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Abstract

In this article, we discuss about solvability of infinite systems of singular integral equations with
two variables in the Banach sequence space C(I × I, c) by applying measure of noncompactness and
Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For
validity of the results we introduce a modified semi-analytic method in the case of two variables to
make an iteration algorithm to find a closed-form of solution for the above problem. The numerical
results show that the produced sequence for approximating the solution of example is in the c space
with a high accuracy.
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1. Introduction

In nonlinear analysis the theory of infinite systems of differential or integral equations plays a very
important role. This theory has many applications in the theory of branching process, the theory of
neural nets and etc.
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The solvability of in infinite systems of equations have been discussed by many authors in Banach
spaces (we refer [2, 3, 14, 16, 17, 20, 30, 36]).

In the year 1930, Kuratowski [24] first introduced and studied the measure of noncompactness.
For different types of measure of noncompactness we refer [11] for the reader. Measures of non-
compactness are useful tools which are widely used in fixed point theory, differential equations,
functional equations, integral and integro-differential equations, and optimization etc (see [12, 27]).
Many authors have been solved the various infinite system of equations by applying the measure of
noncompactness (see [4, 5, 7, 8, 9, 10, 18, 19, 28, 29]).

Throughout the article we consider I = [0, T ], T > 0. Suppose E1 is a real Banach space with the
norm ∥ . ∥ . Let B(x0, d1) be a closed ball in E1 centered at x0 and with radius d1. If X1 is a nonempty
subset of E1 then by X̄1 and ConvX1 we denote the closure and convex closure of X1. Moreover, let
ME1 denote the family of all nonempty and bounded subsets of E1 and NE1 its subfamily consisting
of all relatively compact sets. The following axiomatic definition of a measure of noncompactness
was introduced in [11].

Definition 1.1. A function µ1 : ME1 → R+ is called a measure of noncompactness if it satisfies
the following conditions:

(i) the family kerµ1 = {X1 ∈ ME1 : µ1 (X1) = 0} is nonempty and kerµ1 ⊂ NE1 .
(ii) X1 ⊂ Y1 =⇒ µ1 (X1) ≤ µ1 (Y1) .
(iii) µ1

(
X̄1

)
= µ1 (X1) .

(iv) µ1 (ConvX1) = µ1 (X1) .
(v) µ1 (λX1 + (1− λ)Y1) ≤ λµ1 (X1) + (1− λ)µ1 (Y1) for λ ∈ [0, 1] .

(vi) if X1
n ∈ ME1 , X

1
n = X̄1

n, X
1
n+1 ⊂ X1

n for n = 1, 2, 3, . . . and lim
n→∞

µ1 (X
1
n) = 0, then

∞∩
n=1

X1
n is

nonempty.

The family kerµ1 is said to be the kernel of measure of noncompactness µ1.
A measure µ1 is said to be the sublinear if it satisfies the following conditions:

(1) µ1 (λX1) = |λ|µ1 (X1) for λ ∈ R.
(2) µ1 (X1 + Y1) ≤ µ1 (X1) + µ1 (Y1) .

A sublinear measure of noncompactness µ1 satisfying the condition:

µ1 (X1 ∪ Y1) = max {µ1 (X1) , µ1 (Y1)}

and such that kerµ1 = NE1 is said to be regular.
For a nonempty and bounded subset S of a metric space X1, the Kuratowski measure of noncom-
pactness is defined as

α (S) = inf

{
δ > 0 : S ⊂

n∪
i=1

Si, diam (Si) ≤ δ for 1 ≤ i ≤ n, n ∈ N

}
,

where diam(Si) denotes the diameter of the set Si, that is,

diam (Si) = sup {d(x, y) : x, y ∈ Si} .
The Hausdorff measure of noncompactness for a bounded set S is defined by

χ (S) = inf {ϵ > 0 : S has finite ϵ− net in X1} .
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Definition 1.2. [6] Let G1 and G2 be two Banach spaces and let µ1 and µ2 be arbitrary measures
of noncompactness on G1 and G2, respectively. An operator f from G1 to G2 is called a (µ1, µ2)-
condensing operator if it is continuous and µ2 (f(D)) < µ1(D) for every set D ⊂ G1 with compact
closure.

Remark 1.3. If G1 = G2 and µ1 = µ2 = µ, then f is called a µ-condensing operator.

The contractive maps and the compact maps are condensing if we take as measures of non-
compactness the diameter of a set and the indicator function of a family of non-relatively compact
sets, respectively (see [6]). In 1969, Meir and Keeler[26] proved the following interesting fixed point
theorem, which is a generalization of the Banach contraction principle.

