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Abstract

For a Banach algebra A, we introduce c.c(A), the set of all φ ∈ A∗ such that θφ : A → A∗ is
a completely continuous operator, where θφ is defined by θφ(a) = a · φ for all a ∈ A. We call
A, a completely continuous Banach algebra if c.c(A) = A∗. We give some examples of completely
continuous Banach algebras and a sufficient condition for an open problem raised for the first time
by J.E Galè, T.J. Ransford and M. C. White: Is there exist an infinite dimensional amenable Banach
algebra whose underlying Banach space is reflexive? We prove that a reflexive, amenable, completely
continuous Banach algebra with the approximation property is trivial.
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1. Introduction and preliminaries

In 1992, J. E. Galé, T. J. Ransford and M. C. White planned a question whether a reflexive, amenable
Banach algebra A has to be of the form

A = Mn1 ⊕Mn2 ⊕ ...⊕Mnk
.

with n1, ..., nk in N. A Banach algebra with the above representation is usually called trivial.
In that paper [5], they proved that every reflexive, amenable Banach algebra for which all primitive

ideals have finite codimension is trivial. In the same year B. E. Johnson proved that every reflexive,
amenable Banach algebra whose maximal left ideals are complemented is trivial (see also, [12]).

Later, in 1997, V. Runde found a sufficient condition to answer this question. In [9], V. Runde
showed that for a reflexive, amenable Banach algebra A with the approximation property such that
every bounded linear map from A to A∗ is compact, has to be trivial. More Banach algebras fails such
a strong property, however lp with p > 2, whenever be equipped with coordinatewise multiplication,
is an example of a Banach algebra for which, by Pitt’s theorem, every bounded linear map from it
to its dual is compact [6]. Also V. Runde, in [10], proved that:
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Theorem 1.1. A reflexive, amenable Banach algebra A for which every maximal left ideal L satis-
fying the followings:

(i) the quotient A/L has the approximation property,

(ii) the canonical map from A⊗̌L⊥ to (A/L)⊗̌L⊥ is open.

is trivial.

After preliminaries in Section 2, completely continuous Banach algebras will be introduced in Section
3 and we will give some examples including p-summing Banach algebras. Finally, in Section 4, we
give a sufficient condition for a reflexive, amenable Banach algebra to be trivial.

2. Preliminaries

Let A be a Banach algebra and X a Banach A- bimodule. A continuous derivation of A to X or
X- derivation is a continuous linear mapping D from A into X such that D(ab) = D(a) · b+ a ·D(b)
for all a, b ∈ A. For each x ∈ X, the mapping Dx : A → X defined by Dx(a) = a · x − x · a is a
bounded X- derivation, the inner derivation associated with x. Let Z1(A, X) denote the space of
all continuous X- derivation and N1(A, X) the subspace of all inner derivations in X. The quotient
space H1(A, X) = Z1(A, X)/N1(A, X) is called the first cohomology group of A with coefficients in
X [7]. Thus the condition that H1(A, X) = {0} means that every continuous derivation is inner.

If X is a Banach A- bimodule, then so is the dual X∗ with the module actions given by

〈a · f, x〉 = 〈f, x · a〉 ; 〈f · a, x〉 = 〈f, a · x〉,

a ∈ A, x ∈ X, f ∈ X∗. One can see that A∗ is a Banach A- bimodule with actions of A on A∗ given
by 〈a · f, b〉 = 〈f, ba〉 and 〈f · a, b〉 = 〈f, ab〉, a, b ∈ A, f ∈ A∗.

We denote ⊗, ⊗̂ and ⊗̌, respectively, for the algebraic tensor product, the projective tensor
product and the injective tensor product. If A is a Banach algebra, then A⊗̂A and A⊗̌A are Banach
A- bimodules with the following operations

a · (b⊗ c) := ab⊗ c ; (b⊗ c) · a := b⊗ ca (a, b, c ∈ A).

