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Abstract

The main purpose of the paper is to extend some results of the coupled fixed point theorems, based
on some previous works [15, 16], by using C-class functions. First part of the paper is related to
some fixed point theorems, the second part presents the uniqueness and existence for the solution of
the coupled fixed point problem and in the third part we discuss data dependence, well-posedness,
Ulam-Hyers stability and limit shadowing property of the coupled fixed point set.
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1. Introduction

In this presented work, we consider both of the above research directions (b-metric spaces and coupled
fixed point problem ([7, 6, 10, 13, 14, 12])), and many other results related to this kind of problem
( see [3, 8, 12, 15, 16]). More precisely, by using C-class functions, we will prove some fixed point
theorems for monotone rational contractions in ordered b-metric spaces. Also, some coupled fixed
point theorems for operators T : X × X → X satisfying some rational type assumptions on com-
parable elements. Finally, data dependence, well-posedness, Ulam- Hyers stability, limit shadowing
properties for the coupled fixed point problem are presented.

We shall recall some well known notions and definition of the b-metric spaces.
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Definition 1.1. Let X be a set and let s ≥ 1 be a given real number. A functional d : X×X → R+

is said to be a b-metric if the following axioms are satisfied:
(i) if x, y ∈ X, then d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, z) ≤ s[d(x, y) + d(y, z)] for all x, y, z ∈ X.
A pair (X, d) with the above properties is called a b-metric space.

Let (X,≤) be a partially ordered set and d a metric on X. Notice that we can endow the product
space X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, we write (x, y) ≤p (u, v)⇔ x ≤ u, y ≥ v.

Definition 1.2. Let (X,≤) be an partially ordered set and A, B be two nonempty subsets of X.
Then we will wrote A ≤s B if and only for all a ∈ A exists b ∈ B satisfying a ≤ b.

Definition 1.3. Let (X,≤) be a partially ordered set and let T : X ×X → X. We say that T has
the mixed monotone property if T (·, y) is monotone increasing for any y ∈ X and T (x, ·) is monotone
decreasing for any x ∈ X.

Lemma 1.4. Let (X, d) be a b-metric space. Then the sequence {xn} ∈ X is called:
(i) convergent if and only if there exists x ∈ X such that d(xn, x) → 0 as n → ∞. In this case

we write lim
n→∞

xn = x;

(ii) Cauchy if and only if d(xn, xm)→ 0 as n,m→∞.

Let (X,≤) be a partially ordered set and (x, y), (u, v) ∈ X × X. We have the partial order
(x, y) ≤p (u, v) if and only if x ≤ u, y ≥ v.

If (X, d) is a metric space and T : X ×X → X is an operator, then by definition, a coupled fixed
point for T is a pair (x∗, y∗) ∈ X ×X satisfying{

x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗)
(P1)

We will denote by CFix(T ) the coupled fixed point set for T .

Definition 1.5. ([2]) A mapping F : [0,∞)2 → R is called a C-class function if it is continuous
and satisfies the following axioms:

(i) F (s, t) ≤ s for all s, t ∈ [0,∞);
(ii) F (s, t) = s implies that either s = 0 or t = 0.
Mention that some C-class function F verifies F (0, 0) = 0. We denote by C the set of C-class

functions.

Remark 1.6. ([2]) Let Φu denote the class of the functions ϕ : [0,∞) → [0,∞) which satisfy the
following conditions:

(a) ϕ is continuous;
(b) ϕ(t) > 0, t > 0 and ϕ(0) ≥ 0.
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Definition 1.7. ([11]) A function ψ : [0,∞)→ [0,∞) is called an altering distance function if the
following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

We let Ψ denote the class of the altering distance functions.

Definition 1.8. A function ψ : R→ R is called an infinite altering distance function if the following
properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

We let Ψinf denote the class of the infinite altering distance functions.

Definition 1.9. A tripled (ψ, ϕ, F ) where ψ ∈ Ψ, ϕ ∈ Φu and F ∈ C is say to be monotone if for
any x, y ∈ [0,∞)

x 6 y =⇒ F (ψ(x), ϕ(x)) 6 F (ψ(y), ϕ(y)).

Example 1.10. Let F (s, t) = s− t, φ(x) =
√
x

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2, if x > 1
,

then (ψ, φ, F ) is monotone.

Example 1.11. Let F (s, t) = s− t, φ(x) = x2

ψ(x) =

{√
x if 0 ≤ x ≤ 1,

x2, if x > 1
,

then (ψ, φ, F ) is not monotone.

Lemma 1.12. ([1]) Let (X, d) be a b-metric space with s ≥ 1, and suppose that {xn} and {yn} are
b-convergent to x, y, respectively. Then we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each z ∈ X, we have,

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).
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2. Fixed point theorems via C-class functions

In this section, we will present fixed point theorems in ordered b-metric spaces, under a rational type
contraction condition and using C-class functions.

Theorem 2.1. Let (X,≤) be a partially ordered set and d : X×X → X be a complete b-metric with
constant s > 1. Let f : X → X be an operator which has closed graph (in particular, it is continuous)
with respect to d and increasing with respect to ” ≤ ”. Suppose that there exists ψ ∈ Ψinf , ϕ ∈ Φu

and F ∈ C such that (ψ, ϕ, F ) is monotone and α, β ≥ 0 with α + β > 0 satisfying

ψ(d(f(x), f(y))) ≤ F
(
ψ(

1

α + βs
[
α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y)]),

ϕ(
1

α + βs
[
α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y)])

)
, (2.1)

for x, y ∈ X with x ≤ y . If there exists x0 ∈ X such that x0 ≤ f(x0), there exists x∗ ∈ X such that
x∗ = f(x∗) and fn(x0)→ x∗, as n→∞.

Proof . We have two cases:
Case 1. If f(x0) = x0, then Fix(f) 6= ∅.
Case 2. Suppose that x0 < f(x0). Using that f is an increasing operator and by mathematical

induction, we have
x0 < f(x0) ≤ f 2(x0) ≤ ... ≤ fn(x0) ≤ fn+1(x0) ≤ ... . (2.2)

Using (2.2), we define the sequence (xn) ∈ X by

xn+1 = f(xn) = f(f(xn−1)) = f 2(xn−1) = ... = fn(x1) = fn+1(x0)

for each n ∈ N. If xn+1 = xn for some n ∈ N, then f has a fixed point. In particular xn is a fixed
point of f , that is Fix(f) 6= ∅.