Definition 1.4. [26] Let (X, d) be a metric space. Then a mapping T on X is said to be a Meir-
Keeler contraction if for any ϵ > 0, there exists δ > 0 such that

ϵ ≤ d(x, y) < ϵ+ δ =⇒ d (Tx, Ty) < ϵ, ∀x, y ∈ X.

Theorem 1.5. [26] Let (X, d) be a complete metric space. If T : X → X is a Meir-Keeler contrac-
tion, then T has a unique fixed point.

In [4], the following results are given, which are very useful in our study.

Definition 1.6. [4] Let C be a nonempty subset of a Banach space E and let µ be an arbitrary
measure of noncompactness on E. We say that an operator T : C → C is a Meir-Keeler condensing
operator if for any ϵ > 0, there exists δ > 0 such that

ϵ ≤ µ (X) < ϵ+ δ =⇒ µ (T (X)) < ϵ

for any bounded subset X of C.

Theorem 1.7. [4] Let C be a nonempty, bounded, closed and convex subset of a Banach space E
and let µ be an arbitrary measure of noncompactness on E. If T : C → C is a continuous and
Meir-Keeler condensing operator, then T has at least one fixed point and the set of all fixed points of
T in C is compact.

2. Measure of noncompactness in sequence spaces

In this article, we establish the existence of solution of infinite systems of integral equations in two
variables in the sequence space C(I × I, c) by using Meir-Keeler condensing operators. We explain
the results with the help of simple example.

In the Banach space (c, ∥ . ∥c) the Hausdorff measure of noncompactness can’t be expressed in
simple rule but we have an equivalent measure of noncompactness in c can be formulated as follows
(see [11]):

µc

(
V̄
)
= lim

n→∞

[
sup
z∈V̄

(
sup
k≥n

| zk − lim
m→∞

zm |
)]

, (2.1)

where z = (zi)
∞
i=1 ∈ c and V̄ ∈ Mc.

Let us denote by C(I × I, c) the space of all continuous functions on I × I with values in c. Then
C(I × I, c) is also a Banach space with norm ∥ x(t, s) ∥C(I×I,c)= sup {∥ x(t, s) ∥c: t, s ∈ I} where
x(t, s) ∈ C(I × I, c).
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For any non-empty bounded subset Ê of C(I × I, c) and t, s ∈ I, let Ê(t, s) =
{
x(t, s) : x ∈ Ê

}
.

Now, using (2.1), we conclude that the measure of noncompactness for Ê ⊂ C(I×I, c) can be defined
by

µC(I×I,c)(Ê) = sup
{
µc(Ê(t, s)) : t, s ∈ I

}
.

In this article, the existence of solution of the following infinite systems of nonlinear singular integral
equations with two variables will be studied

zi(t, s) = Hi (t, s, z(t, s)) + Fi

t, s, z(t, s),

s∫
0

t∫
0

ui (t, s, v, w, z(v, w))

(t− v)α(s− w)β
dvdw

 , (2.2)

where z(t, s) = (zi(t, s))
∞
i=1 ∈ E, (t, s) ∈ I×I and zi(t, s) ∈ C(I×I,R) for all i ∈ N and α, β ∈ (0, 1).

C(I × I,R) denotes the Banach space of all real continuous functions on I × I with norm ∥ z ∥=
sup {| z(t, s) |: t, s ∈ I} and E is some Banach sequence space (E, ∥ . ∥). Assume that

(i) Fi : I × I ×C(I × I, c)×R → R (i ∈ N) are continuous functions. Also there exists continuous
functions Âi : I × I → R+ and Bi : I × I → R+ such that for all i ∈ N,

Fi (t, s, z(t, s), l(t, s)) = Âi(t, s)zi(t, s) +Bi(t, s)l(t, s)

where z(t, s) = (zi(t, s))
∞
i=1 ∈ C(I × I, c), zi(t, s) ∈ C(I × I,R) for all i ∈ N and l : I × I → R.

(ii) ui : I × I × I × I × C(I × I, c) → R (i ∈ N) are continuous. Moreover,

Ui = sup {|ui (t, s, v, w, z(v, w))| : t, s, v, w ∈ I, z(v, w) ∈ C(I × I, c)} < ∞.

Also we assume that sup
i

Ui = U and lim
i→∞

Ui = 0.

