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Abstract

In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the
fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the
existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last,
based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak
Pareto Nash equilibrium strategies of the fuzzy bi-matrix games.
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1. Introduction

In 1951, John Nash [12] presented non-cooperative games which each player has a well-defined
utility function on the set of the player,s strategy. In this article we focus on a class of non-cooperative
games namely bi-matrix games. However in the complex problems such as economics, social and
political sciences due to complexity and uncertainty, each player can not give the exact payoffs. So
the payoff function is not always represented by a crisp number. In this paper we use the fuzzy set
theory for express the uncertainty which it is proposed by Zadeh[22], in 1987. So, the new concept
of equilibrium strategy is defined and investigated the properties of the equilibrium strategy.

In 1978, Butnariu[3] proposed non-cooperative fuzzy games which the players have fuzzy prefer-
ences. Many of mathematicians including Zimmermann[23] in 1985 and Yazenin[19] in 1987 applied
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the fuzzy theory to optimization problems. In 1989, two-person zero-sum games with fuzzy payoffs
was modeled by Compos[4] using fuzzy programming and transformation into the linear program-
ming problems. In 2000, Meada[11] constructed kind of concepts of minimax equilibrium strategies.
In 2001, Nishizaki and Sakawa[14] investigated multiobjective games and they modeled a fractional
programming problem and computed the fractional programming by a relaxed method. In 2003,
Takashi[18] presented kinds of equilibrium strategies of fuzzy matrix games based on symmetric
triangular fuzzy variable. In 2005, Bector and Chandra[2] provided fuzzy non-cooperative games
in uncertainty and modeled by fuzzy programming problems. In 2011, Cunlin and Zhang Qiang[5]
investigated two-person zero-sum games in the symmetric triangular fuzzy environment. Afterthen
Cunlin[6] charactrized the equilibrium strategy of bi-matrix games with L-R fuzzy payoffs. In 2014,
Bapi Dutta[7] investigated the matrix games in trapezoidal fuzzy environment.

In this paper we define the L-R fuzzy trapezoidal variables and generalize the method of Cunlin[5]
and Bapi Dutta[7] for Nash equilibrium solution concepts. The paper is organized as follows: In
section 2, the basic definitions and notations of L-R fuzzy variables are given. In section 3, we
introduce the notation of bi-matrix games with L-R fuzzy payoffs and investigate existence conditions
of equilibrium strategy for the fuzzy games. In section 4, crisp parametric bi-matrix games are
characterized and several type of equilibrium strategy of fuzzy bi-matrix games are investigated.

2. Preliminaries

In this section, we suggest some basic definitions and concepts of L-R fuzzy variables and introduce
some notations of fuzzy sets, such as α-level set for L-R fuzzy variable and pseudoinverse of the
monoton function.

Definition 2.1. A L-R fuzzy variable ã is a fuzzy set on the real line R whose membership function
µã(x) : R −→ [0, 1] as following

µã(x) =


L(a−x

h
) , x ≤ a, a− h > 0,

1 , a ≤ x ≤ c,

R(x−c
k
) , x ≥ c, c+ k > 0,

where L,R : R −→ [0, 1] are not constant and left continuose function and they satisfy the fol-
lowing:

(i) L(x) = L(−x), R(x) = R(−x),

(ii) L(0) = R(0) = 1, L(1) = R(1) = 0,

(iii) L,R are nonincreasing on [0,∞].

The L-R fuzzy variable is denoted by ã = (a, c, h, k)L−R where the interval [a, c] is called the center
of ã and h, k are said left and right extension of ã, respectively.

We can choose different functions for L(x) and R(x). For instance, consider the following examples.
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Example 2.2. Let L(x) = max{0, 1− x2}, R(x) = 1
1+x2 and a = 5, c = 9, h = 2 and k = 3. Then

(5, 9, 2, 3)L−R denotes an L-R fuzzy number with membership function (see Fig.1)

µã(x) =


−x2+10x−21

4
, 3 ≤ x < 5,

1 , 5 ≤ x ≤ 9,
9

x2−18x+90
, 9 ≤ x ≤ 12.

