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Abstract

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of in-
formation systems. This entropy works perfectly for probability measure preserving (p.m.p.) trans-
formations. However, it is not useful when there is no finite invariant measure. There are certain
successful extensions of the notion of entropy to infinite measure spaces, or transformations with
infinite invariant measures. The three main extensions are Parry, Krengel, and Poisson entropies. In
this survey, we shortly overview the history of entropy, discuss the pioneering notions of Shannon and
later contributions of Kolmogorov and Sinai, and discuss in somewhat more details the extensions
to infinite systems. We compare and contrast these entropies with each other and with the entropy
on finite systems.
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1. A short history of entropy

1.1. Engineering and Physics

The early history of engineering had witnessed several major challenges, the greatest of which,
with no doubt, was the issue of lost energy. This was a very serious concern in the early history of
engineering, since the original manmade engines were converting less than two percent of the input
energy into useful work output. This was the case for such primitive engines as Thomas Savery’s
steam device (1698), Thomas Newcomen’s steam engine (1712), and Nicolas Joseph Cugnot’s steam
tricycle (1769). In all cases, a great deal of useful energy was lost due to dissipation or friction, mainly
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because of inefficiency of design and production. It took about two more centuries for physicists to
find a way of solving the puzzle of lost energy, and the solution was nothing but the entropy.

In 1803, Lazare Carnot was the first who discussed the issue of efficiency of fundamental machines
(in his work entitled Fundamental Principles of Equilibrium and Movement). He also discussed the
conservation of (mechanical) energy, anticipating the second law of thermodynamics. One major
motivation for him was the idea of impossibility of perpetual motion. His work was continued by his
son, Sadi Carnot (in Motive Power of Fire). The major contribution of his work was the observation
that an ideal engine, converting caloric heat into work, could be reinstated by reversing the motion
of the cycle (thermodynamic reversibility). He put one step further to conclude that energy is lost
even in an idealized reversible (heat) engine.

In 1854, Rudolf Clausius was the first to discuss the concept of the thermodynamic systems and
interior work. He was also the first to observe that in each system, for an irreversible process, (a
small amount of) heat is dissipated across the boundary. Clausius further develop the idea of lost
energy, and also coined the term entropy in 1865 (though he was also using the term equivalence
value, referring to the mechanical equivalent of heat). Clausius gave a formula (improved later by
himself) to calculate the change of equivalence value (entropy) for the passage of heat from one
temperature to another (through the fluid).

Building on the work of Rudolf Clausius and Hermann von Helmholtz, the notion of entropy (and
its calculation) was further developed in the works of James Clerk Maxwell (1871), Willard Gibbs
(1876), Ludwig Boltzmann (1877), Max Planck (1903) and Erwin Schrödinger (1926).

1.2. Information Theory and Dynamics

In 1948, Claude Shannon began to study the notion of lost information (in his work, A Mathemat-
ical Theory of Communication) as an information theoretic analog of the thermodynamical notion
of lost energy (though he seems not to be aware of the earlier work in thermodynamics). Shannon
also defined a (general) notion of information entropy (a name suggested to him later by John von
Neumann). The Shannon formula of entropy reads as

H = −K
k∑
i=1

p(i) log p(i),

where K is a positive constant, which amounts to a choice of a unit of measurement. Later in 1957,
E. T. Jaynes observed that the statistical thermodynamic entropy is a particular case of the Shannon
information entropy.

A parallel complexity theory of information was built by Andrey N. Kolmogorov in 1950’s (and
independently by R.J. Solomonoff and G. Chaitin). While Shannon theory concerns about infor-
mation of communication, Kolmogorov goes beyond this to capture the information in individual
objects as well. Kolmogorov also asked the possibility of measuring structural similarities between
dynamical systems, a question answered by Yakov Sinai, leading to the notion of entropy of a dy-
namical systems, known today as the Kolmogorov-Sinai entropy, a very well established notion with
a wide range of applications [15, 20]. This is the right tool for estimating complexity, since by the
Birkhoff Ergodic Theorem, most properties of the system can be reconstructed from a single orbit
with probability one.

2. Entropy of infinite systems

Kolmogorov-Sinai entropy works only for measure preserving transformations on probability
spaces.
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There have been several attempts to generalize the notion of entropy to measure preserving
transformations on infinite (or at least σ-finite) spaces [1], [2]. There are basically three suggested
notions of entropy in this more general setting: Krengel [11], [12] Parry [13], [14] and Poisson [17],
[16] entropies.