(iii) Hi : I × I × C(I × I, c) → R (i ∈ N) are continuous and there exist continuous functions
Q̂i : I × I → R (i ∈ N) such that

Hi(t, s, z(t, s)) = Q̂i(t, s)zi(t, s)

with the condition that
∣∣∣Q̂i(t, s)

∣∣∣ ≤ Qi for all t, s ∈ I, where Qi is a constant. Also supi Qi =

Q, lim
i→∞

Qi = 0 and for all i ∈ N.
(iv) Define an operator S on I × I × C(I × I, c) to C(I × I, c) as follows

(t, s, z(t, s)) → (Sz) (t, s),

where

(Sz) (t, s) = ((S1z)(t, s), (S2z)(t, s), (S3z)(t, s), . . .) ,

(Siz)(t, s) = Hi (t, s, z(t, s)) + Fi (t, s, z(t, s), Ii(z))

and Ii(z) =

s∫
0

t∫
0

ui (t, s, v, w, z(v, w))

(t− v)α(s− w)β
dvdw, i ∈ N.

(v) Let sup
t,s∈I

∣∣∣Âi(t, s)
∣∣∣ = Ai and as i → ∞, Ai → 0. Also sup

i
Ai = A < ∞.
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(vi) Let us define B̄i : I × I → R+ by

B̄i(t, s) = t1−αs1−βBi(t, s) and B̂ = sup
{
B̄i : t, s ∈ I, i ∈ N

}
< ∞.

(vii) We also assume that 0 < A+Q < 1.

Theorem 2.1. Under the hypothesis (i) − (vii), infinite system (2.2) has at least one solution
z(t, s) = (zi(t, s))

∞
i=1 ∈ C(I × I, c) for all t, s ∈ I and zi(t, s) ∈ C(I × I,R) for all i ∈ N.

Proof . By using (2.2) and (i)-(vii), then for all arbitrary fixed t, s ∈ I, we have

∥ z(t, s) ∥c

= sup
i≥1

∣∣∣∣∣∣Hi (t, s, z(t, s)) + Fi

t, s, z(t, s),

s∫
0

t∫
0

ui (t, s, v, w, z(v, w))

(t− v)α(s− w)β
dvdw

∣∣∣∣∣∣
= sup

i≥1

∣∣∣∣∣∣Q̂i(t, s)zi(t, s) + Âi(t, s)zi(t, s) +Bi(t, s)

s∫
0

t∫
0

ui (t, s, v, w, z(v, w))

(t− v)α(s− w)β
dvdw

∣∣∣∣∣∣
≤ sup

i≥1

∣∣∣Q̂i(t, s)
∣∣∣ |zi(t, s)|+ ∣∣∣Âi(t, s)

∣∣∣ |zi(t, s)|+ |Bi(t, s)|

∣∣∣∣∣∣
s∫

0

t∫
0

ui (t, s, v, w, z(v, w))

(t− v)α(s− w)β
dvdw

∣∣∣∣∣∣


≤ sup
i≥1

(Q+ A) |zi(t, s)|+Bi(t, s)

∣∣∣∣∣∣
s∫

0

t∫
0

ui (t, s, v, w, z(v, w))

(t− v)α(s− w)β
dvdw

∣∣∣∣∣∣


≤ (Q+ A) ∥ z(t, s) ∥c +sup
i≥1

{
Ut1−αs1−βBi(t, s)

(1− α)(1− β)

}
≤ (Q+ A) ∥ z(t, s) ∥c +

UB̂

(1− α)(1− β)

i.e. (1−Q− A) ∥ z(t, s) ∥c≤ UB̂
(1−α)(1−β)

i.e. ∥ z(t, s) ∥c≤ UB̂
(1−Q−A)(1−α)(1−β)

= r < ∞(say) which gives ∥ z(t, s) ∥C(I×I,c)≤ r.

Therefore z(t, s) ∈ C(I × I, c).
Suppose B1 = B1 (z

0(t, s), r) be the closed ball with center at z0(t, s) = (z0i (t, s)) where z
0
i (t, s) =

0 for all i ∈ N, t, s ∈ I and radius r, thus B1 is a non-empty, bounded, closed and convex subset of
C(I × I, c). Also let S = (Si) be an operator which is defined as follows, for all t, s ∈ I

(Sz) (t, s) = {(Siz) (t, s)} = {Hi(t, s, z(t, s)) + Fi (t, s, z(t, s), Ii(z))} ,

where z(t, s) = (zi(t, s))
∞
i=1 ∈ B1 and zi(t, s) ∈ C(I × I,R), for all i ∈ N.

