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Abstract

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a
numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence
analysis and stability for this problem are investigated and the order of convergence is obtained. By using
two test problems, the accuracy of presented method is verified. Additionally, obtained numerical results
of the cubic B-spline method are compared to trigonometric cubic B-spline method, exponential cubic B-
spline method and radial basis function method. Implementation simplicity and less computational cost are
the main advantages of proposed scheme compared to previous proposals.
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1. Introduction

The system of Burgers equations is a simple model for the understanding of physical flows and prob-
lems, such as hydrodynamic turbulence, shock wave theory, wave processes in thermo-elastic medium,
vorticity transport and dispersion in porous media [1, 2, 3, 4]. This system was first derived by Esipov [1]
to study the model of polydispersive sedimentation. Cole and Burgers [2, 4] found that this system of equa-
tions describe various kinds of phenomena such as a mathematical model of turbulence and the approximate
theory of flow through a shock wave traveling in a viscous fluid. The systems of Burgers equations are usu-
ally difficult to solve analytically and so the numerical approaches are created to overcome the complexities
of analytical methods [5, 6, 7, 8, 9, 10]. Inverse problems are encountered in many branches of engineering
and science. For example, in the field of heat transfer, the inverse problem under certain conditions have
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been used to calculate the thermal properties of solids. Besides, several functions and parameters such
as static and moving heating sources, material properties, initial conditions, boundary conditions, optimal
shape etc, can be estimated from the inverse problem [11, 12, 13, 14, 15]. Mathematically, the inverse
problems belong to the class of problems called the ill-posed problems, i.e. small errors in the measured
data can lead to large deviations in the estimated quantities. As a consequence, their solutions do not satisfy
the general requirement of existence, uniqueness and stability under small changes in the initial parameters.
To simplify the inverse problem a variety of techniques have been proposed, where have been resulted from
mathematical fields such as partial differential equations, numerical analysis, harmonic analysis, functional
analysis, fourier analysis and etc. Tikhonov regularization [16], iterative regularization[17], base function
[18] and the function specification methods [19] was used as solution to the inverse problem. The theory of
spline functions is a very active field of approximation theory and boundary value problems (BVPs), when
numerical aspects are considered. In a series of paper by Caglar et al. [22, 23, 24, 25, 26] BVPs of order
two, third, fourth and fifth were solved using third, fourth and sixth-degree splines. We know that B-splines
have some special features, which are useful in numerical work. One feature is that the continuity condi-
tions are inherent, another special feature of B-splines is that they have small local support, that is, each
B-spline function is only non-zero over a few mesh subintervals, so that the resulting matrix for the dis-
cretization equation is tightly banded. Due to their smoothness and capability to handle local phenomena,
B-splines offer distinct advantages. In combination with collocation, it significantly simplifies the solution
procedure of differential equations. The absence of integrations during the calculations (e.g. variational
methods) leads to a great reduction of calculations cost. Obviously, some previous techniques using various
transformations to reduce the equation to the simpler equation. Unlike some previous methods, the cubic
B-splines collocation method does not require extra effort to deal with the nonlinear terms. Accordingly,
the equations can be solved easily and daintily. In this work, using B-spline collocation method which is
adopted to Tikhonov regularization method, the solution of the inverse system of Burgers equations will be
investigated. In the following, convergence and stability analysis will be studied. To demonstrate accuracy,
efficiency and applicability of the presented method, two test problems will be used. Also, obtained nu-
merical results of the cubic B-spline method will be compared to the trigonometric cubic B-spline method,
exponential cubic B-spline method and radial basis function method. Simplicity of implementation and less
computational cost can be mentioned as main advantages of the proposed scheme compared to previous
plan. The plan of this paper is as follows: Section 2 is devoted to formulate inverse problem. Description of
the cubic B-splines collocation method and procedure for implementation of the present method are illus-
trated in Sections 3 and 4, respectively. In Section 5, procedure to obtain an initial vector which is required
to start our method is explained. To regularize the resultant ill-posed linear system of equations, in Section
6, we apply the Tikhonov regularization (of 2nd order) method to obtain the stable numerical approximation
of our solution. The uniform convergence and the conditional stability based on the Von-Neumann method
are discussed in Sections 7 and 8, respectively. To explain the effectiveness and compare of the presented
method with trigonometric cubic B-spline (TCBS) method, exponential cubic B-spline (ECBS) method and
radial basis function (RBF) method, Section 9 gives some examples with analytical solution. Finally in
Section 10, we will finish this paper with a brief conclusion.

2. Inverse system of Burgers equations

In this paper, we focus on the inverse system of Burgers equations and seek to determine the boundary
conditions in this system as follows:

ut− uxx +ηuux +α(uv)x = 0, 0 < x < 1, 0 ≤ t ≤ T,

vt− vxx +ηuux +β (uv)x = 0, 0 < x < 1, 0 ≤ t ≤ T,
(2.1)
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with the initial conditions

u(x,0) = f1(x), v(x,0) = f2(x), 0 < x < 1, (2.2)

the boundary conditions

u(0, t) =p1(t), v(0, t) = p2(t), 0 ≤ t ≤ T,
u(1, t) =q1(t), v(1, t) = q2(t), 0 ≤ t ≤ T, (2.3)

and the overspecified data

u(x∗, t) = g1(t), v(x∗, t) = g2(t), 0 < x∗ < 1, 0 ≤ t ≤ T, (2.4)

where η is real constant, α and β arbitrary constants depending on the system parameters such as Peclet
number, stokes velocity of particles due to gravity and the Brownian diffusivity. Also, T represents the
final time, ω = {(x, t) : x ∈ [0,1] = Ω, t ∈ [0,T ]} and f1(x), f2(x),q1(t),q2(t) and g1(t),g2(t) are given
continuous functions. The boundary conditions p1(t), p2(t) are unknown and are, in fact, to be determined
from overspecified data. We seek the functions u(x, t), v(x, t) and p1(t), p2(t). For two unknown boundary
conditions p1(t), p2(t) we must therefore provide additional information (2.4) to prepare a unique solution(
u(x, t),v(x, t), p1(t), p2(t)

)
to the inverse problem.