For a Banach algebra A, the corresponding diagonal operator is defined through

∆ : A⊗̂A→ A , a⊗ b 7→ ab.

It is clear that ∆ is a bimodule homomorphism with respect to the defined module structure for
A⊗̂A.

Let A be a Banach algebra, M ∈ (A⊗̂A)∗∗ is called a virtual diagonal for A if

a ·M = M · a ; a ·∆∗∗M = a (a ∈ A).

A bounded net (mα)α in A⊗̂A is called approximate diagonal for A if

a ·mα −mα · a→ 0 ; a∆mα → a (a ∈ A).

Also, m ∈ (A⊗̂A) is called diagonal for A if

a ·m = m · a ; a∆m = a (a ∈ A).

Let A be a Banach algebra, A is said to be amenable if H1(A, X∗) = {0}, for every Banach A-
bimodule X [7]. For a Banach algebra A, a well known theorem of Johnson is as follow:
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Theorem 2.1. Let A be a Banach algebra. Then the followings are equivalent:

(i) A is amenable;
(ii) A has a virtual diagonal;

(iii) A has an approximate diagonal.

Also, the Banach algebra A is called contractible if H1(A, X) = {0}, for every Banach A- bimodule
X [11]. Certainly, every contractible Banach algebra is amenable. One can check that, a Banach
algebra A is contractible if and only if it has a diagonal [11].

3. Completely continuous banach algebras

In this section, we will introduce completely continuous Banach algebras. As a result, we will
show that a Banach algebra whose underlying Banach space or its dual has Schur’s property is a
completely continuous Banach algebra.

In normed spaces, norm convergent shows that weak convergent, however the converse is not true
in general. In 1921, Issai Schur considered the normed spaces for which weak convergence sequences
entails convergence in norm.

Definition 3.1. A normed space X is said to have Schur’s property, if for every sequence (xn) in
X such that xn → x weakly, it follows that ‖ xn − x ‖→ 0.

Example 3.2. Every finite dimensional normed space has Schur’s property. To see, let {e1, e2, ..., en}
be a basis for a normed space X of dimension n. Let {f1, f2, ..., fn} consists of coordinate functionals
associated with the above basis. For each x ∈ X, we have

x =
n∑
i=1

fi(x)ei.

Therefore, for a sequence (xn) in X, ‖ xn − x ‖→ 0 if and only if (fi(xn)) → fi(x) for each
i ∈ {1, 2, ..., n}. Since, every f ∈ X∗ is a finite combination of f1, f2, ..., fn, we have

‖ xn − x ‖→ 0 ⇔ xn → x weakly

Example 3.3. By the Schur’s lemma, every weakly convergent sequence in l1 is convergent. So, l1

has Schur’s property.

To see that every normed space does not have Schur’s property, consider an infinite dimensional
Hilbert space H. Let (xn) be a sequence of orthonormal elements in H. By the Riesz representation
theorem, for each f ∈ H∗ there is a unique element y ∈ H such that f(x) = 〈x, y〉 for each x ∈ H.
Therefore, by using Bessel’s inequality, it follows that

f(xn) = 〈xn, y〉 → 0,

as n→∞. On the other hand, ‖ xn ‖= 1 , for each n. It shows that xn 9 0, thus H does not have
Schur’s property.

Example 3.4. Let H be a Hilbert space. If for every sequence (xn) in H such that xn → x weakly,
we have ‖ xn ‖→‖ x ‖. Then H has Schur’s property. Indeed, if (xn) is a sequence in H such that
xn → x weakly. For every y ∈ H, we have 〈xn, y〉 → 〈x, y〉. This is true specially for y = x, so

‖ xn − x ‖2=‖ xn ‖2 + ‖ x ‖2 −2Re〈xn, x〉 → 0,

whenever n→∞.
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One of the notions plays an important role in the study of geometry of Banach spaces, particular
in convergence of sequences is the Opial condition.