2.1. generalized notions of entropy

We briefly review and compare the above mentioned three notions of entropy based on [10]. It is
known that these three entropies (and their relative counterparts) coincide for quasi-finite or rank-
one transformations, and that these are all linear functionals [10]. Also there are spectral criteria
for zero Poisson entropy (implying also zero Parry entropy), which give a dichotomy for an ergodic
quasi-finite infinite measure preserving transformation: either it is remotely infinite or there exists
a maximum (Pinsker) factor with zero Poisson, Krengel and Parry entropy [10]. We comment more
on this in the next subsection.

In the Poisson suspension (X∗, µ∗) of a standard σ-finite space (X,µ), X∗ is the space of measures
on X, the σ-algebra is generated by the family of the sets {γ ∈ X∗ : a ≤ γ(B) ≤ b} where B ranges
over the σ-algebra of X and a, b ∈ [0,∞]. Now µ∗ is a probability measure, independent on disjoint
sets, with

µ∗(γ(A) = k) =
e−µ(A)

k!
µ(A)k.

For a measure preserving transformation T : X → Y , we set T ∗γ = γ ◦ T−1, and call it the
Poisson suspension of T . The Poisson entropy of a measure preserving transformation T is now
the Kolmogorov-Sinai entropy of its Poisson suspension. This is the same as the Kolmogorov-Sinai
entropy for finite spaces [16].

The Krengel entropy of a conservative measure preserving transformation T on a σ-finite space
(X,µ) is defined by supµ(A)hµATA, where A ranges over sets with finite strictly positive measures,
TA(x) := T φA(x)(x), with φA(x) := min{k ≥ 1 : T k(x) ∈ A}. If T is not purely periodic, the sup is
attained on any sweep-out (i.e., A with ∪n≥0T−nA = X) [11]. The Krengel entropy is the same as the
Kolmogorov-Sinai entropy by Abramov formula. For σ-finite subalgebras α and β of the underlying
σ-algebra, Hµ(α) :=

∫
X
Iµ(α)dµ and Hµ(α|β) :=

∫
X
Iµ(α|β)dµ

The information function of a measurable partition α of a σ-finite space (X,µ) is given by
Iµ(α)(x) := − log µ(α(x)) (with the convention: log 0 = −∞, log∞ = 0), where α(x) is the unique
element in α which contains x (we take only those α with such a uniqueness property). Similarly, the
(value of) conditional information function Iµ(α|β)(x) is defined to be Iµ(·|β(x))(α)(x), when µ(β(x))
is finite, and Iµ(α ∨ {β(x), β(x)c})(x), otherwise. Now the Parry entropy of a measure preserving
transformation T on a σ-finite space (X,µ) is defined by supHµ(α|T−1α), where α runs over all
σ-finite subalgebras with T−1α ⊆ α.

For a conservative transformation T , X is uniquely partitioned into T -invariant sets X1 and X∞
which are union of finite and union of infinite ergodic components of µ. Then T is of type II∞ (resp.
II1) if µ(X1) = 0 (resp. µ(X∞) = 0). Parry entropy is known (for II∞ transformations) to be less
than Krengel [14, Theorem 10.11] and Poisson [10] entropies. Also we know situations where these
entropies are equal [10, 7.2, 9.1].

2.2. Pinsker partition

A factor of T is a σ-finite subalgebra α satisfying T−1α = α. For probability spaces, the Pinsker
factor pin is the maximum factor with zero entropy. If Pinsker factor of the Poisson suspension is
P∗ for some σ-finite σ-algebra P , then P is both the Poisson-Pinsker and the Parry-Pinsker factor
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of T . Moreover, if there exists a factor with zero Krengel entropy, then P is also the Krengel-Pinsker
factor [10, Proposition 11.1].

When T is ergodic type II∞ with a zero Poisson entropy factor, then there is a Poisson-Pinsker
factor P such that P∗ is the Pinsker factor of T ∗ [10, Proposition 11.4]. In this case, when the
Parry entropy of T (which is the same as Kolmogorov-Sinai entropy of T ∗) is finite and the Pinsker
partition of T ∗ is not the trivial partition ν, then T possesses a Poisson-Pinsker factor P such that
P∗ is the Pinsker partition of T ∗ [10, Proposition 12.1].