3. Description of the cubic B-spline functions

In cubic B-splines collocation method the approximate solution can be written as a linear combination
of basis functions which organized constitute a basis for the approximation space under consideration. To
construct numerical solution, we introduce a uniformly distributed set of nodes 0 = x0 < x1 < .. . < xN = 1
over the spatial domain [0,1] and the spacial step length is denoted by h, h = xi+1 − xi, i = 0,1, . . . ,N −1 .
To construct the cubic B-spline, we need to extend the set of nodal points to

x−3 < x−2 < x−1 < x0 and xN < xN+1 < xN+2 < xN+3.

The cubic B-spline Bi, i =−1, 0, . . . , N +1, are defined in the following way

Bi(x) =
1
h3


(x− xi−2)

3, x ∈ [xi−2,xi−1],
h3 +3h2(x− xi−1)+3h(x− xi−1)

2 −3(x− xi−1)
3, x ∈ [xi−1,xi],

h3 +3h2(xi+1 − x)+3h(xi+1 − x)2 −3(xi+1 − x)3, x ∈ [xi,xi+1],
(xi+2 − x)3, x ∈ [xi+1,xi+2],
0, otherwise,

(3.1)

where Bi(x)(i = −1, · · · , N + 1) form a basis for functions defined on the interval [0,1]. Each cubic B-
splines covers four elements so that an element is covered by four cubic B-splines. All other B-splines are
zero in this region. By using splines defined in (3.1), the value of Bi(x) and its derivatives at the nodes xi’s
are given by

Bm(xi) =


4, if m = i,
1, if |m− i|= 1,
0, if |m− i| ≥ 2,

B′
m(xi) =


0, if m = i,

−3
h , if m = i−1,
3
h , if m = i+1,
0, if |m−1| ≥ 2,

(3.2)

B′′
m(xi) =


−12

h2 , if m = i,
6
h2 , if |m−1|= 1,

0, if |m| ≥ 2.
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4. Implementation of method

In this section, we first present our method based on the cubic B-spline functions for solving the Eqs.
(2.1)-(2.4). To apply the proposed method, expressing u(x, t) and v(x, t) by using cubic B-spline functions.
Let

Un(x, t) =
N+1

∑
i=−1

cn
i (t)Bi(x), Vn(x, t) =

N+1

∑
i=−1

dn
i (t)Bi(x), (4.1)

be the approximate solutions of boundary value problem and the overspecified condition (2.1)-(2.4), where
ci and di are unknown time dependent quantities to be determined. To apply the proposed method, discretiz-
ing the time derivative in the usual finite difference way to Eq. (2.1), we get

[
un+1−un

∆t

]
−
(

uxx

)n
+η

(
uux

)n
+α

(
uv
)n

x
= 0,

[
vn+1−vn

∆t

]
−
(

vxx

)n
+η

(
vvx

)n
+β

(
uv
)n

x
= 0.

(4.2)

Now, by substituting (4.1) in (4.2) at the point x = xm, the cubic B-spline functions and their derivatives up
to second order which are determined in (3.2), we have

3

hα
(

dn
m−1+4dn

m+dn
m+1

)(
cn

m+1−cn
m−1

)}
=

(
cn

m−1+4cn
m+cn

m+1

)
,

3

hβ
(

dn
m−1+4dn

m+dn
m+1

)(
cn

m+1−cn
m−1

)}
=

(
dn

m−1+4dn
m+dn

m+1

)
,

for simplifying, we set

3
hα
(

dn
m−1+4dn

m+dn
m+1

)(
cn

m+1−cn
m−1

)
,Γ2=

6
h2

(
dn

m−1−2dn
m+dn

m+1

)
− 3

h η
(

dn
m−1+4dn

m+dn
m+1

)(
dn

m+1−dn
m−1

)
− 3

h β
(

cn
m−1+4cn

m+cn
m+1

)(
dn

m+1−dn
m−1

)
−

3
hβ
(

dn
m−1+4dn

m+dn
m+1

)(
cn

m+1−cn
m−1

)
,

then, we have (
cn+1

m−1 +4cn+1
m + cn+1

m+1

)
= ∆tΓ1 +

(
cn

m−1 +4cn
m + cn

m+1

)
= Xn

m,(
dn+1

m−1 +4dn+1
m +dn+1

m+1

)
= ∆tΓ2 +

(
dn

m−1 +4dn
m +dn

m+1

)
= Rn

m.

(4.3)
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The system (4.3) consists of 2(N + 1) equations in 2(N + 3) unknown coefficients, but to obtain a unique
solution to the resulting system four additional constraints are required. To this end, by imposing the
boundary conditions (2.3) and the overspecified condition (2.4), we have

Un+1(xs) = cn+1
s−1 +4cn+1

s + cn+1
s+1 , Un+1(xN) = cn+1

N−1 +4cn+1
N + cn+1

N+1,

Vn+1(xs) = dn+1
s−1 +4dn+1

s +dn+1
s+1 , Vn+1(xN) = dn+1

N−1 +4dn+1
N +dn+1

N+1,

where xs = x∗, 1 ≤ s ≤ N − 1. Then a system of 2(N + 3) linear equations in the 2(N + 3) unknown
coefficients is obtained. This system can be written in the matrix vector form as follows