Let xn+1 6= xn for n ≥ 0. Since xn ≤ xn+1 for any n ∈ N, from (2.1) we have

ψ(d(xn, xn+1)) = ψ(d(f(xn−1), f(xn)))

≤ F
(
ψ(

1

α + βs
[
α · d(xn, f(xn))[1 + d(xn−1, f(xn−1))]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)]),

ϕ(
1

α + βs
[
α · d(xn, f(xn))[1 + d(xn−1, f(xn−1))]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)])

)
= F

(
ψ(

1

α + βs
[
α · d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)]),

ϕ(
1

α + βs
[
α · d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)])

)
= F

(
ψ(

1

α + βs
[α · d(xn, xn+1) + β · d(xn−1, xn)]),

ϕ(
1

α + βs
[α · d(xn, xn+1) + β · d(xn−1, xn)]))

≤ ψ(
1

α + βs
[α · d(xn, xn+1) + β · d(xn−1, xn)]

)
. (2.3)
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Therefore

d(xn, xn+1) ≤
1

α + βs
[α · d(xn, xn+1) + β · d(xn−1, xn)], (2.4)

and (2.4) implies that

d(xn, xn+1) ≤
1

s
· d(xn−1, xn) ≤ d(xn−1, xn),

for any n ∈ N.
Suppose that

d(xn, xn+1)→ r ≥ 0,

then, with n→∞ in (2.3) we get

ψ(r) ≤ F (ψ(r), ϕ(r)) =⇒ ψ(r) = 0 or ϕ(r) = 0

that is,
lim
n→∞

d(xn, xn+1) = 0. (2.5)

Now, we will prove that xn = fn(x0) is a b-Cauchy sequence. Suppose the contrary, i.e., that {xm}
is not a b-Cauchy sequence. Then there exists ε > 0 for which we can find two subsequences {xmi

}
and {xni

} of {xn} such that ni is the smallest index for which

ni > mi > i and d(xmi
, xni

) ≥ ε. (2.6)

This means that
d(xmi

, xni−1) < ε. (2.7)

From (2.6) and using the triangular inequality, we get

ε ≤ d(xmi
, xni

) ≤ sd(xmi
, xmi+1) + sd(xmi+1, xni

).

By taking the upper limit as i→∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+1, xni

). (2.8)

Using the triangular inequality, we have

d(xmi
, xni

) ≤ sd(xmi
, xni−1) + sd(xni−1, xni

).

Taking the upper limit as i→∞ in the above inequality and using (2.7) we get

lim sup
i→∞

d(xmi
, xni

) ≤ εs. (2.9)

Now, from (2.1) we have

ψ(d(xmi+1
, xni

)) = ψ(d(fxmi
, fxni−1

))

≤ F
(
ψ(

1

α + βs
[
α · d(xni−1

, fxni−1
)[1 + d(xmi

, fxmi
)]

1 + d(xmi
, xni−1

)

+β · d(xmi
, xni−1

)]),

ϕ(
1

α + βs
[
α · d(xni−1

, fxni−1
)[1 + d(xmi

, fxmi
)]

1 + d(xmi
, xni−1

)

+β · d(xmi
, xni−1

)])
)
.
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Again, if i→∞ by (2.5), (2.7) and (2.8), we obtain

ψ(
β

α + βs
ε) ≤ ψ(

ε

s
)

≤ ψ(lim sup
i→∞

d(xmi+1
, xni

)) = lim sup
i→∞

ψ(d(xmi+1
, xni

))

≤ lim sup
i→∞

F
(
ψ(

β

α + βs
[
α · d(xni−1

, fxni−1
)[1 + d(xmi

, fxmi
)]

1 + d(xmi
, xni−1

)

+β · d(xmi
, xni−1

)]),

ϕ(
1

α + βs
[
α · d(xni−1

, fxni−1
)[1 + d(xmi

, fxmi
)]

1 + d(xmi
, xni−1

)

+β · d(xmi
, xni−1

)])
)

= F
(

lim sup
i→∞

ψ(
β

α + βs
[
α · d(xni−1

, fxni−1
)[1 + d(xmi

, fxmi
)]

1 + d(xmi
, xni−1

)

+β · d(xmi
, xni−1

)]),

lim
i→∞

inf ϕ(
1

α + βs
[
α · d(xni−1

, fxni−1
)[1 + d(xmi

, fxmi
)]

1 + d(xmi
, xni−1

)

+β · d(xmi
, xni−1

)])
)
,

which implies that

ψ(
β

α + βs
ε) ≤ F

(
ψ(

β

α + βs
ε), ϕ(

β

α + βs
ε))
)
≤ ψ(

β

α + βs
ε).

So, ψ( β
α+βs

ε) = 0 or ϕ( β
α+βs

ε) = 0, that is, ε which is a contradiction. Thus, {fn(x0)} is a b-Cauchy

sequence. Completeness of X yields that {fn(x0)} converges to a point x∗ ∈ X, that is, fn(x0)→ x∗

as n→∞.
Because f has closed graph, then x∗ ∈ Fix(f), which implies Fix(f) 6= ∅. Or f is continuous,

we have
f(x∗) = f( lim

n→∞
xn) = lim

n→∞
f(xn) = lim

n→∞
xn+1 = x∗.

This ends the proof. �

Next, we extended the previous result to a global version:

Theorem 2.2. Suppose that all the hypotheses of Theorem 2.1 are satisfied. Additionally, suppose
that for all x, y ∈ X there exists z ∈ X such that z ≤ x and z ≤ y. Then Fix(f) = {x∗}.

Proof . Let x∗, y∗ ∈ X be two fixed points of f . We have two cases:
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i) We suppose that x∗ and y∗ are comparable. That is x∗ ≤ y∗ (or y∗ ≤ x∗ is the same)

ψ(
β

α + βs
· d(x∗, y∗)) ≤ ψ(d(x∗, y∗))

= ψ(d(f(x∗), f(y∗)))

≤ F
(
ψ(

1

α + βs
[
α · d(y∗, f(y∗))[1 + d(x∗, f(x∗))]

1 + d(x∗, y∗)

+β · d(x∗, y∗)]),

ϕ(
1

α + βs
[
α · d(y∗, f(y∗))[1 + d(x∗, f(x∗))]

1 + d(x∗, y∗)

+β · d(x∗, y∗)])
)

= F
(
ψ(

β

α + βs
· d(x∗, y∗)), ϕ(

β

α + βs
· d(x∗, y∗))

)
≤ ψ(

β

α + βs
· d(x∗, y∗)),

so, ψ( β
α+βs

· d(x∗, y∗)) = 0 or ϕ( β
α+βs

· d(x∗, y∗)) = 0, that is, d(x∗, y∗) = 0. This implies that x∗ = y∗,

so Fix(f) = {x∗}.
ii) Now, we suppose that x∗ and y∗ are not comparable. From the hypotheses of theorem, we

have that there exists z ∈ X with z ≤ x∗ and z ≤ y∗.
Since z ≤ x∗, then fn(z) ≤ fn(x∗) = x∗ for any n ∈ N. Therefore,