Figure 1: The membership function of (5, 9, 2, 3)L−R

Example 2.3. Let L(x) = 1
1+x

, R(x) = e−x and a = 2, c = 4, h = 1 and k = 3. Then (2, 4, 1, 3)L−R

denotes an L-R fuzzy number with membership function (see Fig.2)

µã(x) =


1

3−x
, x ≤ 2,

1 , 2 < x ≤ 4,

e
4−x
3 , x > 4.

Figure 2: The membership function of (2, 4, 1, 3)L−R

. In the rest of the paper, for simplicity, the L-R fuzzy variables set is denoted by F. The α-level
of fuzzy variables have an important role in parametric ordering of fuzzy numbers. Let ã ∈ F and
α ∈ [0, 1], ãα ≜ {x|µã(x) ≥ α, x ∈ R} is called α-level of ã and denoted by ãα = [aLα, a

U
α ] where

aUα ≜ sup ãα and aLα ≜ inf ãα. If α = 0, ã0 ≜ {x|µã(x) > 0, x ∈ R} is called support of ã.
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Definition 2.4. [6] Let f : [a, b] −→ [c, d] be a monotone function, where [a, b] and [c, d] are closed
subintervals of extended real line [−∞,+∞]. The pseudoinverse f (−1) : [c, d] −→ [a, b] of f is defined
by

f (−1)(y) =


sup{x ∈ [a, b]|f(x) < y} , f(a) < f(b),

sup{x ∈ [a, b]|f(x) ≥ y} , f(a) > f(b),

a , f(a) = f(b).

Remark 2.5. Let L(t) and R(t) be functions which are defined in Definition(2.1). The domains of
L(−1)(t) and R(−1)(t) are [0, 1].

Let F(X) and F(Y ) be two fuzzy variable set defined on X and Y where X, Y are crisp sets.
The function f : X −→ Y induces another function f̃ : F(X) −→ F(Y ) defined on each set ũ on
X by

f̃(ũ)(y) = sup
x∈X,f(x)=y

u(x).

Also, let Xi and Y be crisp sets for i = 1, 2, ..., n, F(
∏n

i=1Xi) and F(Y ) are two fuzzy variable

sets defined on
∏n

i=1Xi and Y . Then the function f : X −→ Y induces another function f̃ :
F(
∏n

i=1Xi) −→ F(Y ) defined on each fuzzy set on
∏n

i=1Xi by

f̃(ũ1, ũ2, ..., ũn)(y) = sup
f(x1,x2,...,xn)=y

min
i

ui(xi).

Using the pseudoinverse of L and R we have the following lemma.

Lemma 2.6. Let ã = (a, c, h, k)L−R be a L-R fuzzy variable. Then for all
α ∈ (0, 1], the α-level of ã is, ãα = [a− hL(−1)(α), c+ kR(−1)(α)].

Let ã = (a, c, h, k)L−R and b̃ = (b, d, z, w)L−R are two L-R fuzzy variables and λ ∈ R+ then

• Addition: ã+ b̃ = (a+ b, c+ d, h+ z, k + w)L−R,

• Scalar Multiplication : λã = (λa, λc, λh, λk)L−R.

We recall that x, y are defined component wise i.e if x = (ξ1, ξ2, ..., ξn) and y = (η1, η2, ..., ηn) be
vectors in Rn then

(i) x ≧ y if and only if ξi ≥ ηi for all i = 1, 2, ..., n,

(ii) x ≥ y if and only if x ≧ y and x ̸= y.

3. Bi-matrix Games with L-R Fuzzy Payoffs

In this section, we shall consider bi-matrix games with L-R fuzzy payoffs. Let P = {1, 2, ..., p}
and Q = {1, 2, ..., q} be the sets of pure strategies of player I and player J , respectively. The mixed
strategies of players I and player J are probability distributions on the set of pure strategies. The
set of mixed strategies for player I is represented by

SI = {(ξ1, ξ2, ..., ξp) ∈ Rp|ξi ≥ 0, i = 1, 2, ..., p,

p∑
i=1

ξi = 1},
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where Rp is a set of p-dimensional real numbers space. Similarly, the set of mixed strategies for
player J is represented by