AX = B, (4.4)

where

X =
[
cn+1
−1 ,cn+1

0 ,cn+1
1 , . . . ,cn+1

N+1,d
n+1
−1 ,dn+1

0 ,dn+1
1 , . . . ,dn+1

N+1

]T
,

B =
[
Xn
−1,X

n
0,X

n
1, . . . ,X

n
N+1,R

n
−1,R

n
0,R

n
1 . . . ,R

n
N+1

]T
,

where Xn
−1 = g1(tn), Xn

N+1 = q1(tn), Rn
−1 = g2(tn) and Rn

N+1 = q2(tn). A is an 2(N +3)×2(N +3) dimen-
sional matrix given by

A =

 M | O
− − −
O | M

 . (4.5)

The matrices O and M have the same size (N + 3)× (N + 3), where O is a zero matrix and matrix M is
defined as follows

M =



0 . . . 0 1 4 1 0 . . . 0
1 4 1

1 4 1
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .
... 1 4 1
0 . . . 1 4 1


,

that M[1,s+1] = 1, M[1,s+2] = 4, M[1,s+3] = 1. With solving (4.4) by Tikhonov regularization method,
the coefficients c j and d j are obtained and with these coefficients, we can obtain the approximate solutions,
i.e.

p1(t(n)) =c(n)−1 +4c(n)0 + c(n)1 , n = 0, 1, ...,

p2(t(n)) =d(n)
−1 +4d(n)

0 +d(n)
1 , n = 0, 1, ...,

U(x j, t(n)) =c(n)j−1 +4c(n)j + c(n)j+1, n = 0, 1, ..., j = 0, 1, ..., N,

V (x j, t(n)) =d(n)
j−1 +4d(n)

j +d(n)
j+1, n = 0, 1, ..., j = 0, 1, ..., N.
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5. The initial vector C0

The initial vector C0 can be found from the initial condition (2.2), boundary and overspecified conditions
(2.3) and (2.4) as the following expressions

u(xs,0) =c(0)s−1 +4c(0)s + c(0)s+1 = g1(0),

v(xs,0) =d(0)
s−1 +4d(0)

s +d(0)
s+1 = g2(0),

u(x j,0) =c(0)j−1 +4c(0)j + c(0)j+1 = f1(x j), 0 ≤ j ≤ N,

v(x j,0) =d(0)
j−1 +4d(0)

j +d(0)
j+1 = f2(x j), 0 ≤ j ≤ N,

u(xN ,0) =c(0)N−1 +4c(0)N + c(0)N+1 = q1(0),

v(xN ,0) =d(0)
N−1 +4d(0)

N +d(0)
N+1 = q2(0).

This yields a 2(N +3)×2(N +3) system of equations, of the form

A∗X0 = B∗, (5.1)

where A∗ = A and

X0 =
[
c0
−1,c

0
0,c

0
1, . . . ,c

0
N+1,d

0
−1,d

0
0 ,d

0
1 , . . . ,d

0
N+1

]T
,

B∗ =
[
g1(0), f1(x0), f1(x1), . . . , f1(xN),q1(0),g2(0), f2(x0), f2(x1), . . . , f2(xN),q2(0)

]T
.

The solution of (5.1) can be obtained by the Tikhonov regularization method.

6. Tikhonov regularization method

The matrix A is singular and ill-posed, thus the estimate of X0 by (5.1) will be unstable so that the
Tikhonov regularization method must be used to control this singularity. In our computation, we adapt the
Tikhonov regularization method to solve the matrix equations (4.4) and (5.1). The Tikhonov regularized
solutions to the systems of linear algebraic equations (4.4) and (5.1) are given by

Fσ (X) =∥AX −B∥2
2 +σ∥R(z)X ∥2

2,

Fσ (X0) =∥AX0 −B∗∥2
2 +σ∥R(z)X0∥2

2.

On the case of the first- and second- order Tikhonov regularization method the matrix R(z), for z = 1, 2, is
given by, see e.g. [27],

R(1) =


−1 1 0 . . . 0 0 0
0 −1 1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 0 −1 1 0
0 0 0 . . . 0 −1 1

 ∈ R(M−1)×(M),
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R(2) =


1 −2 1 . . . 0 0 0
0 1 −2 1 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . 1 −2 1 0
0 0 0 . . . 1 −2 1

 ∈ R(M−2)×(M),

where M = 2(N + 3). Therefore the Tikhonov regularized solutions to the systems of linear algebraic
equations (4.4) and (5.1) are given by

Xσ = [AT A+σ(R(z))T R(z)]−1AT B, (6.1)

X0
σ = [AT A+σ(R(z))T R(z)]−1AT B∗. (6.2)

In our computation, we use the generalized cross-validation (GCV) scheme to determine a suitable value of
σ ([28, 29, 30]).

7. Convergence analysis

Theorem 7.1. The collocation approximations Un(x) and Vn(x) for the solutions un(x) and vn(x) of the
inverse problem (2.1)− (2.4) satisfy the following error estimate∥∥∥(un −Un,vn −Vn)

∥∥∥
∞
≤ µh2, (7.1)

for sufficiently small h (i.e. for sufficiently large N) where µ is a positive constant.