ψ(d(fn(z), x∗)) = ψ(d(fn(z), fn(x∗)))

≤ F
(
ψ(

1

α + βs
[
α · d(fn−1(x∗), fn(x∗))[1 + d(fn−1(z), fn(z)]

1 + d(fn−1(z), fn−1(x∗))

+β · d(fn−1(z), fn−1(x∗))]),

ϕ(
1

α + βs
[
α · d(fn−1(x∗), fn(x∗))[1 + d(fn−1(z), fn(z)]

1 + d(fn−1(z), fn−1(x∗))

+β · d(fn−1(z), fn−1(x∗))])
)

= F
(
ψ(

β

α + βs
· d(fn−1(z), fn−1(x∗))), ϕ(

β

α + βs
· d(fn−1(z), fn−1(x∗)))

)
≤ ψ(

β

α + βs
· d(fn−1(z), fn−1(x∗))) ≤ ψ(

1

s
· d(fn−1(z), fn−1(x∗))),

which implies that

d(fn(z), x∗) ≤ 1

s
· d(fn−1(z), x∗) ≤ (

1

s
)2 · d(fn−2(z), x∗) ≤ ... ≤ (

1

s
)n · d(z, x∗).

Since (1
s
) < 1, (1

s
)n → 0,

lim
n→∞

d(fn(z), x∗) = 0.

This implies lim
n→∞

fn(z) = x∗. In the same manner, we get that lim
n→∞

fn(z) = y∗. Then x∗ = y∗. �

Next, we extended the previous result to a global version:
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Theorem 2.3. Let (X, d) be a complete b-metric space with constant s > 1, f : X → X be an
operator of X with the following condition:

Suppose that there exists ψ ∈ Ψinf , ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F ) is monotone and
α, β ≥ 0 with α + β > 0 satisfying

ψ(d(f(x), f(y))) ≤ F
(
ψ(

1

α + βs
[
α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y)]),

ϕ(
1

α + βs
[
α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y)])

)
,

(2.10)

for x, y ∈ X. Then f has a unique fixed point.

Proof . For an arbitrary point x0 ∈ X, we define the sequence (xn) by xn+1 = f(xn) using the same
method as in previous proof. We know that it is a Cauchy sequence.

Since (X, d) is a complete b-metric space, there exists x∗ ∈ X such that lim
n→∞

xn = x∗. Using

(2.10) with x = xn and y = x∗, we get

ψ(
d(x∗, f(x∗))− s · d(x∗, f(xn))

s
) ≤ ψ(d(f(xn), f(x∗)))

≤ F
(
ψ(

1

α + βs
[
α · d(x∗, f(x∗))[1 + d(xn, f(xn))]

1 + d(xn, x∗)
+ β · d(xn, x

∗)]),

ϕ(
1

α + βs
[
α · d(x∗, f(x∗))[1 + d(xn, f(xn))]

1 + d(xn, x∗)
+ β · d(xn, x

∗)])
)

= F
(
ψ(

1

α + βs
[
α · d(x∗, f(x∗))[1 + d(xn, xn+1)]

1 + d(xn, x∗)
+ β · d(xn, x

∗)]),

ϕ(
1

α + βs
[
α · d(x∗, f(x∗))[1 + d(xn, xn+1)]

1 + d(xn, x∗)
+ β · d(xn, x

∗)])
)
. (2.11)

Taking the limit as n→∞ in (2.11), and since F is monotone, we obtain

ψ(
d(x∗, f(x∗))

s
) ≤ F

(
ψ(

α

α + βs
[d(x∗, f(x∗))]), ϕ(

α

α + βs
[d(x∗, f(x∗))])

)
≤ F

(
ψ(
d(x∗, f(x∗))

s
), ϕ(

d(x∗, f(x∗))

s
)
)

≤ ψ(
d(x∗, f(x∗))

s
).

(2.12)

From (2.12), ψ(d(x
∗,f(x∗))
s

) = 0 or ϕ(d(x
∗,f(x∗))
s

) = 0, that is, d(x∗, f(x∗)) = 0. So f(x∗) = x∗, i.e.
Fix(f) 6= ∅.
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Now, we prove that x∗ is the unique fixed point of f . Let y∗ be another fixed point of f , i.e.
f(y∗) = y∗. Thus

ψ(
β

α + βs
· d(y∗, x∗)) ≤ ψ(d(y∗, x∗)) = ψ(d(f(y∗), f(x∗)))

≤F
(
ψ(

1

α + βs
[
α · d(x∗, f(x∗))[1 + d(y∗, f(y∗))]

1 + d(x∗, y∗)
+ β · d(y∗, x∗)]),

ϕ(
1

α + βs
[
α · d(x∗, f(x∗))[1 + d(y∗, f(y∗))]

1 + d(x∗, y∗)
+ β · d(y∗, x∗)])

)
= F

(
ψ(

β

α + βs
· d(y∗, x∗)), ϕ(

β

α + βs
· d(y∗, x∗))

)
≤ ψ(

β

α + βs
· d(y∗, x∗)).

Hence,

ψ(
β

α + βs
· d(y∗, x∗)) = 0 or ϕ(

β

α + βs
· d(y∗, x∗)) = 0.

So, d(y∗, x∗) = 0, that is y∗ = x∗.Therefore x∗ is the unique fixed point of f . �

3. C-class functions for coupled fixed point theorems

In this part of the paper our results obtained in Section 2 are applied to coupled fixed point problem,
in order to obtain new theorems.

Theorem 3.1. Let (X,≤) be a partially ordered set and d : X × X → R+ be a complete b-metric
on X with constant s > 1. Let T : X ×X → X be an operator with closed graph (or in particular,
it is continuous) which has the mixed monotone property on X × X . Assume that the following
conditions are satisfied:

i) Suppose that there exists ψ ∈ Ψinf , ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F ) is monotone and
α, β ≥ 0 with α + β > 0 such that

ψ(d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))) (3.1)

≤ F

(
ψ(

1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]]),

ϕ(
1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]])
)
,

for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v ;
ii) There exist x0, y0 ∈ X such that x0 ≤ T (x0, y0), y0 ≥ T (y0, x0), i.e. (x0, y0) ≤p (T (x0, y0), T (y0, x0)).
Then, there exists (x∗, y∗) ∈ X ×X a solution of the coupled fixed point problem (P1), such that

the sequences (xn), (yn) in X defined by{
xn+1 = T (xn, yn),

yn+1 = T (yn, xn), ∀n ∈ N,

have the property that xn → x∗, yn → y∗ as n→∞.
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Proof . Using ii) we have that z0 = (x0, y0) ≤p (T (x0, y0), T (y0, x0)) = (x1, y1) = z1. So, z0 ≤p z1.
If x2 = T (x1, y1) and y2 = T (y1, x1), it follow that x2 = T (x1, y1) = T 2(x0, y0) and y2 =

T (y1, x1) = T 2(y0, x0). From the mixed monotone property of T ,

x2 = T (x1, y1) ≥ T (x0, y0) = x1,

y2 = T (y1, x1) ≤ T (y0, x0) = y1.