Recall that a transformation T of (X,B, µ) is remotely infinite if there exists a σ-finite subalgebra
α such that T−1α ⊆ α and T nα ↑ B and T−nα ↓ ξ (mod µ), where ξ has no set of positive
finite measure. A subset A of strictly positive finite measure is quasi-finite if Hµ(ρA) < ∞, where
ρA = {A ∩ T−nA\ ∪n−1k=1 T

−kA}n≥1 is the first-return-time partition of A. When there is such an A
which is also a sweep-out, we say that (X,µ) is quasi-finite. For a quasi-finite system (X,µ) and
non remotely infinite, ergodic transformation T , there exists a Poisson-Pinsker factor, which is also
a Parry and Krengel-Pinsker factor [10, Corollary 12.7].

Let T be a measure preserving invertible transformation of a σ-finite measure space (X,µ). A
sub σ-algebra F ⊆ BX is a factor if T−1F = F. and the restriction of µ on F is σ-finite. In this
case, we have a decomposition µ =

∫
X
µxdµ|F(x) with µx probability measure for all x ∈ X. Given

a countable partition α of X, the conditional entropy Hµ(α|F) is defined by

Hµ(α|F) =

∫
X

Hµx(α)dµ(x).

One usually works with the set Z of partitions α with Hµ(α|F) <∞. Two such partitions α, β have
distance

ρ(α, β) :=

∫
X

Hµx(α|β) +Hµx(β|α)dµ(x).

We have ρ(α, β) = 0 if and only if α ∨ F = β ∨ F. In this case, we write α ∼ β. It is known that the
quotient (Z, ρ)/ ∼ is a Polish space [9].

3. Formal Definitions of Entropies

In this section, we give more formal definition of the entropies for infinite systems and compare
them.

3.1. Krengel entropy

The Krengel entropy of a conservative measure preserving transformation (X,B, µ, T ) is defined
as follows [11].

hKr(X,B, µ, T ) := sup
A∈F+

µ(A)h(A,B ∩ A, µA, TA),

where F+ is the collection of sets in B with finite positive measure, µA is the normalized probability
measure on A obtained by restricting µ to B ∩A, and TA : A→ A is the induced map on A, defined
by

TA(x) := T φA(x)(x),

where φA(x) := min{k ≥ 1 : T k(x) ∈ A} is the first-return-time map associated to A (c.f., [10]).
Krengel proved that if T is not purely periodic,

hKr(X,B, µ, T ) = µ(A)h(A,B ∩ A, µA, TA),
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where A is any finite-measure sweep-out set, satisfying
⋃∞
n=0 T

−nA = X. This set always exists when
T is of type II∞ [10].

The Krengel entropy coincides with the Kolmogorov-Sinai entropy when restricted to finite sys-
tems. This follows from Abramov formula: if S : Ω→ Ω is an ergodic probability measure preserving
(p.m.p.) transformation on (Ω,F , p), and A ∈ B, then

h(A,F ∩ A, p(· | A), SA) =
1

p(A)
h(Ω,F , p, S).

3.2. Poisson entropy

Poisson suspensions are studied extensively in Physics and ergodic theory and probability [6, 7,
8, 18, 19] (see also, [16] and [21]). Let us formally define the Poisson suspension (X∗,B∗, µ∗, T∗) of a
standard, σ-finite invertible measure preserving transformation (X,B, µ, T ).

Let X∗ denote the space of measures on X, and let B∗ denote the σ-algebra generated by the
collection of sets {

{γ ∈ X∗ : γ(B) ∈ [a, b]} : B ∈ B, 0 ≤ a ≤ b ≤ ∞
}
.

The probability measure µ∗ on (X∗,B∗) is defined by

µ∗ (γ(A) = k) = e−µ(A)
µ(A)k

k!
.

A measure preserving map T : (X,B, µ)→ (Y, C, ν) naturally gives rise to a measure preserving map
T∗ : (X∗,B∗, µ∗) → (Y ∗, C∗, ν∗) by T∗γ = γ ◦ T−1. If T is an endomorphism, the dynamical system
(X∗,B∗, µ∗, T∗) is the Poisson suspension of (X,B, µ, T ).

Following [16], the Poisson entropy of an infinite measure preserving transformation is defined as
the Kolmogorov entropy of the Poisson suspension. If S is a factor of T , its Poisson entropy is less
than the Poisson entropy of T , and Poisson entropy of T n is |n| times Poisson entropy of T (c.f.,
[10]).