Proof . Let un(x, t) and vn(x, t) be the exact solutions of the problem (2.1) with the boundary conditions, ini-
tial conditions, overspecific conditions and also Un(x, t) = ∑N+1

i=−1 cn
i (t)Bi(x) and Vn(x, t) = ∑N+1

i=−1 dn
i (t)Bi(x)

be the B-spline collocation approximations to un(x, t) and vn(x, t). Due to round off errors in computa-
tions we assume that Ûn(x, t) and V̂n(x, t) be the computed splines for Un(x, t) and Vn(x, t) so that Ûn(x, t) =
∑N+1

j=−1 ĉn
j(t)B j(x) and V̂n(x, t)=∑N+1

j=−1 d̂n
j (t)B j(x). To estimate the errors ∥un(x, t)−Un(x, t)∥∞ and ∥vn(x, t)−

Vn(x, t)∥∞ we must estimate the errors ∥un(x, t)−Ûn(x, t)∥∞, ∥Ûn(x, t)−Un(x, t)∥∞, ∥vn(x, t)−V̂n(x, t)∥∞ and
∥V̂n(x, t)−Vn(x, t)∥∞ separately. Following (4.4) for Ûn and V̂n we have

AX̂ = B̂, (7.2)

where

X̂ =
[
ĉn+1
−1 , ĉn+1

0 , ĉn+1
1 , . . . , ĉn+1

N+1, d̂
n+1
−1 , d̂n+1

0 , d̂n+1
1 , . . . , d̂n+1

N+1

]T
,

B̂ =
[
Xn
−1, X̂

n
0, X̂

n
1, . . . , X̂

n
N ,X

n
N+1,R

n
−1, R̂

n
0, R̂

n
1, . . . , R̂

n
N ,R

n
N+1

]T
,

where Xn
−1 = g1(tn), Xn

N+1 = q1(tn), Rn
−1 = g2(tn) and Rn

N+1 = q2(tn). By subtracting (4.4) and (7.2), we
have

A
(

X − X̂
)
=
(

B− B̂
)
, (7.3)
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where

B− B̂ =
[
0,Xn

0 − X̂n
0,X

n
1 − X̂n

1, . . . ,X
n
N − X̂n

N ,0,0,R
n
0 − R̂n

0,R
n
1 − R̂n

1, . . . ,R
n
N − R̂n

N ,0
]
, (7.4)

and for every 0 ≤ m ≤ N,

Xn
m = ∆t

[
U ′′

n (xn)−ηUn(xm)U ′
n(xm)−α

(
Un(xm)Vn(xm)

)
x

]
+Un(xm),

X̂n
m = ∆t

[
Û ′′

n (xn)−ηÛn(xm)Û ′
n(xm)−α

(
Ûn(xm)V̂n(xm)

)
x

]
+Ûn(xm),

Rn
m = ∆t

[
V ′′

n (xn)−ηVn(xm)V ′
n(xm)−β

(
Un(xm)Vn(xm)

)
x

]
+Vn(xm),

R̂n
m = ∆t

[
V̂ ′′

n (xn)−ηV̂n(xm)V̂ ′
n(xm)−β

(
Ûn(xm)V̂n(xm)

)
x

]
+V̂n(xm).

So ∣∣∣Xn
m − X̂n

m

∣∣∣= ∣∣∣∣∣∆t

[(
U ′′

n (xn)−Û ′′
n (xn)

)
−ηUn(xm)U ′

n(xm)+ηÛn(xm)Û ′
n(xm)

−α
(

Un(xm)Vn(xm)
)

x
+α

(
Ûn(xm)V̂n(xm)

)
x

]

+
(

Un(xm)−Ûn(xm)
)∣∣∣∣∣.

By using the Cauchy-Schwarz inequality, we have∣∣∣Xn
m − X̂n

m

∣∣∣≤ ∆t
∣∣∣(U ′′

n (xn)−Û ′′
n (xn)

)∣∣∣+ ∣∣∣(Un(xm)−Ûn(xm)
)∣∣∣+

∆t

∣∣∣∣∣−ηUn(xm)U ′
n(xm)+ηÛn(xm)Û ′

n(xm)−α
(

Un(xm)Vn(xm)
)

x
+α

(
Ûn(xm)V̂n(xm)

)
x

∣∣∣∣∣,︸ ︷︷ ︸(
I
)
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(
I
)
=

∣∣∣∣∣
[

η
2

(
U2

n (xm)−Û2
n (xm)

)
+α

(
Un(xm)Vn(xm)

)
−α

(
Ûn(xm)V̂n(xm)

)]
x

∣∣∣∣∣
=

∣∣∣∣∣
[

η
2

(
Un(xm)

)(
Un(xm)+

2α
η

Vn(xm)
)
− η

2

(
Ûn(xm)

)(
Ûn(xm)+

2α
η

V̂n(xm)
)]

x

∣∣∣∣∣
=

∣∣∣∣∣
[

η
2

(
Un(xm)

)(
Un(xm)−Ûn(xm)

)
+α

(
Un(xm)

)(
Vn(xm)−V̂n(xm)

)
+

η
2

(
Un(xm)−Ûn(xm)

)(
Ûn(xm)+

2α
η

V̂n(xm)
)]

x

∣∣∣∣∣
=

∣∣∣∣∣
[

η
(

Un(xm)
)(

Un(xm)−Ûn(xm)
)
+α

(
Un(xm)

)(
Vn(xm)−V̂n(xm)

)
−

η
2

(
Un(xm)−Ûn(xm)

)2
+α

(
Vn(xm)

)(
Un(xm)−Ûn(xm)

)
−

α
(

Vn(xm)−V̂n(xm)
)(

Un(xm)−Ûn(xm)
)]

x

∣∣∣∣∣,
then, after simplifying and differential, we have∣∣∣Xn

m − X̂n
m

∣∣∣≤ ∆t
∣∣∣(U ′′

n (xn)−Û ′′
n (xn)

)∣∣∣+ ∣∣∣(Un(xm)−Ûn(xm)
)∣∣∣+

∆t

[
η
∣∣∣U ′

n(xm)
∣∣∣∣∣∣Un(xm)−Ûn(xm)

∣∣∣+η
∣∣∣Un(xm)

∣∣∣∣∣∣U ′
n(xm)−Û ′

n(xm)
∣∣∣+

α
∣∣∣U ′

n(xm)
∣∣∣∣∣∣Vn(xm)−V̂n(xm)