Hence z1 = (x1, y1) ≤p (x2, y2) = z2. Using this method, we construct the sequences (xn), (yn) in X
by {

xn+1 = T (xn, yn)

yn+1 = T (yn, xn).

From mathematical induction, we have zn = (xn, yn) ≤p (xn+1, yn+1) = zn+1, which implies that (zn)
is a monotone increasing sequence in (Z,≤p), where Z = X ×X.

Now, we consider the metric d̃ : Z×Z → R+, defined by d̃((x, y), (u, v)) = d(x, u)+d(y, v). Then

d̃ is a b-metric on Z with the same constant s > 1. If (X, d) is complete, (Z, d̃) is complete, too.
Suppose that G : Z → Z is an operator defined by G(x, y) = (T (x, y), T (y, x)) for all (x, y) ∈ Z.
Consider the sequence zn+1 = G(zn), for n ≥ 0 where z0 = (x0, y0). Using the mixed monotone

property of T , then the operatorG is monotone increasing with respect to ” ≤p ” i.e. (x, y), (u, v) ∈ Z,
with (x, y) ≤p (u, v)⇒ G(x, y) ≤p G(u, v).

Because T has a closed graph (or respectively is continuous on X×X), then G has a closed graph
(or respectively is continuous on Z).

G is a contraction in (Z, d̃) on all comparable elements of Z. Let z = (x, y) ≤p (u, v) = w ∈ Z,
so

ψ(d̃(G(z), G(w))) = ψ(d̃((T (x, y), T (y, x)), (T (u, v), T (v, u)))

= ψ(d(T (x, y), T (u, v)) + d(T (y, x), T (v, u)))

≤ F
(
ψ(

1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]]),

ϕ(
1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]])
)

= F
(
ψ(

β

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z))]

1 + d̃(z, w)
+ β · d̃(z, w)]),

ϕ(
β

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z))]

1 + d̃(z, w)
+ β · d̃(z, w)])

)
.

The operator G : Z → Z has the following property:

1) G : Z → Z has a closed graph (or continuous) on Z;
2) G : Z → Z is increasing on Z;
3) There exists z0 = (x0, y0) ∈ Z such that z0 ≤p G(z0);
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4) there exists ψ ∈ Ψinf , ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F ) is monotone and α, β ≥ 0 with
α + β > 0 such that

ψ(d̃(G(z), G(w))) ≤ F
(
ψ(

1

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z))]

1 + d̃(z, w)
+ β · d̃(z, w)]),

ϕ(
1

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z))]

1 + d̃(z, w)
+ β · d̃(z, w)])

)
.

We can apply the conclusion of the Theorem 2.1 and we get that G has at least one fixed point.
Hence, there exists z∗ ∈ Z with G(z∗) = z∗. Let z∗ = (x∗, y∗) ∈ Z, so we have G(x∗, y∗) = (x∗, y∗).

This implies

(T (x∗, y∗), T (y∗, x∗)) = (x∗, y∗)⇒

{
x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗),

and the sequences (xn), (yn) in X defined by{
xn+1 = T (xn, yn)

yn+1 = T (yn, xn) for n ∈ N,

have the property that xn → x∗ and yn → y∗ as n→∞. �
The purpose of the next theorem is to obtain the uniqueness of the coupled fixed point.

Theorem 3.2. Suppose that all the hypotheses of Theorem 3.1 are satisfied. Moreover, suppose that
for all (x, y), (u, v) ∈ X×X there exists (z, w) ∈ X×X such that (z, w) ≤p (x, y) and (z, w) ≤p (u, v).
Then CFix(T ) = {(x∗, y∗)}.

Proof . As a result by property of the operator T in Theorem 3.1, we get (x∗, y∗) ∈ Z := X × X
such that {

x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗).

Suppose that (x, y) ∈ CFix(T ) and d̃ : Z×Z → R+ defined by d̃((x, y), (u, v)) = d(x, u)+d(y, v),
where Z = X ×X.

We have two cases:
i) Let (x∗, y∗) and (x, y) be comparable, that is (x∗, y∗) ≤p (x, y). This implies that
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ψ( β
α+βs

d̃((x∗, y∗), (x, y)))

≤ ψ(d̃((x∗, y∗), (x, y))) = ψ(d̃((T (x∗, y∗), T (y∗, x∗)), (T (x, y), T (y, x))))
= ψ(d(T (x∗, y∗), T (x, y)) + d(T (y∗, x∗), T (y, x)))

≤ F
(
ψ( 1

α+βs
[

α · [d(x, T (x, y)) + d(y, T (y, x))][1 + d(x∗, T (x∗, y∗))
+d(y∗, T (y∗, x∗))]

1+d(x∗,x)+d(y∗,y)

+β · [d(x∗, x) + d(y∗, y)]),

ϕ( 1
α+βs

[

α · [d(x, T (x, y)) + d(y, T (y, x))][1 + d(x∗, T (x∗, y∗))
+d(y∗, T (y∗, x∗))]

1+d(x∗,x)+d(y∗,y)

+β · [d(x∗, x) + d(y∗, y)])
)

= F
(
ψ( β

α+βs
[d(x∗, x) + d(y∗, y)]), ϕ( β

α+βs
[d(x∗, x) + d(y∗, y)])

)
= F

(
ψ( β

α+βs
d̃((x∗, y∗), (x, y))), ϕ( β

α+βs
d̃((x∗, y∗), (x, y)))

)
≤ ψ( β

α+βs
d̃((x∗, y∗), (x, y))).