SJ = {(η1, η2, ..., ηq) ∈ Rq|ηj ≥ 0, i = 1, 2, ..., q,

q∑
j=1

ηj = 1},

where Rq is a set of q-dimensional real numbers space.
In this section, the payoffs of the pair (x, y) ∈ SI × SJ are modeled by L-R fuzzy terapeziodal

variables. Let player I chooses a mixed strategy x ∈ SI and player J chooses mixed strategy
y ∈ SJ . The L-R fuzzy variable ãij = (aij, cij, hij, kij) indicates the payoffs that player I receives
and the L-R fuzzy variable b̃ij = (bij, dij, zij, wij) indicates the payoffs that player J receives. The
fuzzy bi-matrix game is denoted by G̃ ≡ (I, J, SI , SJ , Ã, B̃) where ãij representes the income of
player I and b̃ij representes the income of player J . Also

E(x, y) = xT Ãy =

p∑
i=1

q∑
j=1

ξiãijηj, E(x, y) = xT B̃y =

p∑
i=1

q∑
j=1

ξib̃ijηj,

are called the expected value of players and payoff matrix of player I and J is given by

Ã =

ã11 · · · ã1q
...

. . .
...

ãp1 · · · ãpq

 , B̃ =

b̃11 · · · b̃1q
...

. . .
...

b̃p1 · · · b̃pq

 ,

respectively.

Definition 3.1. [5] Let ã and b̃ be two fuzzy numbers.Then

(i) ã ≿ b̃ if and only if (aLα, a
U
α ) ≧ (bLα, b

U
α ), for all α ∈ [0, 1],

(ii) ã ≿ b̃ if and only if (aLα, a
U
α ) ≥ (bLα, b

U
α ), for all α ∈ [0, 1],

(iii) ã ≻ b̃ if and only if (aLα, a
U
α ) > (bLα, b

U
α ), for all α ∈ [0, 1].

The following theorem characterize the orders for L-R fuzzy terapeziodal variables.

Lemma 3.2. Let ã = (a, c, h, k)L−R, b̃ = (b, d, z, w)L−R be two L-R fuzzy variables. Then

(i) ã ≾ b̃ if and only if max{z − h, 0} ≤ b− a and max{k − w, 0} ≤ d− c,

(ii) ã ≺ b̃ if and only if max{z − h, 0} < b− a and max{k − w, 0} < d− c.

Proof . By using Definition (3.1) ã ≾ b̃ if and only if for all α ∈ [0, 1], (aLα, a
U
α ) ≦ (bLα, b

U
α ) or

equivalently aLα ⩽ bLα and aUα ⩽ bUα . But by Lemma (2.6) aLα ⩽ bLα if and only if

a− hL(−1)(α) ⩽ b− zL(−1)(α) for all α ∈ [0, 1],

which are equivalent to

(z − h)L(−1)(α) ⩽ b− a for all α ∈ [0, 1],

and equivalently max{z − h, 0} ≤ b − a. Also, by using Lemma(2.6) it can be conclude aUα ⩽ bUα if
and only if max{k −w, 0} ≤ d− c and the proof of part (i) is complete. Part (ii) can be proved,
similarly. □
Definition 3.3. [7] A pair (x∗, y∗) ∈ SI × SJ is called a Nash equilibrium strategy for a game G̃ if

(i) xT Ãy∗ ≾ x∗T Ãy∗, ∀x ∈ SI ,

(ii) x∗T B̃y ≾ x∗T B̃y∗, ∀y ∈ SJ .
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. Let Ã = (ãij)p×q be one of fuzzy payoff matrix of bi-matrix game G̃ , then for x ∈ SI , y ∈ SJ

and α ∈ [0, 1] , xT Ãy is a L-R fuzzy variable and (xT Ãy)α = [xTAL
αy, x

TAU
αy], for more details see

[6].