Definition 3.5. A normed space X is said to satisfy the Opial condition if whenever a sequence
(xn) in X converges weakly to x ∈ X, then

lim
n→∞

inf ‖ xn − x ‖< lim
n→∞

inf ‖ xn − y ‖,

for all y ∈ X with y 6= x. The above inequality is equivalent to the analogous condition obtained by
replacing lim inf by lim sup.

Example 3.6. Every Hilbert space H satisfies the Opial condition. Let xn → x weakly in H. Then
for all y ∈ H with y 6= x, limn→∞ sup ‖ xn − x ‖ and limn→∞ sup ‖ xn − y ‖ are finite because every
weakly convergent sequence is necessarily bounded. Also we have

‖ xn − y ‖2=‖ xn − x+ x− y ‖2=‖ xn − x ‖2 + ‖ x− y ‖2 +2Re〈xn − x, x− y〉 (3.1)

since 〈xn − x, x− y〉 → 0 whenever n→∞, we have

lim
n→∞

sup ‖ xn − y ‖2> lim
n→∞

sup ‖ xn − x ‖2 .

So the assertion is hold.

There exist normed spaces do not have the Opial condition. For every 1 < p < ∞, Lp[0, 2π] is
such a normed space. For more about the Opial condition, see [1].

Theorem 3.7. Let X be a normed space with Schur’s property. Then X has the Opial condition
and the converse is not true in general.

Proof . Let xn → x weakly in X. Then ‖ xn − x ‖→ 0 , so lim
n→∞

inf ‖ xn − x ‖= 0. From the

uniqueness of a weak limit, for every y ∈ X such that y 6= x, we have

lim
n→∞

inf ‖ xn − y ‖> 0.

So X satisfies the Opial condition. The rest of claim is accomplished by considering an infinite
dimensional Hilbert space H. �

Let X and Y be two Banach spaces, we recall that a bounded linear operator T : X → Y
is completely continuous if for each sequence (xn) in X such that xn → x weakly it follows that
‖ T (xn)− T (x) ‖→ 0. The space of all completely continuous operator from X into Y is denoted by
Lcc(X, Y ). It is well known that every compact operator is completely continuous and the converse
is true provided that X is reflexive, see Proposition 3.3 of [2].

Let A be a Banach algebra. Consider the map θ : A∗ → L(A,A∗) with θ(φ) = θφ; where L(A,A∗)
is the space of all bounded operators from A into A∗ and θφ as an element of this space is defined by
θφ(a) = a · φ. The element a · φ belongs to A∗ and takes every b ∈ A to 〈φ, ba〉.

Definition 3.8. Let A be a Banach algebra. We call A a completely continuous Banach algebra if
θ(A∗) ⊆ Lcc(A,A

∗); in other words, A is completely continuous if for every φ ∈ A∗, the map a 7→ a ·φ
from A into A∗ is a completely continuous operator. By setting

c.c(A) = {φ ∈ A∗ : θφ ∈ Lcc(A,A
∗)},

we see that A is a completely continuous Banach algebra whenever c.c(A) = A∗.
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Theorem 3.9. A Banach algebra A is completely continuous if one of the following holds:

(i) A has Schur’s property;

(ii) A∗ has Schur’s property.

Proof . Let φ ∈ A∗. To see (i), let an → a weakly. Since A has Schur’s property, an → a in norm.
θφ is continuous, so ‖ θφ(an)− θφ(a) ‖→ 0.

Now let A∗ has Schur’s property and let an → a weakly. θφ is continuous, so takes weakly
convergent sequences to weakly convergent sequences. Thus θφ(an)→ θφ(a) weakly; A∗ has Schur’s
property so ‖ θφ(an)− θφ(a) ‖→ 0. Therefore, in two cases, θφ is a completely continuous operator,
that is, φ ∈ c.c(A). �

Example 3.10. l1 is a completely continuous Banach algebra. Indeed, l1 has Schur’s property and
by applying the above theorem c.c(l1) = l∞, so the claim is proved.