Hence,

ψ(
β

α + βs
d̃((x∗, y∗), (x, y))) = 0 or ϕ(

β

α + βs
d̃((x∗, y∗), (x, y))) = 0,

which yields d̃((x∗, y∗), (x, y)) = 0. Therefore, (x∗, y∗) = (x, y).
ii) Let (x∗, y∗) and (x, y) be not comparable. So, there exists (z, w) ∈ Z, such that (z, w) ≤p

(x∗, y∗), implies Gn(z, w) ≤p Gn(x∗, y∗) because G is an increasing operator. Also, since G is an
increasing operator and (z, w) ≤p (x, y), we have Gn(z, w) ≤p Gn(x, y). From (3.1), we have

ψ(d̃(Gn(z, w), (x∗, y∗))) = ψ(d̃(Gn(z, w), Gn(x∗, y∗)))

= ψ(d̃(G(Gn−1(z, w)), G(Gn−1(x∗, y∗))))

≤ F
(
ψ(

1

α + βs
[
α · d̃(Gn−1(x∗, y∗), Gn(x∗, y∗))[1 + d̃(Gn−1(z, w), Gn(z, w))]

1 + d̃(Gn−1(z, w), Gn−1(x∗, y∗))

+ β · d̃(Gn−1(z, w), Gn−1(x∗, y∗))]),

ϕ(
1

α + βs
[
α · d̃(Gn−1(x∗, y∗), Gn(x∗, y∗))[1 + d̃(Gn−1(z, w), Gn(z, w))]

1 + d̃(Gn−1(z, w), Gn−1(x∗, y∗))

+ β · d̃(Gn−1(z, w), Gn−1(x∗, y∗))])
)

= F
(
ψ(

1

α + βs
β · d̃(Gn−1(z, w), Gn−1(x∗, y∗))),

ϕ(
1

α + βs
β · d̃(Gn−1(z, w), Gn−1(x∗, y∗)))

)
≤ ψ(

1

α + βs
β · d̃(Gn−1(z, w), Gn−1(x∗, y∗)))

≤ ψ(
1

s
· d̃(Gn−1(z, w), Gn−1(x∗, y∗))).
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Using mathematical induction and since ψ is non-decreasing, we obtain

d̃(Gn(z, w), Gn(x∗, y∗)) ≤ (
1

s
) · d̃(Gn−1(z, w), Gn−1(x∗, y∗)

≤ ... ≤ (
1

s
)n · d̃((z, w), (x∗, y∗))→ 0, as n→∞.

Therefore

lim
n→∞

Gn(z, w) = (x∗, y∗). (3.2)

Since (z, w) ≤p (x, y), Gn(z, w) ≤p Gn(x, y) = (x, y). Similarly, we get

d̃(Gn(z, w), (x, y)) ≤ (
1

s
)n · d̃((z, w), (x, y))→ 0 as n→∞

which implies that
lim
n→∞

Gn(z, w) = (x, y). (3.3)

Hence, from (3.2) and (3.3), we obtain that (x∗, y∗) = (x, y). �

Theorem 3.3. Let (X, d) be a complete b-metric with constant s > 1, T : X × X → X be an
operator with the following condition:

There exists ψ ∈ Ψinf , ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F ) is monotone and α, β ≥ 0 with
α + β > 0 such that

ψ(d(T (x, y), T (u, v)) + d(T (y, x), T (v, u)))

≤ F
(
ψ(

1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]]),

ϕ(
1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]])
)
,

(3.4)

for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v.
Then, there exists a unique solution (x∗, y∗) ∈ X×X of the coupled fixed point problem (P1), and

for any initial point (x0, y0) ∈ X × X the sequence zn+1 = (xn+1, yn+1) = (T (xn, yn), T (yn, xn)) ∈
X ×X converge to (x∗, y∗).

Proof . Let Z = X × X and the functional d̃ : Z × Z → R+, such that d̃((x, y), (u, v)) =
d(x, u) + d(y, v).

We know that d̃ is a b-metric on Z with the same constant s > 1. If (X, d) is a complete b-metric

space, then (Z, d̃) is a complete b-metric space too.
Consider the operator G : Z → Z defined by G(x, y) = (T (x, y), T (y, x)) for (x, y) ∈ Z.
Let z = (x, y) ∈ Z and w = (u, v) ∈ Z.
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We have

ψ(d̃(G(z), G(w))) = ψ(d̃((T (x, y), T (y, x)), (T (u, v), T (v, u)))) =

= ψ(d(T (x, y), T (u, v)) + d(T (y, x), T (v, u)))

≤ F
(
ψ(

1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]]),

ϕ(
1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]])
)

= F
(
ψ(

1

α + βs
[
α · d̃((u, v), (T (u, v), T (v, u)))[1 + d̃((x, y), (T (x, y), T (y, x)))]

1 + d̃((x, y), (u, v))

+ β · d̃((x, y), (u, v))]),

ϕ(
1

α + βs
[
α · d̃((u, v), (T (u, v), T (v, u)))[1 + d̃((x, y), (T (x, y), T (y, x)))]

1 + d̃((x, y), (u, v))

+ β · d̃((x, y), (u, v))]
)

= F
(
ψ(

1

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z)))]

1 + d̃(z, w)
+ β · d̃(z, w)]),

ϕ(
1

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z)))]

1 + d̃(z, w)
+ β · d̃(z, w)]

)
.

Therefore,

ψ(d̃(G(z), G(w))) ≤ F
(
ψ(

1

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z)))]

1 + d̃(z, w)
+ β · d̃(z, w)]),

ϕ(
1

α + βs
[
α · d̃(w,G(w))[1 + d̃(z,G(z)))]

1 + d̃(z, w)
+ β · d̃(z, w)]

)
.

From Theorem 2.3, we have that Fix(F ) = {(x∗, y∗)}, so the coupled fixed point theorem (P1) has
a unique solution (x∗, y∗) ∈ Z. �

Theorem 3.4. If we suppose that we have the hypotheses of Theorem 3.2, then for the unique coupled
fixed point (x∗, y∗) of T we have that x∗ = y∗ i.e. T (x∗, x∗) = x∗.

Proof . From Theorem 3.2, there exists a unique coupled fixed point of T , (x∗, y∗) ∈ X ×X.
We have two cases:
Case 1. If x∗ and y∗ are comparable, x∗ ≤ y∗.
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Then we have

ψ((T (x, y), T (u, v)) + d(T (y, x), T (v, u)))

≤ F
(
ψ(

1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]),

ϕ(
1

α + βs
[
α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]])
)
.

Let x = v = x∗ and y = u = y∗.

So, we obtain

ψ(2 · d(T (x∗, y∗), T (y∗, x∗))) ≤

F
(
ψ(

1

α + βs
· [α · [d(y∗, T (y∗, x∗) + d(x∗, T (x∗, y∗)][1 + d(x∗, T (x∗, y∗) + d(y∗, T (y∗, x∗)]

1 + 2d(x∗, y∗)
]

+ β · 2 · d(x∗, y∗),

ϕ(
1

α + βs
· [α · [d(y∗, T (y∗, x∗) + d(x∗, T (x∗, y∗)][1 + d(x∗, T (x∗, y∗) + d(y∗, T (y∗, x∗)]

1 + 2d(x∗, y∗)
]

+ β · 2 · d(x∗, y∗))
)

= F
(
ψ(

2β

α + βs
· d(x∗, y∗)), ϕ(

2β

α + βs
· d(x∗, y∗))

)
≤ ψ(

2β

α + βs
· d(x∗, y∗)).