∣∣∣+α
∣∣∣Un(xm)

∣∣∣∣∣∣V ′
n(xm)−V̂ ′

n(xm)
∣∣∣+

η
∣∣∣Un(xm)−Ûn(xm)

∣∣∣∣∣∣U ′
n(xm)−Û ′

n(xm)
∣∣∣+

α
∣∣∣V ′

n(xm)
∣∣∣∣∣∣Un(xm)−Ûn(xm)

∣∣∣+
α
∣∣∣Vn(xm)

∣∣∣∣∣∣U ′
n(xm)−Û ′

n(xm)
∣∣∣+

α
∣∣∣V ′

n(xm)−V̂ ′
n(xm)

∣∣∣∣∣∣Un(xm)−Ûn(xm)
∣∣∣+

α
∣∣∣Vn(xm)−V̂n(xm)

∣∣∣∣∣∣U ′
n(xm)−Û ′

n(xm)
∣∣∣].

Now, first we need the following theorem:

Theorem 7.2. Suppose u ∈C4[a,b] and |u(4)(x)| ≤ L for x ∈ [a,b]. Let ∆ be a partition ∆ = {a = x0 < x1 <
· · · < xn = b} of the interval [a,b] with step size h. If Û is the spline function which interpolates the values
of the function f at the knots x0, · · · , xn ∈ ∆, then there exist constants λ j ≤ 2, which do not depend on the
partition ∆, such that for x ∈ [a,b],

∥u( j)(x)−Û ( j)(x)∥ ≤ λ j L h4− j, j = 0,1,2,3, (7.5)

where ∥.∥ represents the ∞-norm.



44 Zeidabadi, Pourgholi and Tabasi

Proof . For the proof see Stoer and Bulirsch [31]. □
Now, using Theorem 7.2∣∣∣Xn

m − X̂n
m

∣∣∣≤ ∆t

[
h2λ2

∥∥∥d4Un

dx4

∥∥∥
∞
+h4ηλ0

∥∥∥U ′
n

∥∥∥
∞

∥∥∥d4Un

dx4

∥∥∥
∞
+h3λ1η

∥∥∥Un

∥∥∥
∞

∥∥∥d4Un

dx4

∥∥∥
∞
+

h4λ0α
∥∥∥U ′

n

∥∥∥
∞

∥∥∥d4Vn

dx4

∥∥∥
∞
+h3λ1α

∥∥∥U ′
n

∥∥∥
∞

∥∥∥d4Vn

dx4

∥∥∥
∞
+h7ηλ0λ1

∥∥∥d4Vn

dx4

∥∥∥2

∞
+

h4αλ0

∥∥∥V ′
n

∥∥∥
∞

∥∥∥d4Un

dx4

∥∥∥
∞
+

h3αλ1

∥∥∥Vn

∥∥∥
∞

∥∥∥d4Un

dx4

∥∥∥
∞
+h7αλ0λ1

∥∥∥d4Un

dx4

∥∥∥
∞

∥∥∥d4Vn

dx4

∥∥∥
∞
+

h7αλ0λ1

∥∥∥d4Un

dx4

∥∥∥
∞

∥∥∥d4Vn

dx4

∥∥∥
∞

]
+h4λ0

∥∥∥d4Un

dx4

∥∥∥
∞
, (7.6)

after simplifying, we get∣∣∣Xn
m − X̂n

m

∣∣∣≤ h2

[
∆t
(

λ2L+h2ηλ0ML+hηλ1ML+h2αλ0ML+h1αλ1ML (7.7)

+h5ηλ0λ1L2 +h2αλ0ML+hαλ1ML+2h5αλ0λ1L2
)
+h2λ0L

]
.

We can rewrite (7.7) as follows ∣∣∣Xn
m − X̂n

m

∣∣∣≤ h2M1, (7.8)

where

M1 = ∆t
(

λ2L+h2ηλ0ML+hηλ1ML+h2αλ0ML+h1αλ1ML

+h5ηλ0λ1L2 +h2αλ0ML+hαλ1ML+2h5αλ0λ1L2
)
+h2λ0L .

Similar results can be obtained for Rn
m − R̂n

m, i.e.∣∣∣Rn
m − R̂n

m

∣∣∣≤ h2M2, (7.9)

where

M2 = ∆t
(

λ2L+h2ηλ0ML+hηλ1ML+h2βλ0ML+h1βλ1ML

+h5ηλ0λ1L2 +h2βλ0ML+hβλ1ML+2h5βλ0λ1L2
)
+h2λ0L .

Setting M = max{M1,M2}, we have ∣∣∣Xn
m − X̂n

m

∣∣∣≤ Mh2, (7.10)

∣∣∣Rn
m − R̂n

m

∣∣∣≤ Mh2. (7.11)
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From (7.4), (7.10) and (7.11), it is deduced that∥∥B− B̂
∥∥

∞ ≤ Mh2. (7.12)

Since, the matrix A in (7.3) is an ill-posed matrix, from the Tikhonov regularized solution (6.1), we get

(X − X̂) = [AT A+α(R(z))T R(z)]−1AT (B− B̂).