Now, we have to show that for fixed t, s ∈ I, that (Sz) (t, s) is a Cauchy sequence.
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Let us consider fixed z(t, s) ∈ B1 and t, s ∈ I. For arbitrary m,n ∈ N we have

|(Snz) (t, s)− (Smz) (t, s)|
= |Hn(t, s, z(t, s)) + Fn (t, s, z(t, s), In(z))−Hm(t, s, z(t, s))− Fm (t, s, z(t, s), Im(z))|

=
∣∣∣Q̂n(t, s)zn(t, s) + Ân(t, s)zn(t, s) +Bn(t, s)In(z)− Q̂m(t, s)zm(t, s)− Âm(t, s)zm(t, s)−Bm(t, s)Im(z)

∣∣∣
≤ Qn |zn(t, s)|+ An |zn(t, s)|+Bn(t, s) |In(z)|+Qm |zm(t, s)|+ Am |zm(t, s)|+Bm(t, s) |Im(z)|

≤ (Qn + An) |zn(t, s)|+Bn(t, s)
Unt

1−αs1−β

(1− α)(1− β)
+ (Qm + Am) |zm(t, s)|+Bm(t, s)

Umt
1−αs1−β

(1− α)(1− β)

≤ (Qn + An) |zn(t, s)|+
UnB̂

(1− α)(1− β)
+ (Qn + An) |zn(t, s)|+

UnB̂

(1− α)(1− β)

As m,n → ∞ we have |(Snz) (t, s)− (Smz) (t, s)| → 0. Thus (Sz) (t, s) is a real Cauchy sequence
hence it is convergent i.e. (Sz) (t, s) ∈ C(I × I, c).

Also ∥ (Sz) (t, s)− z0(t, s) ∥C(I×I,c)≤ r so S is self mapping on B1.
Let us consider a real number ϵ > 0 and arbitrary z(t, s) = (zi(t, s))

∞
i=1 , z̄(t, s) = (z̄i(t, s))

∞
i=1 ∈ B1

and zi(t, s), z̄i(t, s) ∈ C(I × I,R) such that ∥ z − z̄ ∥C(I×I,c)<
ϵ

2(A+Q)
.

For all i ∈ N and arbitrary fixed t, s ∈ I we have

|(Siz) (t, s)− (Siz̄) (t, s)|
= |Hi(t, s, z(t, s)) + Fi (t, s, z(t, s), Ii(z(t, s)))−Hi(t, s, z̄(t, s))− Fi (t, s, z̄(t, s), Ii(z̄(t, s)))|

=
∣∣∣Q̂i(t, s)zi(t, s) + Âi(t, s)zi(t, s) + Bi(t, s)Ii(z)− Q̂i(t, s)z̄i(t, s)− Âi(t, s)z̄i(t, s)−Bi(t, s)Ii(z̄)

∣∣∣
≤ (A+Q) ∥ z − z̄ ∥c +Bi(t, s)

s∫
0

t∫
0

|ui (t, s, v, w, z(v, w))− ui (t, s, v, w, z̄(v, w))|
(t− v)α(s− w)β

dvdw

<
ϵ

2
+Bi(t, s)

s∫
0

t∫
0

|ui (t, s, v, w, z(v, w))− ui (t, s, v, w, z̄(v, w))|
(t− v)α(s− w)β

dvdw.

Let

W = sup
i

{|ui (t, s, v, w, z(v, w))− ui (t, s, v, w, z̄(v, w))| : t, s, v, w ∈ I, z(v, w), z̄(v, w) ∈ B1} .

Then |(Siz) (t, s)− (Siz̄) (t, s)| < ϵ
2
+ Wt1−αs1−βBi(t,s)

(1−α)(1−β)
≤ ϵ

2
+ WB̂

(1−α)(1−β)
.

Since ui is uniformly continuous on compact set I×I×I×I×B1 we have W → 0 as ϵ → 0, therefore
for all i ∈ N, we have |(Siz) (t, s)− (Siz̄) (t, s)| → 0 as ∥ z(t, s) − z̄(t, s) ∥C(I×I,c)→ 0. Since t, s is
arbitrarily chosen therefore S is continuous on B1 ⊂ C(I × I, c) for all t, s ∈ I.