Theorem 3.4. Let G̃ = ({I, J}, SI , SJ , Ã, B̃) be a bi-matrix game with fuzzy payoffs, the pair
(x∗, y∗) ∈ SI × SJ is the expected Nash equilibrium strategy of G̃ if and only if for all x ∈ SI , y ∈ SJ

the following inequalities hold

(i) xTAy∗ ≤ x∗TAy∗, xTCy∗ ≤ x∗TCy∗,

(ii) x∗TBy ≤ x∗TBy∗, x∗TDy ≤ x∗TDy∗,

(iii) xT (A−H)y∗ ≤ x∗T (A−H)y∗, x∗T (B − Z)y ≤ x∗T (B − Z)y∗,

(iv) xT (C +K)y∗ ≤ x∗T (C +K)y∗, x∗T (D +W )y ≤ x∗T (D +W )y∗.

Proof . Let G̃ be a bi-matrix game with the L-R fuzzy payoff matrix Ã = (A,C,H,K) and
B̃ = (B,D,Z,W ) for player I and J , respectively. Let (x∗, y∗) ∈ SI × SJ be the Nash equilibrium
strategy of the game G̃. Therefore by Definition (3.3) we have

(i) xT Ãy∗ ≾ x∗T Ãy∗, ∀x ∈ SI ,

(ii) x∗T B̃y ≾ x∗T B̃y∗, ∀y ∈ SJ .

Since

xT Ãy∗ = (xTAy∗, xTCy∗, xTHy∗, xTKy∗),

x∗T Ãy∗ = (x∗TAy∗, x∗TCy∗, x∗THy∗, x∗TKy∗).

So, by Lemma (3.2), xT Ãy∗ ≾ x∗T Ãy∗ if and only if

max{x∗THy∗ − xTHy∗, 0} ≤ x∗TAy∗ − xTAy∗,

max{xTKy∗ − x∗TKy∗, 0} ≤ x∗TCy∗ − xTCy∗.

Consequently xT Ãy∗ ≾ x∗T Ãy∗ if and only if

xT (A−H)y∗ ≤x∗T (A−H)y∗, xTAy∗ ≤ x∗TAy∗, (3.1)

xT (C +K)y∗ ≤x∗T (C +K)y∗, xTCy∗ ≤ x∗TCy∗. (3.2)

Also, since

x∗T B̃y = (x∗TBy, x∗TDy, x∗TZy, x∗TWy),

x∗T B̃y∗ = (x∗TBy∗, x∗TDy∗, x∗TZy∗, x∗TWy∗),

similary by Lemma (3.2), x∗T B̃y ≾ x∗T B̃y∗ if and only if

x∗T (B − Z)y ≤ x∗T (B − Z)y∗, x∗TBy ≤x∗TBy∗, (3.3)

x∗T (D +W )y ≤ x∗T (D +W )y∗, x∗TDy ≤x∗TDy∗. (3.4)

Hence, we have the required inequalities (i)-(iv) of the theorem, by rearranging the inequalities. □
In the rest of this paper, we set

A = (aij)p×q, C = (cij)p×q, H = (hij)p×q, K = (kij)p×q, A
L
0 = A−H,AU

0 = C +K,

and
B = (bij)p×q, D = (dij)p×q, Z = (zij)p×q,W = (wij)p×q, B

L
0 = B − Z,BU

0 = D +W.

Using these notations Theorem(3.4) can be rewrite as follows.
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Corollary 3.5. Let G̃ be a bi-matrix game with L-R fuzzy payoffs, the pair (x∗, y∗) is the Nash
equilibrium strategy of G̃ if and only if the followings hold

xT (A,C,AL
0 , A

U
0 )y

∗ ≤ x∗T (A,C,AL
0 , A

U
0 )y

∗,

x∗T (B,D,BL
0 , B

U
0 )y ≤ x∗T (B,D,BL

0 , B
U
0 )y

∗.

Obviously, the equilibrium strategy of fuzzy bi-matrix games G̃ is equilibrum strategy of four crisp
bi-matrix games. It is difficult that these conditions satisfy simultaneously. However, it holdes in
the following conditions.

Definition 3.6. A bi-matrix fuzzy game G̃ = ({I, J}, SI , SJ , Ã, B̃) is called to be a proportional bi-
matrix fuzzy game if there exists γn ∈ (0, 1];n = 1, ..., 4 such that hij = γ1aij, kij = γ2cij, zij = γ3bij
and wij = γ4dij for all i = 1, 2, ..., p and j = 1, 2, ..., q.