Using the relation (7.12) and taking the infinity norm, we find

∥X − X̂∥∞ ≤ ∥(AT A+α(R(z))T R(z))−1AT∥∞ ∥B− B̂∥∞

≤ ∥(AT A+α(R(z))T R(z))−1AT∥∞ Mh2

≤ M1h2, (7.13)

where M1 = ∥(AT A+α(R(z))T R(z))−1AT∥∞ M. Now, we compute
∥∥∥(un−Un,vn−Vn

)∥∥∥
∞

as the following∥∥∥(un −Un,vn −Vn

)∥∥∥
∞
=
∥∥∥un −Un

∥∥∥
∞
+
∥∥∥vn −Vn

∥∥∥
∞

≤
∥∥∥un −Ûn

∥∥∥
∞
+
∥∥∥Ûn −Un

∥∥∥
∞
+
∥∥∥vn −V̂n

∥∥∥
∞
+
∥∥∥V̂n −Vn

∥∥∥
∞

such that

Un(x)−Ûn(x) =
N+1

∑
i=−1

(cn
i − ĉn

i )Bi(x),

∣∣∣Un(xm)−Ûn(xm)
∣∣∣≤ max

−1≤i≤N+1

{∣∣cn
i − ĉn

i
∣∣} N+1

∑
i=−1

∣∣Bi(xm)
∣∣, 0 ≤ m ≤ N,

and

Vn(x)−V̂n(x) =
N+1

∑
i=−1

(dn
i − d̂n

i )Bi(x),

∣∣∣Vn(xm)−V̂n(xm)
∣∣∣≤ max

−1≤i≤N+1

{∣∣dn
i − d̂n

i
∣∣} N+1

∑
i=−1

∣∣Bi(xm)
∣∣, 0 ≤ m ≤ N.

By using the values of Bi(xm)’s given in Section 3, one can easily see that ∑N+1
i=−1 |Bi(xm)| ≤ 10, 0 ≤ m ≤ N

[32], therefore ∥∥∥Un(xm)−Ûn(xm)
∥∥∥

∞
≤ 10M1h2,

∥∥∥Vn(xm)−V̂n(xm)
∥∥∥

∞
≤ 10M1h2. (7.14)

So, according to (7.5) and (7.14), we obtain∥∥∥(un −Un,vn −Vn

)∥∥∥
∞
≤ λ0Lh4 +10M1h2 +λ0Lh4 +10M1h2

= h2(2λ0Lh2 +20M1).

Setting γ = 2λ0Lh2 +20M1, we have∥∥∥(un −Un,vn −Vn

)∥∥∥
∞
≤ γ h2.

□
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Theorem 7.3. Let u(x, t) and v(x, t) be the solutions of the initial boundary value problem (2.1)-(2.4). Also,
suppose that Un(x) and Vn(x) are the collocation approximation to the solutions un(x) and vn(x) after the
temporal discretization stage. Then the error estimate of the totally discrete scheme is given by∥∥∥(un −Un,vn −Vn

)∥∥∥
∞
≤ τ(∆t +h2),

where τ is some finite constant.

Proof . The time discretization process (4.3) that we use to discretize the system (2.1)-(2.4) in time variable
is of the one order convergence (see, [33]). So, according to the Theorem 1, we have∥∥∥(un −Un,vn −Vn

)∥∥∥
∞
≤ τ(∆t +h2),

where τ is some finite constant. Thus the order of convergence of our process is O(∆t +h2).
□

8. The stability analysis

For stability analysis, we use the Von-Neumann technique. For this purpose, we get

(
cn+1

m−1 +4cn+1
m + cn+1

m+1

)
= ∆t

{
6
h2

(
cn

m−1 −2cn
m + cn

m+1

)
−

3
h

η
(

cn
m−1 +4cn

m + cn
m+1

)(
cn

m+1 − cn
m−1

)
−

3
h

α
(

cn
m−1 +4cn

m + cn
m+1

)(
dn

m+1 −dn
m−1

)
−

3
h

α
(

dn
m−1 +4dn

m +dn
m+1

)(
cn

m+1 − cn
m−1

)}
+(

cn
m−1 +4cn

m + cn
m+1

)
, (8.1)

(
dn+1

m−1 +4dn+1
m +dn+1

m+1

)
= ∆t

{
6
h2

(
dn

m−1 −2dn
m +dn

m+1

)
−

3
h

η
(

dn
m−1 +4dn

m +dn
m+1

)(
dn

m+1 −dn
m−1

)
−

3
h

β
(

cn
m−1 +4cn

m + cn
m+1

)(
dn

m+1 −dn
m−1

)
−

3
h

β
(

dn
m−1 +4dn

m +dn
m+1

)(
cn

m+1 − cn
m−1

)}
+(

dn
m−1 +4dn

m +dn
m+1

)
. (8.2)

Setting cn
m = ξ n

1 eimψh and dn
m = ξ n

2 eimψh, then by substituting in the Eqs. (8.1), (8.2) and simplifying them,
it is obtained that
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where ξ1 and ξ2 are the amplification factors for the scheme, ψ is the mode number, h is the element size
and i =

√
−1 and θ = ψh. We consider the solution of (??) in the vector notation

T (ξ1,ξ2) =

 T1(ξ1,ξ2)

T2(ξ1,ξ2)



=



(
4+2cos(θ)

)(
ξ1 −1

)
−∆t

{ 6
h2

(
2cos(θ)−2

)
−(

2isin(θ)
)(

4+2cos(θ)
)(3η

h
ξ n

1 +
6α
h

ξ n
2

)}
(

4+2cos(θ)
)(

ξ2 −1
)
−∆t

{ 6
h2

(
2cos(θ)−2

)
−(

2isin(θ)
)(

4+2cos(θ)
)(3η

h
ξ n

2 +
6β
h

ξ n
1

)}


.

It is convenient to introduce the Jacobian matrix for the functions T1 and T2

T
′
(ξ1,ξ2) =


∂T1
∂ξ1

∂T1
∂ξ2

∂T2
∂ξ1

∂T2
∂ξ2



=



(
4+2cos(θ)

)
∆t

+(
2isin(θ)

)(
4+2cos(θ)

)3nη
h

ξ n−1
1

(
2isin(θ)

)(
4+2cos(θ)

)6nα
h

ξ n−1
2

(
2isin(θ)

)(
4+2cos(θ)

)6nβ
h

ξ n−1
1

(
4+2cos(θ)

)
∆t

+(
2isin(θ)

)(
4+2cos(θ)

)3nη
h

ξ n−1
2


.