Now we shall prove that S is a Meir-Keeler condensing operator.
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We have for arbitrarily fixed t, s ∈ I,∣∣∣Hk(t, s, z(t, s))− lim
m→∞

Hm(t, s, z(t, s))
∣∣∣

=
∣∣∣Q̂k(t, s)zk(t, s)− lim

m→∞
Q̂m(t, s)zm(t, s)

∣∣∣
=
∣∣∣Q̂k(t, s)

(
zk(t, s)− lim

m→∞
zm(t, s)

)
+ lim

m→∞

(
Q̂k(t, s)− Q̂m(t, s)

)
zm(t, s)

∣∣∣
≤
∣∣∣Q̂k(t, s)

∣∣∣ ∣∣∣zk(t, s)− lim
m→∞

zm(t, s)
∣∣∣+ ∣∣∣ lim

m→∞

(
Q̂k(t, s)− Q̂m(t, s)

)
zm(t, s)

∣∣∣
≤ Q

∣∣∣zk(t, s)− lim
m→∞

zm(t, s)
∣∣∣+ ∣∣∣Q̂k(t, s) lim

m→∞
zm(t, s)

∣∣∣
and∣∣∣Fk(t, s, z(t, s), Ik(z))− lim

m→∞
Fm(t, s, z(t, s), Im(z))

∣∣∣
=
∣∣∣Âk(t, s)zk(t, s) +Bk(t, s)Ik(z)− lim

m→∞

(
Âm(t, s)zm(t, s) +Bm(t, s)Im(z)

)∣∣∣
≤ A

∣∣∣zk(t, s)− lim
m→∞

zm(t, s)
∣∣∣+ ∣∣∣Âk(t, s) lim

m→∞
zm(t, s)

∣∣∣+Bk(t, s) |Ik(z)|+ lim
m→∞

Bm(t, s) |Im(z)|

≤ A
∣∣∣zk(t, s)− lim

m→∞
zm(t, s)

∣∣∣+ ∣∣∣Âk(t, s) lim
m→∞

zm(t, s)
∣∣∣+ B̂Uk

(1− α)(1− β)
+ lim

m→∞

B̂Um

(1− α)(1− β)

= A
∣∣∣zk(t, s)− lim

m→∞
zm(t, s)

∣∣∣+ ∣∣∣Âk(t, s) lim
m→∞

zm(t, s)
∣∣∣+ B̂Uk

(1− α)(1− β)
.

Therefore

µc (S (B1))

= lim
n→∞

[
sup

z(t,s)∈B1

{
sup
k≥n

∣∣∣Hk(t, s, z) + Fk(t, s, z, Ik(z))− lim
m→∞

{Hm(t, s, z) + Fm(t, s, z, Im(z))}
∣∣∣}]

≤ (A+Q)µc(B1)

i.e.
µC(I×I,c) (S (B1)) ≤ (A+Q)µC(I×I,c)(B1).

We observe that µC(I×I,c) (S (B1)) ≤ (A+Q)µC(I×I,c)(B1) < ϵ ⇒ µc (B1) <
ϵ

A+Q
.

If we choose δ = ϵ(1−A−Q)
A+Q

we get ϵ ≤ µC(I×I,c) (B1) < ϵ + δ. Thus S is a Meir-Keeler condensing

operator on B1 ⊂ C(I × I, c). So S satisfies all the conditions of Theorem 1.7 which implies S has
at least one fixed point in B1. Therefore the system (2.2) has a solution in C(I × I, c). □

3. Applications

Example 3.1. Consider the following infinite system of singular integral equations

zi(t, s) =
1

4i+ t2s2

3i∑
j=1

(
zi(t, s)

j2

)
+

i∑
j=1

(
zi(t, s)

4j2i2

)
+

1

ets

s∫
0

t∫
0

cos

(
5i∑
j=1

zj(v, w)

)
(t2s2 + i2)(t− v)

1
2 (s− w)

1
2

dvdw, (3.1)
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where i ∈ N and I = [0, 7]. Here

Hi(t, s, z(t, s)) =
1

4i+ t2s2

3i∑
j=1

(
zi(t, s)

j2

)

Fi(t, s, z(t, s), Ii(z)) =
i∑

j=1

(
zi(t, s)

4i2j2

)
+

1

ets
Ii(z),

Ii(z) =

s∫
0

t∫
0

cos

(
5i∑
j=1

zj(v, w)

)
(t2s2 + i2)(t− v)

1
2 (s− w)

1
2

dvdw,

ui(t, s, v, w, z(v, w)) =

cos

(
5i∑
j=1

zj(v, w)

)
t2s2 + i2

and α = β = 1
2
.

Now if z(t, s) = (zi(t, s)) ∈ C(I × I, c) and zi(t, s) ∈ C(I × I,R) for all i ∈ N then,

Fi(t, s, z(t, s), Ii(z))

=
zi(t, s)

4i2

i∑
j=1

1

j2
+

1

ets
Ii(z).