Example 3.11. c0 is a completely continuous Banach algebra. We have c∗0 = l1; applying the above
theorem shows that c.c(c0) = l1.

For the next example, we need to bring some definitions. Let 1 ≤ p < ∞ and let T : X → Y
be a linear operator between Banach spaces. T is called a p-summing operator if there is a constant
c ≥ 0 such that regardless of the natural number m and regardless of the choice of x1, ..., xm in X
we have

(
m∑
i=1

‖ Txi ‖p)1/p ≤ c · sup{(
m∑
i=1

|〈x∗, xi〉|p)1/p : x∗ ∈ BX∗}, (3.2)

where BX∗ is the ball of X∗. The space of all p-summing operators from X into Y is denoted by
Lp(X, Y ). One can easily see that Lp(X, Y ) is a subspace of L(X, Y ).

A norm is defined on Lp(X, Y ), by setting ‖ T ‖p equals to the least c the inequality (3.2) always
holds. One can check that ‖ T ‖≤‖ T ‖p holds for every T in Lp(X, Y ).

By Proposition 18.1 of [4], for 1 ≤ p < ∞, a Banach algebra A is a p-summing Banach algebra
if for every φ ∈ A∗, the map θφ by a 7→ a · φ from A into A∗ is a p-summing operator. In this case,
there is a constant c ≥ 0 such that

‖ θφ ‖p ≤ c ‖ φ ‖ .

Some examples of p-summing Banach algebras are as follows:

Example 3.12. Let K be a compact Hausdorff space. Then C(K), the space of all continuous
C-valued functions, is a p-summing Banach algebra for every 1 ≤ p <∞, see Example 18.2 of [4].

Example 3.13. lp is a 1-summing Banach algebra for p ≤ 2, and a p∗-summing Banach algebra
for 2 < p < ∞; where 1/p + 1/p∗ = 1, see Example 18.3 of [4]. (Consider lp with coordinatewise
multiplication)

Example 3.14. Let H be an infinite dimensional Hilbert space, then L(H) can not be a p-summing
Banach algebra for any 1 ≤ p <∞, see 18.22 of [4].

Theorem 3.15. Regardless of 1 ≤ p < ∞, every p-summing Banach algebra is a completely con-
tinuous Banach algebra.
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Proof . Let 1 ≤ p <∞ and let A be a p-summing Banach algebra. Then, for every φ ∈ A∗, the map
θφ by a 7→ a · φ from A into A∗ is a p-summing operator. By Theorem 2.17 of [4], θφ is completely
continuous (and weakly compact) operator; So c.c(A) = A∗. �

We saw that a Banach algebra whose underlying Banach space has Schur’s property is a completely
continuous Banach algebra, but what about the converse?

By Example 3.13 and Theorem 3.15, for 1 < p <∞, lp is a completely continuous Banach algebra,
but it does not have Schur’s property. Indeed, for 1 < p < ∞, let (xn) in lp with 1 < p < ∞ be
defined by xn(i) = 1/n if 1 ≤ i ≤ n and xn(i) = 0 if i > n. One can see that xn → 0 weakly and it
does not converge to 0 in norm.

One should note that the separability plays a strong role in the proof of that l1 has Schur’s
property, but this is not sufficient for a normed space to have Schur’s property. We see that lp is
separable and does not have Schur’s property.

Theorem 3.16. Let A be a Banach algebra with the character space ΦA. Then c.c(A) is a linear
subspace of A∗ and

ΦA ⊆ c.c(A).