It is proved in [16] that the Poisson entropy of a probability measure preserving (p.m.p.) transfor-
mation is equal to its Kolmogorov entropy. Indeed, for any quasi-finite transformation, the Poisson
entropy is equal to Parry and Krengel entropies (this holds in particular for finite measure preserving
systems) [10].

If (X,B, µ, T ) is conservative, there exists a unique partition of X into T -invariant sets X1 and
X∞, which are the measurable union of finite (resp. infinite) ergodic components of µ. If µ (X1) = 0,
T is said to be of type II∞, and if µ (X∞) = 0, it is said to be of type II1 [10]. Only II∞ systems
are of interest in this context, since the II1 case reduces to the finite measure case [10].

A factor of T is a σ-finite sub-σ-algebra F satisfying T−1F = F . The trivial σ-algebra is not a
factor of a II∞-system and if T is of type II∞, then µ is continuous; any factor of T is of type II∞;
any σ-finite sub-σ-algebra A satisfying T−1A ⊂ A has no atom; and (X∗,B∗, µ∗, T∗) is ergodic [10].

For each A ∈ B and N ∈ X∗, following [10], let us denote by N(A) : X∗ → N the random variable
on the probability space (X∗,B∗, µ∗) which is the (random) measure of the set A. If A has finite
measure, N(A) is Poisson distributed with parameter µ(A), and if µ(A) =∞, N(A) =∞, µ∗-almost
surely.

For a finite or countable partition α, let N(α) = (N(A))A∈α be the random vector of Poisson
random variables corresponding to α. By definition of Poisson suspension, the coordinates of N(α)
are independent [10].

If C ⊂ B is a σ-algebra, C∗ := σ
(
{N(A) : A ∈ C}

)
is the sub-σ-algebra of B∗ generated by the

Poisson random variables of C. Also, for a measurable partition α of X, α∗ := (σ(α))∗.
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The lack of atoms for a measure implies no “multiplicities” in the corresponding Poisson space
[10]. Formally, if there are no atoms of positive measure in (X,B, µ), µ∗-almost surely, there are no
multiplicities, i.e.,

µ∗
(
{∃x ∈ X : N({x}) ≥ 2}

)
= 0.

In general, the equality (C1 ∨ C2)∗ = C∗1 ∨C∗2 does not hold. This is however true if the intersection
of the σ-algebras is non-atomic [17]: Let α, β and C be sub-σ-algebras of B. Assume that C is σ-finite
and non-atomic. Then

(C ∨ α ∨ β)∗ = (C ∨ α)∗ ∨ (C ∨ β)∗ (mod µ∗).

A similar result is proved in [16], using the corresponding projections in L2-spaces.

3.3. Parry entropy

In this section we recall Parry definition of entropy for a measure preserving transformation.
Parry [14] defines the entropy of a measure preserving transformation by

hPa(X,B, µ, T ) := sup
T−1C⊂C

Hµ(C | T−1C),

where the supremum is taken over all σ-finite sub-σ-algebras C of B such that T−1C ⊂ C. For
probability measure preserving (p.m.p.) transformations, this definition coincides with the standard
definition of Kolmogorov-Sinai entropy.

It was proved by Parry [14, Theorem 10.11] that for a measure preserving conservative transfor-
mation (X,B, µ, T ),

hPa(X,B, µ, T ) ≤ hKr(X,B, µ, T ).

Replacing Krengel entropy by Poisson entropy, one could prove a similar result [10]: Let (X,B, µ, T )
be a II∞ transformation, then

hPa(X,B, µ, T ) ≤ h(X∗,B∗, µ∗, T∗).

4. concluding remarks

We recall the list of open problems on entropy of infinite systems, as recorded in [10]. The main
open question left at this point, as stated in the beginning, is the following: Are Krengel, Parry and
Poisson entropies equal for every conservative measure preserving transformation?

The other important questions are as follows: Is there an inequality between Poisson entropy
and Krengel entropy which holds in general? Are the properties of having zero Poisson entropy and
having zero Krengel entropy equivalent?

Related to this is the following question of Danilenko and Rudolph [5]: Does any conservative
transformation have a factor with arbitrarily small Poisson or Krengel entropy? A positive answer
to this question would imply a positive answer to the main question above. However one does not
even know if there always exists a factor with finite Poisson or Krengel entropy.
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