Here Âi(t, s) =
1
4i2

i∑
j=1

1
j2
, Bi(t, s) =

1
ets

. Bi is both continuous and bounded function for all t, s ∈ I

and i ∈ N.
Also, Ai =

π2

24i2
, A = π2

24
and lim

i→∞
Ai = 0.

Also,

Hi(t, s, z(t, s)) =
zi(t, s)

4i+ t2s2

3i∑
j=1

1

j2
.

So we have Q̂i(t, s) =
1

4i+t2s2

∑3i
j=1

1
j2
, Qi =

π2

24i
, Q = π2

24
, lim

i→∞
Qi = 0 and 0 < A + Q < 1. We can

easily see that ui(t, s, v, w, z(v, w)) are continuous for all i ∈ N. We also have Ui =
1
i2

, U = 1 and
lim
i→∞

Ui = 0.

Again we have B̄i(t, s) =
√
ts

ets
and B̂ = 1√

2e
.

It is obvious that Hi and Fi are continuous functions. So all the assumptions from (i)-(vii) are
satisfied. Hence by theorem 2.1 we conclude that the system 3.1 has a solution in C(I × I, c).

4. Coupled semi-analytic method to find solution of infinite system of nonlinear singular
integral equations

In the section 3 we proved existence of solution for infinite system of nonlinear singular integral
equations of two variables (see example 3.1 as an application of Theorem 2.1). Now, we obtain an
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approximation of solution for the above problem by a coupled technique that is created by modified
homotopy perturbation method with infinite functions of two variables and Adomian decomposi-
tion method. Applications of modified homotopy perturbation method to solve nonlinear integral
equations, nonlinear singular integral equations and nonlinear differential equations can be seen in
[21, 31, 32, 34], respectively. Adomian in [1] introduced a decomposition method for solving frontier
problem of physics and this technique is used in [35] to solve Fredholm integro-differential equations
system. In [22] Hazarika et al. was applied a modified homotopy perturbation and Adomian decom-
position method to solve infinite system of nonlinear integral equations in the case of one variable.
Also to solve singular integral equation can be seen in [25, 33, 34, 37]. But in this article we introduce
a modified homotopy perturbation method in terms of infinite number of functions with two variables
and for simplification of nonlinear terms we use Adomian decomposition method in the suitable form.
Consider nonlinear problem with infinite functions of two variables in the general form{

A(z1(t, s), z2(t, s), · · · , zi(t, s), · · · )− f(t, s, i) = 0,
(t, s) ∈ Ω = [0, T ]× [0, T ], i ∈ N (4.1)

where A is a general nonlinear operator and f ’s are known analytic functions. Similar to [31, 32],
we divide the general operator A to two nonlinear operators N1 and N2. Of course N1 or N2 can be
linear operator in special case. Also every one of f ’s are converted to f1 and f2 functions in other
word we have{

N1(z1(t, s), · · · , zi(t, s), · · · )− f1(t, s, i)
+N2(z1(t, s), · · · , zi(t, s), · · · )− f2(t, s, i) = 0, i ∈ N,

By assumption η̂(t, s) = (η1(t, s), η2(t, s), · · · ), we introduce a modified homotopy perturbation for
infinite functions of two variables as follows{

H(η̂(t, s), p) = N1(η1(t, s), · · · , ηi(t, s), · · · )− f1(t, s, i)
+p(N2(η1(t, s), · · · , ηi(t, s), · · · )− f2(t, s, i)) = 0, p ∈ [0, 1],

(4.2)

where p is an embedding parameter and η′is are approximation of z′is for i ∈ N. By variations of p = 0
to p = 1 it’s concluded thatN1(η1(t, s), · · · , ηi(t, s), · · · ) = f1(t, s, i) toA(η1(t, s), η2(t, s), · · · , ηi(t, s), · · · )−
f(t, s, i) = 0. In fact by choosing of p = 1 in (4.2) we can get the solution of (4.1) and also we have{

zi(t, s) ≈ ηi(t, s) =
∑∞

k=0 p
kηi,k(t, s), i ∈ N.

zi(t, s) = lim
p→1

ηi(t, s)
(4.3)

For (t, s) ∈ [0, 7] × [0, 7], we define N1 and N2 operators and f ’s functions to solve of (3.1) to this
form;

N1(z1(t, s), · · · , zi(t, s), · · · ) = zi(t, s),

N2(z1(t, s), · · · , zi(t, s), · · · ) = − 1

4i+ t2s2

3i∑
j=1

(
zi(t, s)

j2

)
− 1

4

i∑
j=1

(
zi(t, s)

j2i2

)

− 1

ets

s∫
0

t∫
0

cos

(
5i∑
j=1

zj(v, w)

)
(i2 + t2s2)(t− v)

1
2 (s− w)

1
2

dvdw,

f(t, s, i) = f1(t, s, i) + f2(t, s, i).