This yields to d(x∗, y∗) ≤ β

α + βs
· d(x∗, y∗).

So, (
α + βs− β
α + βs

) · d(x∗, y∗) ≤ 0, follows that x∗ = y∗.

Case 2. If x∗ and y∗ are not comparable.
Hence, there exists z ∈ X such that z ≤ x∗ and z ≤ y∗, satisfying the following:

(z, y∗) ≤p (y∗, z) follows that z ≤ y∗, y∗ ≥ z that is true

(z, y∗) ≤p (x∗, y∗) follows that z ≤ x∗, y∗ ≥ y∗ that is true

(y∗, x∗) ≤p (y∗, z) follows that y∗ ≤ y∗, x∗ ≥ z that is true.

Let G : Z → Z be defined by G(x, y) = (T (x, y), T (y, x)) ∀(x, y) ∈ Z. Then,
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ψ(d(x∗, y∗)) = ψ(
1

2
· d̃((y∗, x∗), (x∗, y∗))) = ψ(

1

2
· d̃(G(Gn−1(y∗, x∗)), G(Gn−1(x∗, y∗)))) ≤

ψ(d̃(G(Gn−1(y∗, x∗)), G(Gn−1(x∗, y∗)))) ≤

F
(
ψ(

1

α + βs
[
α · d̃(Gn−1(x∗, y∗), G(Gn−1(x∗, y∗)))[1 + d̃(Gn−1(y∗, x∗), G(Gn−1(y∗, x∗)))]

1 + d̃(Gn−1(y∗, x∗), Gn−1(x∗, y∗))

+ β · d̃(Gn−1(y∗, x∗)), Gn−1(x∗, y∗))]),

ϕ(
1

α + βs
[
α · d̃(Gn−1(x∗, y∗), G(Gn−1(x∗, y∗)))[1 + d̃(Gn−1(y∗, x∗), G(Gn−1(y∗, x∗)))]

1 + d̃(Gn−1(y∗, x∗)), Gn−1(x∗, y∗))
]

+ β · d̃(Gn−1(y∗, x∗), Gn−1(x∗, y∗))])
)

≤ F
(
ψ(

β

α + βs
d̃(Gn−1(y∗, x∗)), Gn−1(x∗, y∗)), ϕ(

β

α + βs
d̃(Gn−1(y∗, x∗)), Gn−1(x∗, y∗))

)
≤ ψ(

β

α + βs
d̃(Gn−1(y∗, x∗)), Gn−1(x∗, y∗)))

≤ ψ(
1

s
d̃(Gn−1(y∗, x∗)), Gn−1(x∗, y∗))).

Using mathematical induction and since ψ is non-decreasing, we obtain

d(x∗, y∗) ≤ d̃(Gn(y∗, x∗), Gn(x∗, y∗)) ≤ (
1

s
) · d̃(Gn−1(y∗, x∗), Gn−1(x∗, y∗))

≤ ... ≤ (
1

s
)n · d̃((y∗, x∗), (x∗, y∗))→ 0, as n→∞.

Hence, we have that x∗ = T (x∗, x∗). �

4. Properties of the C-class functions for coupled fixed point problem

In this part of the paper we shall present data dependence, well-posedness, Ulam- Hyers stability,
limit shadowing of the C-class functions for the coupled fixed point problem.

In this first theorem we shall prove the data dependence propertie:
Theorem 4.1. Let (X, d) be a complete b-metric space with constant s > 1 and Ti : X × X →
X (i ∈ {1, 2}) be two operators which satisfy the following conditions:

i) There exists ψ ∈ Ψinf , ϕ ∈ Φu and F ∈ C such that (ψ, ϕ, F ) is monotone and α, β ≥ 0 with
α + β > 0 and max{α, β

α(1−α)} <
1
s
, such that

ψ(d(T1(x, y), T1(u, v)) + d(T1(y, x), T1(v, u)))

≤ F
(
ψ(

1

α + βs
[
α · [d(u, T1(u, v)) + d(v, T1(v, u))][1 + d(x, T1(x, y)) + d(y, T1(y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]]),

ϕ(
1

α + βs
[
α · [d(u, T1(u, v)) + d(v, T1(v, u))][1 + d(x, T1(x, y)) + d(y, T1(y, x))]

1 + d(x, u) + d(y, v)

+ β · [d(x, u) + d(y, v)]])
)
,
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for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v
ii) CFix(T2) 6= ∅;
iii) There exists η > 0 such that d(T1(x, y), T2(x, y)) ≤ η for all (x, y) ∈ X ×X.
In the above conditions, if (x∗, y∗) ∈ X×X is the unique coupled fixed point for T1, then d(x∗, x)+

d(y∗, y) ≤ 2ηα
β

(α+βs
α−βs), where (x, y) ∈ CFix(T2).

Proof . From Theorem 3.3, there exists (x∗, y∗) ∈ X×X such that

{
x∗ = T1(x

∗, y∗)

y∗ = T1(y
∗, x∗).

Let (x, y) ∈ CFix(T2), i.e.

{
x = T2(x, y)

y = T2(y, x).

Consider the b-metric d̃ : Z × Z → R+, defined by d̃((x, y), (u, v)) = d(x, u) + d(y, v) for
(x, y), (u, v) ∈ Z, where Z = X ×X.

Consider two operators Gi : Z → Z defined by Gi(x, y) = (Ti(x, y), Ti(y, x)), for (x, y) ∈ Z,
i = {1, 2}. We denote by z = (x∗, y∗) ∈ Z, which means G1(z) = z and w = (x, y) ∈ Z, which means
G2(w) = w. Then,

ψ(d̃(G1(z), G1(w)))

≤ F
(
ψ(

1

α + βs
[
α · d̃(w,G1(w))[1 + d̃(z,G1(z))]

1 + d̃(z, w)
+ β · d̃(z, w)]),

ϕ(
1

α + βs
[
α · d̃(w,G1(w))[1 + d̃(z,G1(z))]

1 + d̃(z, w)
+ β · d̃(z, w)])

)
= F

(
ψ(

1

α + βs
[
α · d̃(w,G1(w))

1 + d̃(z, w)
+ β · d̃(z, w)]),

ϕ(
1

α + βs
[
α · d̃(w,G1(w))

1 + d̃(z, w)
+ β · d̃(z, w)])

)
≤ ψ(

1

α + βs
[
α · d̃(w,G1(w))

1 + d̃(z, w)
+ β · d̃(z, w)])

≤ ψ(
1

α + βs
[α · d̃(w,G1(w)) + β · d̃(z, w)])

≤ ψ(
α

βs
· d̃(w,G1(w)) +

β

α
· d̃(z, w)).