Theorem 3.7. A pair of mixed strategies (x∗, y∗) ∈ SI × SJ is a Nash equilibrium strategy of the
proportional fuzzy matrix game G̃ = ({I, J}, SI , SJ , Ã, B̃) if and only if (x∗, y∗) ∈ SI×SJ is the Nash
equilibrium of crisp bi-matrix games Ga = ({I, J}, SI , SJ , A, C), Gb = ({I, J}, SI , SJ , B,D).

Proof . Let G̃ = ({I, J}, SI , SJ , Ã, B̃) be a proportional fuzzy bi-matrix game. Therefore by
Definition (3.6) Ã = (A,C, γ1A, γ2C) is the payoff matrix of the player I and Ã = (B,D, γ3B, γ4D)
is the payoff matrix of the player J . By Theorem (3.4), (x∗, y∗) ∈ SI × SJ is a Nash equilibrium of
G̃ if and only if

(i) xTAy∗ ≤ x∗TAy∗, xTCy∗ ≤ x∗TCy∗,

(ii) x∗TBy ≤ x∗TBy∗, x∗TDy ≤ x∗TDy∗,

because the other inequalities came to these one. Equivalently, (x∗, y∗) ∈ SI×SJ is a Nash equilibrium
of crisp bi-matrix games Ga = ({I, J}, SI , SJ , A, C) ,
Gb = ({I, J}, SI , SJ , B,D). The proof is complete. □

Definition 3.8. The bi-matrix fuzzy game G̃ is called constant fuzzy game if and only if there exist
h, k, z, w > 0 such that hij = h, kij = k, zij = z, wij = w for all i = 1, 2, ..., p and j = 1, 2, ..., q.

Lemma 3.9. Let G̃ = ({I, J}, SI , SJ , Ã, B̃) be a constant fuzzy game. A pair of mixed strategies
(x∗, y∗) ∈ SI × SJ is the Nash equilibrium strategy for G̃ if and only if (x∗, y∗) is a Nash equilibrium
of bi-matrix games Γa, Γb .

Proof . By Definition(3.8) H,K,Z and W are constant matrices which all the entries are h, k, z and
w , respectively. Hence xTHy = h, xTKy = k,XTZy = z and xTWy = w for all x ∈ SI , y ∈ SJ . By
Theorem(3.4) the result can be obtained, directly. □

Theorem 3.10. Let G̃ = ({I, J}, SI , SJ , Ã, B̃) be a fuzzy bi-matrix game, TI(G̃) and TJ(G̃) are the
sets of the strategy of player I and player J , respectively. Then TI(G̃) and TJ(G̃) are closed convex
sets.

Proof . Let x∗ ∈ TI(G̃) and y∗ ∈ TJ(G̃) and (x∗, y∗) be a equilibrium strategy of the fuzzy bi-matrix
games. From Definition (3.3) we have

(i) xT Ãy∗ ≾ x∗T Ãy∗, ∀x ∈ SI ,
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(ii) x∗T B̃y ≺ pproxx∗T B̃y∗, ∀y ∈ SJ .

By Theorem (3.7), the pair (x∗, y∗) is the equilibrium strategy of two crisp bi-matrix games Ga =
({I, J}, SI , SJ , A, C) and Gb = ({I, J}, SI , SJ , B,D). Consequently, x∗ ∈ TI(Ga) and x∗ ∈ TI(Gb)
then x∗ ∈ TI(Ga) ∩ TI(Gb). Moreover, TI(Ga), TI(Gb) are closed convex sets. Therefore TI(G̃) is a
closed convex set. Similarly, it can be result that TJ(G̃) is a closed and convex set. □

Definition 3.11. [7] A pair of mixed strategies (x∗, y∗) ∈ SI×SJ is called a Pareto Nash equilibrium
strategy of the game G̃ if

(i) there does not exist any x ∈ SI such that x∗T Ãy∗ ≾ xT Ãy∗,

(ii) there does not exist any y ∈ SJ such that x∗T B̃y∗ ≾ x∗T B̃y.