(4.4)
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By substituting (4.4) and (4.3) in the homotopy perturbation (4.2), we have( ∞∑
k=0

pkηi,k(t, s)− f1(t, s, i)
)
+ p
(
− 1

4i+ t2s2

3i∑
j=1

(

∑∞
k=0 p

kηi,k(t, s)

j2
)

− 1

4

i∑
j=1

(

∑∞
k=0 p

kηi,k(t, s)

j2i2
)− 1

ets

s∫
0

t∫
0

cos

(
5i∑
j=1

∑∞
k=0 p

kηj,k(v, w)

)
(t2s2 + i2)(t− v)

1
2 (s− w)

1
2

dvdw − f2(t, s, i)
)
= 0,

(4.5)

In (4.5), we apply Adomian decomposition method to convert nonlinear terms to smaller separable
nonlinear terms

3i∑
j=1

(

∑∞
k=0 p

kηi,k(t, s)

j2
) =

∞∑
k=0

pkBi,k(t, s),

i∑
j=1

(

∑∞
k=0 p

kηi,k(t, s)

j2i2
) =

∞∑
k=0

pkB̂i,k(t, s),

cos

(
5i∑
j=1

∞∑
k=0

pkηj,k(v, w)

)
=

∞∑
k=0

pk
̂̂
Bi,k(t, s),

(4.6)

where Adomian polynomials are given by

Bi,k(t, s) =
1

k!

( dk

dpk

3i∑
j=1

(

∑∞
k=0 p

kηi,k(t, s)

j2
)
)
p=0,

B̂i,k(t, s) =
1

k!

( dk

dpk

i∑
j=1

(

∑∞
k=0 p

kηi,k(t, s)

j2i2
)
)
p=0,

̂̂
Bi,k(t, s) =

1

k!

( dk

dpk
cos

(
5i∑
j=1

∞∑
k=0

pkηj,k(v, w)

))
p=0.

(4.7)

Placing (4.6) into (4.5), it concludes that( ∞∑
k=0

pkηi,k(t, s)− f1(t, s, i)
)
+ p
(
− 1

4i+ t2s2

∞∑
k=0

pkBi,k(t, s)

− 1

4

∞∑
k=0

pkB̂i,k(t, s)−
1

ets

s∫
0

t∫
0

∑∞
k=0 p

k ̂̂Bi,k(v, w)dvdw

(t2s2 + i2)(t− v)
1
2 (s− w)

1
2

− f2(t, s, i)
)
= 0,

(4.8)

By rearranging of (4.8) in terms of p powers we can get

p0 : (ηi,0(t, s)− f1(t, s, i)),

p1 : (ηi,1(t, s)−
Bi,0(t, s)

4i+ t2s2
− 1

4
B̂i,0(t, s)−

1

ets

s∫
0

t∫
0

̂̂
Bi,0(v, w)dvdw

(t2s2 + i2)(t− v)
1
2 (s− w)

1
2

− f2(t, s, i),

pn : (ηi,n(t, s)−
Bi,n−1(t, s)

4i+ t2s2
− 1

4
B̂i,n−1(t, s)−

1

ets

s∫
0

t∫
0

̂̂
Bi,n−1(v, w)dvdw

(t2s2 + i2)(t− v)
1
2 (s− w)

1
2

, n ≥ 2.
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According to modified homotopy perturbation (4.2) the coefficients of p powers must be equal to
zero and we can give an iterative algorithm to solve (3.1).

Algorithm:

ηi,0(t, s) = f1(t, s, i),

ηi,1(t, s) = f2(t, s, i) +
Bi,0(t, s)

4i+ t2s2
+

1

4
B̂i,0(t, s) +

1

ets

s∫
0

t∫
0

̂̂
Bi,0(v, w)dvdw

(t2s2 + i2)(t− v)
1
2 (s− w)

1
2

,

ηi,n(t, s) =
Bi,n−1(t, s)

4i+ t2s2
+

1

4
B̂i,n−1(t, s) +

1

ets

s∫
0

t∫
0

̂̂
Bi,n−1(v, w)dvdw

(t2s2 + i2)(t− v)
1
2 (s− w)

1
2

, n ≥ 2.