So,

d̃(G1(z), G1(w)) ≤ α

βs
· d̃(w,G1(w)) +

β

α
· d̃(z, w)

≤ 2 · α
βs
· η +

β

α
· d̃(z, w).

But

d̃(z, w) = d̃(G1(z), G2(w)) ≤ s · [d̃(G1(z), G1(w)) + d̃(G1(w), G2(w))]

≤ s · [2α
βs
· η +

β

α
· d̃(z, w)] + 2s · η.
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Using this condition, we will obtain

(1− sβ

α
) · d̃(z, w) ≤ 2η(

α

β
+ s).

From max{α, β
α(1−α)} <

1
s
, we get that 1− sβ

α
> 0. Therefore,

d̃(z, w) ≤
2η(α

β
+ s)

1− sβ
α

=
2ηα

β
(
α + βs

α− βs
),

and by definition of the metric d̃, we have

d(x∗, x) + d(y∗, y) ≤ 2ηα

β
(
α + βs

α− βs
).

This finishes the proof. �

Definition 4.2. ([16]) Let (X, d) be a b-metric space with constant s ≥ 1 and T : X ×X → X be
an operator. By definition , the coupled fixed point problem (P1) is said to be well-posed if:

(i) CFix(T ) = {(x∗, y∗)};
(ii) For any sequence (xn, yn)n∈N ∈ X×X for which d(xn, T (xn, yn))→ 0 and d(yn, T (yn, xn))→ 0

as n→∞, we have that (xn)n∈N → x∗ and (yn)n∈N → y∗ as n→∞.

Theorem 4.3. Assume that all the hypotheses of Theorem 3.3 take place. Then the coupled fixed
problem (P1) is well-posed.

Proof . We denote by Z = X ×X. By Theorem 3.3, we have CFix(T ) = {(x∗, y∗)}.
Let (xn, yn)n∈N be a sequence on Z. We know that d(xn, T (xn, yn))→ 0 and d(yn, T (yn, xn))→ 0

as n→∞.
Consider the b-metric d̃ : Z × Z → R+, such that d̃((x, y), (u, v)) = d(x, u) + d(y, v) for all

(x, y), (u, v) ∈ Z.
Let G : Z → Z be an operator defined by G(x, y) = (T (x, y), T (y, x)) for all (x, y) ∈ Z. We know

that G(x∗, y∗) = (x∗, y∗), so we have

d̃((xn, yn), (x∗, y∗)) = d(xn, x
∗) + d(yn, y

∗)

≤ s · d(xn, T (xn, yn)) + s · d(T (xn, yn), T (x∗, y∗)) + s · d(yn, T (yn, xn))

+ s · d(T (yn, xn), T (y∗, x∗))

= s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))] + s · [d(T (xn, yn), T (x∗, y∗))

+ d(T (yn, xn), T (y∗, x∗))].

Thus by taking n→∞, we get

lim
n→∞

d̃((xn, yn), (x∗, y∗)) ≤ lim
n→∞

s · [d(T (xn, yn), T (x∗, y∗)) + d(T (yn, xn), T (y∗, x∗))].
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Hence,

lim
n→∞

ψ(
1

s
d̃((xn, yn), (x∗, y∗)))

≤ lim
n→∞

ψ(d(T (xn, yn), T (x∗, y∗)) + d(T (yn, xn), T (y∗, x∗)))

≤ lim
n→∞

F
(

ψ(
1

α + βs
[
α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

1 + d(xn, x∗) + d(yn, y∗)

+ β · [d(xn, x
∗) + d(yn, y

∗)]),

ϕ(
1

α + βs
[
α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

1 + d(xn, x∗) + d(yn, y∗)

+ β · [d(xn, x
∗) + d(yn, y

∗)])
)

= lim
n→∞

F
(
ψ(

β

α + βs
[d(xn, x

∗) + d(yn, y
∗)]), ϕ(

β

α + βs
[d(xn, x

∗) + d(yn, y
∗)])
)

= lim
n→∞

F
(
ψ(

β

α + βs
[d̃((xn, yn), (x∗, y∗))]), ϕ(

β

α + βs
[d̃((xn, yn), (x∗, y∗))])

)
≤ lim

n→∞
F
(
ψ(

1

s
[d̃((xn, yn), (x∗, y∗))]), ϕ(

1

s
[d̃((xn, yn), (x∗, y∗))])

)
≤ lim

n→∞
ψ(

1

s
[d̃((xn, yn), (x∗, y∗))]).

Which implies that

lim
n→∞

ψ(
1

s
[d̃((xn, yn), (x∗, y∗))]) = 0 or lim

n→∞
ϕ(

1

s
[d̃((xn, yn), (x∗, y∗))]) = 0.

Therefore, (xn, yn)→ (x∗, y∗) as n→∞. �

Definition 4.4. ([16]) Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X → X be an

operator. By definition, the coupled fixed point problem (P1) is said to be Ulam-Hyers stable if there
exists an operator φ : R+ → R+ increasing, continuous in 0 with φ(0) = 0, such that for each ε > 0
and for each ε-solution (x, y) ∈ X×X of the inequality d(x, T (x, y))+d(y, T (y, x)) ≤ ε, there exists a
solution (x∗, y∗) ∈ X ×X of the coupled fixed point problem (P1) such that d(x, x∗) + d(y, y∗) ≤ φ(ε).

Theorem 4.5. Assume that all the hypotheses of Theorem 3.3 take place and α > 0. Then the
coupled fixed point problem (P1) is Ulam-Hyers stable.

Proof . Let Z = X ×X. By Theorem 3.3, we have CFix(T ) = {(x∗, y∗)}. Let any ε > 0 and let
(x, y) ∈ Z such that d(x, T (x, y)) + d(y, T (y, x)) ≤ ε.

Consider the b-metric d̃ : Z × Z → R+, such that d̃((x, y), (u, v)) = d(x, u) + d(y, v) for all
(x, y), (u, v) ∈ Z and G : Z → Z an operator defined by G(x, y) = (T (x, y), T (y, x)) for all (x, y) ∈ Z.
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We have

d̃((x, y), (x∗, y∗)) = d(x, x∗) + d(y, y∗) = d(x, T (x∗, y∗)) + d(y, T (y∗, x∗))

≤ s · [d(x, T (x, y)) + d(T (x, y), T (x∗, y∗))] + s · [d(y, T (y, x)) + d(T (y, x), T (y∗, x∗))]

≤ s · [d(x, T (x, y)) + d(y, T (y, x))] + s[d(T (x, y), T (x∗, y∗)) + d(T (y, x), T (y∗, x∗))]

≤ s · ε+ s[d(T (x, y), T (x∗, y∗)) + d(T (y, x), T (y∗, x∗))].