Theorem 3.12. Let G̃ = ({I, J}, SI , SJ , Ã, B̃) be a fuzzy bi-matrix game. A pair (x∗, y∗) ∈ SI × SJ

is the Pareto Nash equilibrium strategy for the game G̃ if and only if

(i) there exist no x ∈ SI such that x∗TAy∗ ≤ xTAy∗, x∗TCy∗ ≤ xTCy∗ and

(x∗TAL
0 y

∗, x∗TAU
0 y

∗) ≤ (xTAL
0 y

∗, xTAU
0 y

∗), (3.5)

(ii) there exist no y ∈ SJ such that x∗TBy∗ ≤ xTBy, x∗TDy∗ ≤ xTDy and

(x∗TBL
0 y

∗, x∗TBU
0 y

∗) ≤ (x∗TBL
0 y, x

∗TBU
0 y). (3.6)

Proof . By contradiction, let (x∗, y∗) ∈ SI ×SJ be the Pareto Nash equilibrium strategy of G̃. Sup-
pose that there exist x̂ ∈ SI such that x∗TAy∗ ≤ x̂TAy∗, x∗TCy∗ ≤ x̂TCy∗ and (x∗TAL

0 y
∗, x∗TAU

0 y
∗) ≤

(x̂TAU
0 y

∗, x̂TAU
0 y

∗). It implies that

x∗T (A−H)y∗ ≤ x̂T (A−H)y∗, x∗T (C +K)y∗ ≤ x̂T (C +K)y∗.

But, by the above inequalities do not occur simultaneously. Let α ∈ [0, 1] and

µãij(x) =


L(

aij−x

hij
) , x ≤ aij, aij − hij > 0,

1 , a ≤ x ≤ c,

R(
x−cij
kij

) , x ≥ cij, cij + kij > 0,

then L−1(α), R−1(α) ∈ [0, 1]. Therefore, from above inequalities we get

(
x∗T ((1− L(−1)(α))A+ L(−1)(α)(A−H))y∗, x∗T ((1−R(−1)(α))C +R(−1)(α)(C +K))y∗

)
≤

(
x̂T ((1− L(−1)(α))A+ L(−1)(α)(A−H))y∗, x̂T ((R(−1)(α))C +R(−1)(α)(C +K))y∗

)
,

by rearrenging we obtain(
x∗T (A− L(−1)(α)H)y∗,x∗T (C +KR(−1)(α))y∗

)
≤

(
x̂T (A− L(−1)(α)H)y∗, x̂T (C +KR(−1)(α))y∗

)
,
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Using Definition (3.11) it implies that x∗T Ãy∗ ⪯ xT
1 Ãy

∗. This is a contradiction.
Conversely, we assume that the pair of mixed strategy (x∗, y∗) ∈ SI × SJ be satisfy (3.5) and (3.6).
Suppose that there exists a strategy x̂ ∈ SI such that x∗T Ãy∗ ⪯ xT

1 Ãy
∗. So, we have for all α ∈ [0, 1]

(x∗TAL
αy

∗, x∗TAU
αy

∗) ≤ (x̂TAL
αy

∗, x̂TAU
αy

∗),

which (A− L(−1)(α)H) = AL
α, (C +KR(−1)(α)) = AU

α . Set α = 0, then

x∗T (AL
0 , A

U
0 )y

∗ ≤ x̂T (AL
0 , A

U
0 )y

∗, x∗TAy∗ ≤ x̂TAy∗.

This is contradict (i). Similarly, we can show that there does not exist any y ∈ SJ such that
x∗T B̃y∗ ⪯ x∗T B̃y. □

Definition 3.13. A pair of mixed strategies (x∗, y∗) ∈ SI × SJ is a weak Pareto Nash equilibrium
strategy of the game G̃ if

(i) there does not exist any x ∈ SI such that x∗T Ãy∗ ≺ xT Ãy∗,

(ii) there does not exist any y ∈ SJ such that x∗T B̃y∗ ≺ x∗T B̃y.

Following theorem is obtaine directly from Definition (3.13) and Theorem (3.12).

