2c4 + 2θ2c2c4 − 5c42 + θ22c3c

2
2 − θ22c42)e6m

+ (−2θ1c
3
2c4 + 15θ1c3c

4
2 − 5θ1c

2
3c

2
2 + 3θ2c5c

2
2 + 10θ2c3c2c4 + θ32c3c

4
2 − 2c33

+ 15c62 + 30c23c
2
2 − 45c3c

4
2 + 15c4c

3
2 − 3c5c

2
2 − 19c4c

3
2 + 71θ2c3c

4
2

− 38θ2c
2
3c

2
2 − 8θ1c

6
2 − θ32c62 + 9θ22c

6
2 + 2θ2c

3
3 − 29θ2c

6
2

+ 4θ22c
2
3c

2
2 − 15θ22c3c

4
2 + 2θ2c

6
2θ1 + 2θ22c4c

3
2 − 2θ2c3c

4
2θ1

− 10c3c2c4 − Ac22c23 + 2Ac42c3 − Ac62)e7m +O(e8m). (3.9)

Which shows that the convergence order of any method of the family (2.4) is seven if θ1 = −1 and

θ2 = 1, and the error equation is

em+1 = −c22(−c3 + c22)(−Ac3 + Ac22 + c3)e
7
m +O(e8m). (3.10)

The proof is completed. �

4. Efficiency Index

We consider the definition of efficiency index as P
1
d , where P is the order of the method and d

is the number of functional evaluations per iteration required by the method. Any method of the

family (2.4) has the efficiency index equals to 7
1
4 ≈ 1.627, which is better than the Newton’s method

with efficiency index equals to 2
1
2 ≈ 1.414.
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5. The Concrete Iterative Methods

In what follows, we give some concrete iterative methods of (2.4).

Example 5.1. M1. For the function H defined by H(t) = 1. It can easily be seen that H(0) = 1

and H
′
(0) = 0 <∞. Hence we get a new seventh-order method
ym = xm − f(xm)

f ′ (xm)
,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
,

xm+1 = zm − f(zm)
θ1f [ym,xm]+θ2f [zm,ym]+(1−θ1−θ2)f [zm,xm]

,

(5.1)

Example 5.2. M2. For the function H defined by

H(t) = 1 + αt (5.2)

where α ∈ <. It can easily be seen that H(0) = 1 and H
′
(0) = 1 < ∞. Hence we get a new

seventh-order method
ym = xm − f(xm)

f ′ (xm)
,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
,

xm+1 = zm − (1 + α f(zm)
f(xm)

) f(zm)
θ1f [ym,xm]+θ2f [zm,ym]+(1−θ1−θ2)f [zm,xm]

,

(5.3)

Example 5.3. M3. For the function H defined by

H(t) = (1 + βt)γ (5.4)

where β, γ ∈ <. It can easily be seen that H(0) = 1 and H
′
(0) = β.γ < ∞. Hence we get a new

seventh-order method
ym = xm − f(xm)

f ′ (xm)
,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
,

xm+1 = zm − (1 + β f(zm)
f(xm)

)γ f(zm)
θ1f [ym,xm]+θ2f [zm,ym]+(1−θ1−θ2)f [zm,xm]

,

(5.5)

Example 5.4. M4. For the function H defined by

H(t) = 1 +
λ1t

1 + λ2t
(5.6)

where β, γ ∈ <. It can easily be seen that H(0) = 1 and H
′
(0) = λ1 < ∞. Hence we get a new

seventh-order method
ym = xm − f(xm)

f ′ (xm)
,

zm = xm − f(ym)−f(xm)
2f(ym)−f(xm)

f(xm)

f ′ (xm)
,

xm+1 = zm − (1 +
λ1

f(zm)
f(xm)

1+λ2
f(zm)
f(xm)

) f(zm)
θ1f [ym,xm]+θ2f [zm,ym]+(1−θ1−θ2)f [zm,xm]

,

(5.7)



36 Fardi, Ghasemi, Davari

fi, x0 HM CM NM RWB NETA CH WKL M1−M2−M3−M4

f1, 0.9: 33 36 40 44 36 36 44 5− 4− 5− 4
f2, 1: 36 39 20 20 20 20 20 5− 5− 5− 5
f3, 0.5: 21 21 18 20 16 16 20 4− 4− 4− 4
f4, 0.85: div 54 20 20 20 20 20 5− 5− 5− 5
f5,−0.45: 24 24 20 20 20 20 20 5− 5− 5− 5
f6, 0.5: 24 27 26 20 20 20 20 5− 5− 5− 5

Table 1.Number of functional evaluations for various iterative methods.

6. Numerical Implementations

We present some examples to illustrate the efficiency of the iterative algorithm, see Table 1. We

compare the Chebyshev method (CM) (see [21]-[22]); the Halley method (HM) (see [21]-[22]); the

Newton iterative method (see [21]-[22]); RWB method proposed by Ren et al. [23]; NETA method

proposed by Neta et al. [24]; the method developed by Chun et al. (CH) [15]; the method developed

by Wang et. al. (WKL) [25], and M1, M2(α = 1), M3(β = 1, γ = 1
2
) and M4(λ1 = 1, λ2 = 1).

Free parameters are randomly selected as: for the method RWB a = b = c = 1, in the method by

Chun et al. (CH) β = 1, in the method WKL α = β = 1 and in the method NETA a = 10.

Example 6.1. f1(x) = sin(x)− x
100

; r = 0;

Example 6.2. f2(x) = x3 + 4x2 − 10; r = 1.365;

Example 6.3. f3(x) = arctan(x); r = 0.0;

Example 6.4. f4(x) = x4 + sin( π
x2

)− 5; r =
√

2;

Example 6.5. f5(x) = e−x
2+x+2 − 1; r = −1.0;

Example 6.6. f6(x) = 1
3
x4 − x2 − 1

3
x+ 1; r = 1.0.

All the computations were done using MAPLE. The stopping criteria are

i. ‖ xn+1 − xn ‖≤ 10−320, ii. ‖ f(xn) ‖≤ 10−320.

7. Conclusions

In this work we presented an approach which can be used to constructing seventh-order iterative

methods that do not require the computation of second or higher derivatives. According to obtained

results, the iterative methods that were introduced in this paper perform better than the CM method;

the HM method; the Newton’s method; the RWB method; the NETA method; the CH method; the

WKL method for solving nonlinear equations.
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