We know that if ∥T ′∥ ≤ 1 then T has a unique solution (ξ1,ξ2), (see [34]) and if |ξ1|, |ξ2| ≤ 1 then the
scheme (4.3) is stable. Now, to investigate the above-mentions points, we have∥∥∥T ′

∥∥∥= max

{∣∣∣(4+2cos(θ)
)

∆t
+
(
2isin(θ)

)(
4+2cos(θ)

)3nη
h

ξ n−1
1

∣∣∣+∣∣∣(2isin(θ)
)(

4+2cos(θ)
)6nβ

h
ξ n−1

1

∣∣∣,∣∣∣(2isin(θ)
)(

4+2cos(θ)
)6nα

h
ξ n−1

2

∣∣∣+∣∣∣(4+2cos(θ)
)

∆t
+
(
2isin(θ)

)(
4+2cos(θ)

)3nη
h

ξ n−1
2

∣∣∣}.
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At first, suppose that ∥∥∥T ′
∥∥∥=

∣∣∣(4+2cos(θ)
)

∆t
+
(
2isin(θ)

)(
4+2cos(θ)

)3nη
h

ξ n−1
1

∣∣∣+∣∣∣(2isin(θ)
)(

4+2cos(θ)
)6nβ

h
ξ n−1

1

∣∣∣,
then, from triangle inequality, we have∥∥∥T ′

∥∥∥≤
∣∣∣ 6
∆t

∣∣∣+12
∣∣∣3nη

h

∣∣∣∣∣∣ξ n−1
1

∣∣∣+12
∣∣∣6nβ

h

∣∣∣∣∣∣ξ n−1
1

∣∣∣
≤
( 6

∆t

)
+
(72n

h

)∣∣ξ1
∣∣n−1

(∣∣η∣∣+ ∣∣β ∣∣).
If
∥∥∥T ′

∥∥∥≤ 1, then

∣∣ξ1
∣∣≤ n−1

√
∆t −6
∆tC1

,

where C1 =
(72n

h

)(∣∣η∣∣+ ∣∣β ∣∣), and if n−1
√

∆t−6
∆tC1

< 1 then
∣∣ξ1

∣∣< 1 and the scheme is stable. We conclude

similarly that |ξ2|< 1 when n−1
√

∆t−6
∆tC2

< 1, where C2 =
(72n

h

)(∣∣η∣∣+ ∣∣α∣∣) .

9. Numerical results and discussion

In this Section, we are going to study numerically the inverse problem (2.1)–(2.4) with the unknown
boundary conditions. The main aim here is to show the applicability of the present method for solving
inverse problems. As expected the inverse problems are ill-posed and therefore it is necessary to investigate
the stability of the present method by giving a test problem.

Remark 9.1. In an inverse problem, there are two sources of error in the estimation. The first source is the
unavoidable bias deviation or deterministic error, and the second source of error is the variance due to the
amplification of measurement errors or stochastic error. The global effect of deterministic and stochastic
errors is considered in the root mean square or total error [35]. Therefore, we compute total error S by
using following formula

RMS =

√
1

N −1

N

∑
i=1

(
p(ti)exact − p(ti)numerical

)2
,

where N is the total number of estimated values.

The comparison between the exact solutions of p1(t), p2(t) and numerical solutions of the cubic B-spline
(CBS) method, trigonometric cubic B-spline (TCBS) method, exponential cubic B-spline (ECBS) method
and radial basis function (RBF) method, with noisy data are presented. Also, in all calculations, we put
T = 1, N = 1

10 and ∆t = 1
1000 .

Example 9.2. In this example we solve inverse parabolic system (2.1)-(2.4) satisfying,
ut −uxx +2uux −2(uv)x = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

vt − vxx +2vvx −
1
2
(uv)x = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,
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time Exact CBS TCBS ECBS RBF

t p1(t) method method method method

0.1 0.094162 0.091238 0.091632 0.091004 0.093230

0.2 0.098807 0.094954 0.095098 0.094312 0.095370

0.3 0.103940 0.099564 0.099661 0.098584 0.097129

0.4 0.109613 0.104749 0.104844 0.103529 0.098319

0.5 0.115883 0.110497 0.110605 0.109079 0.098618

0.6 0.122812 0.116853 0.116981 0.115247 0.098683

0.7 0.130469 0.123877 0.124031 0.122076 0.098750

0.8 0.138933 0.131641 0.131827 0.129627 0.098820

0.9 0.148286 0.140221 0.140448 0.137973 0.098894

1 0.158623 0.149703 0.149980 0.147198 0.098973

RMS 5.8282×10−3 5.6672×10−3 7.3314×10−3 2.2802×10−2

Execution time (second) 5.438 5.5 5.678 12.078

Condition number Inf Inf Inf 4.1354×1029

Regularization parameter 3.6633 0.61175 0.79852 7.3538×10−2

Table 1: The comparison among exact and numerical solutions u(x,0) = p1(t) of Example 9.2 with noisy data.

with initial conditions

u(x,0) = (0.05)+(0.04)e−x, v(x,0) = (0.025)+(0.02)e−x, 0 ≤ x ≤ 1,

and boundary conditions as follows
u(0.2, t) = (0.05)+(0.04)e−0.2+t , u(1, t) = (0.05)+(0.04)e−1+t , 0 ≤ t ≤ T,

v(0.2, t) = (0.025)+(0.02)e−0.2+t , v(1, t) = (0.025)+(0.02)e−1+t , 0 ≤ t ≤ T.