Hence,

d̃((x, y), (x∗, y∗))− ε · s
s

≤ d(T (x, y), T (x∗, y∗)) + d(T (y, x), T (y∗, x∗))

So,

ψ(
d̃((x, y), (x∗, y∗))− ε · s

s
)

≤ ψ(d(T (x, y), T (x∗, y∗)) + d(T (y, x), T (y∗, x∗)))

≤ F
(
ψ(

1

α + βs
[
α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, x∗) + d(y, y∗)

+ β · [d(x, x∗) + d(y, y∗)]),

ϕ(
1

α + βs
[
α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, x∗) + d(y, y∗)

+ β · [d(x, x∗) + d(y, y∗)])
)

= F
(
ψ(

β

α + βs
[d(x, x∗) + d(y, y∗)]), ϕ(

β

α + βs
[d(x, x∗) + d(y, y∗)])

)
≤ ψ(

β

α + βs
[d(x, x∗) + d(y, y∗)]) = ψ(

β

α + βs
[d̃((x, y), (x∗, y∗))]).

We obtain

d̃((x, y), (x∗, y∗))− ε · s
s

≤ β

α + βs
[d̃((x, y), (x∗, y∗))]

d̃((x, y), (x∗, y∗)) ≤ s(α + βs)

α
· ε.

Therefore, the coupled fixed point problem (P1) is Ulam-Hyers stable, with φ : R+ → R+, φ(t) = ct

where c = s(α+βs)
α

> 0. �

Definition 4.6. ([16]) Let (X, d) be a b-metric space with constant s ≥ 1 and T : X × X →
X be an operator. By definition, the coupled fixed point problem (P1) has the limit shadowing
property, if for any sequence (xn, yn)n∈N ∈ X × X for which d(xn+1, T (xn, yn)) → 0 and respec-
tively d(yn+1, T (yn, xn)) → 0 as n → ∞, there exists a sequence (T n(x, y), T n(y, x))n∈N such that
d(xn, T

n(x, y))→ 0 and d(yn, T
n(y, x))→ 0 as n→∞.

Theorem 4.7. Assume that the hypotheses from Theorem 3.3 take place. Then the coupled fixed
point problem (P1) for T has the limit shadowing property.
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Proof . By Theorem 3.3, we have CFix(T ) = {(x∗, y∗)} and for any initial point (x, y) ∈ X × X
the sequence zn+1 = (T n(x, y), T n(y, x)) ∈ X ×X converge to (x∗, y∗) as n→∞.

Let (xn, yn)n∈N be a sequence on Z = X×X such that d(xn+1, T (xn, yn))→ 0 and d(yn+1, T (yn, xn))→
0 as n→∞.

We consider the b-metric d̃ : Z × Z → R+, defined by d̃((x, y), (u, v)) = d(x, u) + d(y, v) for all
(x, y), (u, v) ∈ Z.

Let G : Z → Z be an operator defined by G(u, v) = (T (u, v), T (v, u)) for all (u, v) ∈ Z. We know
that G(x∗, y∗) = (x∗, y∗). Then for every (x, y) ∈ Z we have:

d̃((xn+1, yn+1), (T
n+1(x, y), T n+1(y, x)))

≤ s · [d̃((xn+1, yn+1), (x
∗, y∗)) + d̃((x∗, y∗), (T n+1(x, y), T n+1(y, x)))]),

and by letting n→∞, we have

lim
n→∞

d̃((xn+1, yn+1), (T
n+1(x, y), T n+1(y, x)))

≤ lim
n→∞

s · [d̃((xn+1, yn+1), (x
∗, y∗)). (4.1)

But

lim
n→∞

d̃((xn+1, yn+1), (x
∗, y∗)) ≤ lim

n→∞
s · [d̃((xn+1, yn+1), (T (xn, yn), T (yn, xn)))+

d̃(G(xn, yn), G(x∗, y∗))]

= lim
n→∞

s · [d̃(G(xn, yn), G(x∗, y∗))].

So,

lim
n→∞

ψ(
1

s
d̃((xn+1, yn+1), (x

∗, y∗)))

≤ lim
n→∞

ψ(d̃(G(xn, yn), G(x∗, y∗)))

≤ lim
n→∞

F
(
ψ(

1

α + βs
[
α · d̃((x∗, y∗), G(x∗, y∗))[1 + d̃((xn, yn), G(xn, yn))]

1 + d̃((xn, yn), (x∗, y∗))

+ β · d̃((xn, yn), (x∗, y∗))]),

ϕ(
1

α + βs
[
α · d̃((x∗, y∗), G(x∗, y∗))[1 + d̃((xn, yn), G(xn, yn))]

1 + d̃((xn, yn), (x∗, y∗))

+ β · d̃((xn, yn), (x∗, y∗))])
)

= lim
n→∞

F
(
ψ(

β

α + βs
d̃((xn, yn), (x∗, y∗))), ϕ(

β

α + βs
d̃((xn, yn), (x∗, y∗)))

)
≤ lim

n→∞
ψ(

β

α + βs
d̃((xn, yn), (x∗, y∗))).

This implies that

lim
n→∞

d̃((xn+1, yn+1), (x
∗, y∗)) ≤ lim

n→∞
s
( β

α + βs

)
d̃((xn, yn), (x∗, y∗)).
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Using mathematical induction, we obtain

lim
n→∞

d̃((xn+1, yn+1), (x
∗, y∗)) ≤ lim

n→∞
s
( β

α + βs

)
d̃((xn, yn), (x∗, y∗))

≤ lim
n→∞

s2
( β

α + βs

)2
d̃((xn−1, yn−1), (x

∗, y∗))

...

≤ lim
n→∞

sn+1
( β

α + βs

)n+1

d̃((x0, y0), (x
∗, y∗))

= 0. (4.2)

From (4.1) and (4.2), we have d̃((xn+1, yn+1), (T
n+1(x, y), T n+1(y, x)))→ 0 as n→∞, so there exists

a sequence (T n(x, y), T n(y, x)) ∈ Z with

d̃((xn, yn), (T n(x, y), T n(y, x))) = d(xn, T
n(x, y)) + d(yn, T

n(y, x))→ 0 as n→∞.

�
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