Theorem 3.14. Let G̃ = ({I, J}, SI , SJ , Ã, B̃) be a fuzzy bi-matrix game. A pair (x∗, y∗) ∈ SI × SJ

is the weak Pareto Nash equilibrium strategy for the game G̃ if and only if

(i) there exist no x ∈ SI such that x∗TAy∗ < xTAy∗, x∗TCy∗ < xTCy∗ and

(x∗TAL
0 y

∗, x∗TAU
0 y

∗) < (xTAL
0 y

∗, xTAU
0 y

∗), (3.7)

(ii) there exist no y ∈ SJ such that x∗TBy∗ < xTBy, x∗TDy∗ < xTDy and

(x∗TBL
0 y

∗, x∗TBU
0 y

∗) < (x∗TBL
0 y, x

∗TBU
0 y). (3.8)

4. Parametric Bi-Matrix Games

In this section we characterize the crisp parametric matrix games and investigate other types of
Nash equilibrium strategies for fuzzy bi-matrix games. Let Sp = {ξ1, ξ2, ..., ξp} and Sq = {η1, η2, ..., ηq}
be sets of pure strategies of player I and player J , respectively. While player I chooses the pure
strategy ξi and player J chooses the pure strategy ηi, suppose (1− ρ)(aij − hij) + ρ(cij + kij) be the
payoff of player I and −[(1− ν)(bij − zij)+ ν(dij+wij)] be the payoff of player J , where ρ, ν ∈ [0, 1].
The payoff matrices of player I and J are

A(ρ) = (1− ρ)(A−H) + ρ(C +K), B(ν) = (1− ν)(B − Z) + ν(D +W ). (4.1)

We consider the crisp parametric bi-matrix game G(ρ, ν) = (SI , SJ , A(ρ), B(ν)).

Definition 4.1. [12] Let G(ρ, ν) be a crisp parametric bi-matrix game. For ρ, ν ∈ [0, 1], a pair
of mixed strategies (x∗, y∗) ∈ SI × SJ is a Nash equilibrium strategy of G if it holds that

(i) xTA(ρ)y∗ ≤ x∗TA(ρ)y∗ for all x ∈ SI ,

(ii) x∗TB(ν)y ≤ x∗TB(ν)y∗ for all y ∈ SJ .
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Lemma 4.2. There exists at least one Nash equilibrium strategy for all parametric games G(ρ, ν)for
each ρ, ν ∈ [0, 1].

Theorem 4.3. Let G(ρ, ν) be a crisp prametric bi-matrix game with ρ, ν ∈ (0, 1) and the pair of
mixed strategy (x∗, y∗) ∈ SI × SJ be Nash equilibrium strategy of G. Then (x∗, y∗) ∈ SI × SJ is the
Pareto Nash equilibrium strategy of the fuzzy bi-matrix game G̃.

Proof . Let (x∗, y∗) ∈ SI × SJ be the Nash equilibrium strategy of the parametric bi-matrix game
Γ(ρ, ν), which ρ, ν ∈ (0, 1). By Definition (4.1) for x ∈ SI , we obtain

(1− ρ)xT (A−H)y∗ + ρxT (C +K)y∗ ≤ (1− ρ)x∗T (A−H)y∗ + ρx∗T (C +K)y∗, (4.2)

and for y ∈ SJ we obtain

(1− ν)x∗T (B − Z)y + νx∗T (D +W )y ≤ (1− ν)x∗T (B − Z)y∗ + νx∗T (D +W )y∗. (4.3)

Let there exists x̂ ∈ SI such that x∗T Ãy∗ ⪯ x̂T Ãy∗. From Definition (3.1), it followes that

(x∗TAL
0 y

∗, x∗TAU
0 y

∗) ≤ (x̂TAL
0 y

∗, x̂TAU
0 y

∗).

But x∗TAL
0 y

∗ = x̂TAL
0 y

∗, x∗TAU
0 y

∗ = x̂TAU
0 y

∗ do not occur simultaneously. Then we have

(1− ρ)x∗TAL
0 y

∗ + ρx∗TAU
0 y

∗ < (1− ρ)x̂TAL
0 y

∗ + ρx̂TAU
0 y

∗,

and consequently

(1− ρ)x∗T (A−H)y∗ + ρx∗T (C +K)y∗ < (1− ρ)x̂T (A−H)y∗ + ρx̂T (C +K)y∗,

This is a contradiction (4.2). The condition (ii) can de proved, similarly. □

Theorem 4.4. Let the pair (x∗, y∗) ∈ SI × SJ be the Nash equilibrium strategy of crisp prametric
bi-matrix game G(ρ, ν) with ρ, ν ∈ [0, 1]. Then (x∗, y∗) ∈ SI×SJ is the weak Pareto Nash equilibrium
strategy of fuzzy bi-matrix game G̃.