The exact solution of this problem is

u(x, t) = (0.05)+(0.04)e−x+t , v(x, t) = (0.025)+(0.02)e−x+t , 0 ≤ x ≤ 1, 0 ≤ t ≤ T.

Figure 1: The plots of approximation and exact solutions of p1(t) and p2(t) for Example 9.2 with noisy data.

Figure 2: The plots of approximation and exact solutions of u(x, t) and v(x, t) for Example 9.2 with noisy data.
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time Exact CBS TCBS ECBS RBF

t p2(t) method method method method

0.1 0.047081 0.045744 0.045828 0.045784 0.046615

0.2 0.049403 0.047529 0.047563 0.047372 0.047685

0.3 0.051970 0.049821 0.049844 0.049470 0.048564

0.4 0.054806 0.052410 0.052432 0.051920 0.049159

0.5 0.057941 0.055283 0.055308 0.054683 0.049309

0.6 0.061406 0.058460 0.058490 0.057760 0.049341

0.7 0.065234 0.061972 0.062009 0.061171 0.049375

0.8 0.069466 0.065854 0.065898 0.064944 0.049410

0.9 0.074142 0.070144 0.070197 0.069116 0.049447

1 0.079311 0.074885 0.074950 0.073727 0.049486

RMS 2.8759×10−3 2.8396×10−3 3.5250×10−3 1.4013×10−2

Table 2: The comparison among exact and numerical solutions v(x,0) = p2(t) of Example 9.2 with noisy data.

Example 9.3. In this example let us consider the following inverse problem
ut −uxx +2uux − (5

2)(uv)x = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

vt − vxx +2vvx +( 3
10)(uv)x = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

with initial conditions

u(x,0) = (0.05)+
2

1+ ex , v(x,0) = (0.01)+
0.4

1+ ex , 0 ≤ x ≤ 1,

and boundary conditions as follows
u(0.2, t) = (0.05)+ 2

1+e0.2−1.05 t , u(1, t) = (0.05)+ 2
1+e1−1.05 t , 0 ≤ t ≤ T,

v(0.2, t) = (0.01)+ 0.4
1+e0.2−1.05 t , v(1, t) = (0.01)+ 0.4

1+e1−1.05 t , 0 ≤ t ≤ T.

The exact solution of this problem is

u(x, t) = (0.05)+
2

1+ ex−1.05 t , v(x, t) = (0.01)+
0.4

1+ ex−1.05 t , 0 ≤ x ≤ 1, 0 ≤ t ≤ T.

Figure 3: The plots of approximation and exact solutions of p1(t) and p2(t) for Example 9.3 with noisy data.
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time Exact CBS TCBS ECBS RBF

t p1(t) method method method method

0.1 1.101928 1.101864 1.079279 1.070033 1.094579

0.2 1.154096 1.155921 1.135741 1.126184 1.131712

0.3 1.205698 1.210353 1.190105 1.181980 1.175817

0.4 1.256463 1.263973 1.243532 1.236249 1.220568

0.5 1.306141 1.316642 1.295947 1.289273 1.264546

0.6 1.354502 1.368154 1.347084 1.340972 1.299295

0.7 1.401342 1.418199 1.396686 1.391133 1.326525

0.8 1.446488 1.466456 1.444526 1.439534 1.352196

0.9 1.489793 1.512658 1.490409 1.485976 1.374065

1 1.531146 1.556606 1.534177 1.530290 1.393470

RMS 1.3432×10−2 1.3235×10−2 1.9313×10−2 1.3396×10−2

Execution time (second) 5.312 6.062 5.859 10.678

Condition number Inf Inf Inf 4.1354×1029

Regularization parameter 3.6156 0.5287 1.0001 2.6518×10−4

Table 3: The comparison among exact and numerical solutions u(x,0) = p1(t) of Example 9.3 with noisy data.

time Exact CBS TCBS ECBS RBF

t p2(t) method method method method

0.1 0.220386 0.220594 0.218419 0.217274 0.218915

0.2 0.230819 0.231192 0.229213 0.227109 0.226342

0.3 0.241139 0.241958 0.240105 0.237639 0.235163

0.4 0.251293 0.252702 0.250864 0.248301 0.244113

0.5 0.261228 0.263304 0.261412 0.258863 0.252909

0.6 0.270901 0.273667 0.271689 0.269207 0.259859

0.7 0.280269 0.283714 0.281646 0.279256 0.265305

0.8 0.289298 0.293387 0.291233 0.288953 0.270439

0.9 0.297959 0.302639 0.300414 0.298254 0.274813

1 0.306229 0.311435 0.309157 0.307124 0.278694

RMS 2.7323×10−3 1.5662×10−3 2.4290×10−2 1.3396×10−2

Table 4: The comparison among exact and numerical solutions v(x,0) = p2(t) of Example 9.3 with noisy data.
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Figure 4: The plots of approximation and exact solutions of u(x, t) and v(x, t) for Example 9.3 with noisy data.

10. Conclusion

A numerical method, to estimate unknown boundary conditions is proposed and the following results
are obtained.

• The present study successfully applies the numerical method to inverse problems.

• Simplicity of implementation and less computational cost can be mentioned as main advantages of
the proposed scheme compared to previous proposals.

• Unlike some previous techniques using various transformations to reduce the equation in to more
simple equation, the current method does not require extra attempt to deal with the nonlinear terms.
Therefore, the equations are solved easily and daintily using the present method.

• Numerical results show that our approximations of unknown functions using some the B-spline func-
tions in collocation method are more accurate than the numerical results of the radial basis function
method, also the execution time in the cubic B-spline method is faster than the other methods.

• Numerical examples also verified the efficiency and accuracy of the method that can be obtained
within a couple of minutes CPU time at Core(i5)–2.67 GHz PC.

• The present method has been found stable with respect to small perturbation in the input data.
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