Proof . To see that c.c(A) is a linear subspace of A∗ is straightforward. Let φ ∈ ΦA and let (an) be
a sequence in A such that an → a weakly (a ∈ A). We have

‖ θφ(an)− θφ(a) ‖ =‖ an · φ− a · φ ‖
= sup{|〈an · φ− a · φ, b〉| : ‖ b ‖≤ 1 }
= sup{|〈φ, b(an − a)〉| : ‖ b ‖≤ 1 }
= sup{|〈φ, b〉||〈φ, an − a〉| : ‖ b ‖≤ 1 }
=‖ φ ‖ |〈φ, an − a〉|
→ 0,

where n→∞. It shows that φ ∈ c.c(A). �

4. A sufficient condition

We recall that a Banach space X is said to have the approximation property, if for every compact
set K ⊆ X and every ε > 0, there is an operator T : X → X of finite rank so that for every x ∈ K,
‖ Tx−x ‖< ε. Examples of Banach spaces have the approximation property including Hilbert spaces
and Banach spaces with a Schuder basis.

Theorem 4.1. Let A be a reflexive, amenable and completely continuous Banach algebra with the
approximation property. Then there are n1, n2, ..., nk ∈ N such that

A = Mn1 ⊕Mn2 ⊕ ...⊕Mnk
.

Proof . For each φ ∈ A∗, θφ is a completely continuous operator. Since A is reflexive, θφ is a
compact operator. So, θφ ∈ K(A,A∗) for each φ ∈ A∗. We may also see, by Theorem 2.2 of [8], that
the mappings of the form θφ : A → A∗ which are defined, for every a ∈ A, by a 7→ φ · a are all
compact operators. By L(A,A∗) ∼= (A⊗̂A)∗, for each φ ∈ A∗ and every a, b ∈ A, we have

〈∆∗(φ)(a), b〉 = 〈∆∗(φ), a⊗ b〉
= 〈φ, ab〉
= 〈φ · a, b〉
= 〈θφ(a), b〉.
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Thus, for each φ ∈ A∗, we have ∆∗(φ) = θφ, that is, ∆∗(A∗) ⊂ K(A,A∗). Since A∗∗ has the
approximation property, A∗ has too. So by Proposition 5.3 of [3], K(A,A∗) ∼= A∗⊗̌A∗. Also, since A
is reflexive, A has Radon-Nikodim property, see D3 of [3]. The approximation and Radon-Nikodim
properties of A imply that A⊗̂A ∼= (A∗⊗̌A∗)∗ [3].
Now let (dα)α ⊆ A⊗̂A be an approximate diagonal for A. So (dα)α has a w∗- accumalation point.
Without loss of generality, assume that

d = w∗ − lim
α
dα.

For each a ∈ A and T ∈ A∗⊗̌A∗, we have

〈a · d, T 〉 = 〈d, T · a〉
= lim

α
〈dα, T · a〉

= lim
α
〈a · dα, T 〉

= lim
α
〈dα · a, T 〉

= lim
α
〈dα, a · T 〉

= 〈d · a, T 〉.

Thus, a · d = d · a for each a ∈ A.
We claim that ∆(dα) → ∆(d) with respect to the weak topology on A. To see, let ψ ∈ A∗, we

have

lim
α
〈ψ,∆(dα)〉 = lim

α
〈∆∗(ψ), dα〉

= 〈∆∗(ψ), d〉 (∆∗(ψ) ∈ A∗⊗̌A∗)
= 〈ψ,∆(d)〉.

This proves the claim.
Now let ψ ∈ A∗ be an arbitrary element. For each a ∈ A, we have

〈ψ, a∆(d)〉 = 〈ψ · a,∆(d)〉
= lim

α
〈ψ · a,∆(dα)〉

= lim
α
〈ψ, a∆(dα)〉

= 〈ψ, a〉.

By the Hahn-Banach theorem, for every a ∈ A, we have a∆(d) = a. Therefore, d is a diagonal for A
and consequently A is contractible. The proof is now complete by Theorem 4.1.5 of [11]. �

References

[1] R. P. Agrawal, D. O’Regan and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with appli-
cations, Springer-Verlag, New York, 2009.

[2] J. B. Conway, A course in functional analysis, Graduate texts in Mathematics, Springer-Verlag, New york,
1990.

[3] A. Defant and K. Floret, Tensor norms and operator ideals, North-Holland, Amsterdam, 1993.
[4] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge university press, 1995.



62 Hayati
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