(4.9)

Convergence of the above algorithm can be proved similar to [23]. Now, we compute terms of
sequence {z1(t, s), z2(t, s), ..} and then we introduce closed form of solution for the infinite system of
non-linear singular integral equations (3.1) by the above algorithm. To this end at first we calculate
Adomian polynomials in the case of k = 0 as follows,

Bi,0(t, s) =
3i∑
j=1

(
ηi,0(t, s)

j2
), B̂i,0(t, s) =

i∑
j=1

(
ηi,0(t, s)

j2i2
)

̂̂
Bi,0(t, s) = cos

(
5i∑
j=1

ηj,0(v, w)

)
.

(4.10)

Since in (3.1), f(t, s, i) = 0 then f1(t, s, i) = f2(t, s, i) = 0 and also in the algorithm (4.9) we have

ηi,0(t, s) = f1(t, s, i) = 0,

ηi,1(t, s) = f2(t, s, i) +
Bi,0(t, s)

4i+ t2s2
+

1

4
B̂i,0(t, s) +

1

ets

s∫
0

t∫
0

̂̂
Bi,0(v, w)dvdw

(t2s2 + i2)(t− v)
1
2 (s− w)

1
2

=
4e−st

√
st

(i2 + s2t2)
.

We use from (4.3) to approximate of the some elements of sequence (zi(t, s))
∞
i=1 by a few terms of

the above approximations

z1(t, s) ≃
1∑

k=0

η1,k(t, s) =
4e−st

√
st

(1 + s2t2)
, (4.11)

and similarly

z2(t, s) =
4e−st

√
st

(22 + s2t2)
,

z10(t, s) =
4e−st

√
st

(102 + s2t2)
,

z100(t, s) =
4e−st

√
st

(1002 + s2t2)
.

(4.12)

Therefore we can give solution of (3.1) by a closed form,

zi(t, s) ≃
1∑

k=0

ηi,k(t, s) =
4e−st

√
st

(i2 + s2t2)
. (4.13)
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We choose a subinterval of [0, 7] × [0, 7] to compute absolute errors. So by substituting (4.13) in
Eq.(3.1) absolute errors in some points for some elements of solution such as z1(t, s), z10(t, s) and
z100(t, s) are given in the Table 1-3.

Table 1: Absolute errors for z1(t, s) in some points

(t, s) ∈ [5, 7]× [5, 7] 5.0 5.5 6.0 6.5 7.0
5.0 1.1×10−13 7.9×10−15 5.7×10−16 4.1×10−17 3.0×10−18

5.5 7.9×10−15 4.4×10−16 2.4×10−17 1.3×10−18 7.9×10−20

6.0 5.7×10−16 2.4×10−17 1.0×10−18 4.7×10−20 2.1×10−21

6.5 4.1×10−17 8.3×10−18 4.7×10−20 1.6×10−21 5.6×10−23

7.0 3.0×10−18 7.9×10−20 2.1×10−21 5.6×10−23 1.5×10−24

Table 2: Absolute errors for z10(t, s) in some points

(t, s) ∈ [5, 7]× [5, 7] 5.0 5.5 6.0 6.5 7.0
5.0 6.3×10−14 3.8×10−15 2.2×10−16 1.4×10−17 9.6×10−19

5.5 3.8×10−15 1.7×10−16 8.6×10−18 4.2×10−19 2.1×10−20

6.0 2.3×10−16 8.6×10−18 3.2×10−19 1.2×10−20 4.8×10−22

6.5 1.4×10−17 4.2×10−19 1.2 ×10−20 3.7×10−22 1.1×10−23

7.0 9.6×10−19 2.1×10−20 4.8×10−22 1.1×10−23 2.6×10−25

Table 3: Absolute errors for z100(t, s) in some points

(t, s) ∈ [5, 7]× [5, 7] 5.0 5.5 6.0 6.5 7.0
5.0 4.1×10−13 2.9×10−14 2.0×10−15 1.4×10−16 1.0×10−18

5.5 2.9×10−14 1.6×10−15 8.8×10−17 4.9×10−18 2.7×10−20

6.0 2.0×10−15 8.8×10−17 3.7×10−18 1.6×10−19 7.1×10−21

6.5 1.4×10−16 4.9×10−18 1.6×10−19 5.5×10−21 1.8×10−23

7.0 1.0×10−17 2.7×10−19 7.1×10−21 1.8×10−22 4.9×10−24

As we showed in Table 1-3 the proposed method has a acceptable accuracy.
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5. Conclusion

In this article, we proved existence of solution for infinite system of nonlinear singular integral
equations with two variables. Efficiency of our results was confirmed by an example. Also we
constructed an iteration algorithm to get solution of the above equations system with a high accuracy.
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