The following corollary is direct result of Theorem (4.3) and Theorem (4.4).

Corollary 4.5. A fuzzy bi-matrix game G̃ satisfies the following properties:

(i) There exsist at least one Pareto Nash equilibrium strategy of fuzzy game G̃,

(ii) There exsist at least one weak Pareto Nash equilibrium strategy of fuzzy game G̃.

References

[1] L. Baoding and L. Yian-Kui, A class of fuzzy random optimization: expected value models, Inform. Sci. 155 (2003)
89-102.

[2] C. R. Bector and S. Chandra, Fuzzy Mathematical Programming and Fuzzy Matrix Games, springer, Berlin, 2005.
[3] D. Butnariu, Fuzzy games: a description of the concept, Fuzzy Sets and Systems, 1 (1978) 181-192.
[4] L. Campos, Fuzzy linear programming model to solve fuzzy matrix game, Fuzzy Sets and Systems, 32 (1989)

275-289.
[5] L. Cunlin and Z. Qiang, Nash equilibrium strategy for fuzzy non-cooperative games, Fuzzy Sets and Systems, 176

(2011) 46-55.



The quadratic support of strongly convex functions . . . 10 (2019) No.1, 99-109 109

[6] L. Cunlin, Characterization of the equilibrium strategy of fuzzy bi-matrix games based on L-R fuzzy variables, J.
Appl. Math. 2012.

[7] B. Dutta and S. K. Gupta, On Nash equilibrium strategy of two-person zero-sum games with Trapezoidal fuzzy
payoffs, Fuzzy Inf. Eng. 6 (2014) 299-314.

[8] D. F. Li, Linear programming approach to solve interval-value matrix games, Omega, 39 (2011) 655-666.
[9] B. Liu, Uncertain programming, New York: Wiley, 1999.
[10] B. Liu , Uncertainty theory. An introduction to its axiomatic foundations, Studies in Fuzziness and Soft Comput-

ing, Springer-Verlag, Berlin, 2004.
[11] T. Maeda , On characterization of equilibrium strategy of bi-matrix games with fuzzy payoffs, J. Math. Anal.

Appl. 251 (2000) 885-896.
[12] J. Nash, Non-cooperative games, Ann. of Math. 54 (1951) 286-295.
[13] I. Nishizaki and M. Sakawa, Equilibrium solutions in multiobjective bi-matrix games with fuzzy payoffs and fuzzy

goals, Fuzzy Sets and Systems, 111 (2000) 99-116.
[14] I. Nishizaki and M. Sakawa, Fuzzy and Multi-Objective Games for Conflict Resolution, Physica, NewYork, NY,

USA, 2001.
[15] M. J. Osborne and A. Rubinstein, A Course in Game Theory, Cambridge, 1944.
[16] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New York, 1993.
[17] M. Takashi, Characterization of the equilibrium strategy of the bi-matrix game with fuzzy payoff, J. Math. Anal.

Appl. 251 (2000) 885-896.
[18] M. Takashi, On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs, Fuzzy

Sets and Systems, 139 (2003) 283-296.
[19] A. V. Yazenin, Fuzzy and stochastic programming, Fuzzy Sets and Systems, 22 (1987) 171-180.
[20] A. V. Yazenin, On the problem of possibilistic optimization, Fuzzy Sets and Systems, 81 (1996) 133-140.
[21] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.
[22] L. A. Zadeh, Fuzzy set as a basis for a theory of possibility, Fuzzy sets And systems, 8 (1978) 3-28.
[23] H. J. Zimmermann, Application of fuzzy set theory to mathematical programming, Inform. Sci. 36 (1985) 29-58.
[24] H. J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston, MA, 1992.


	Introduction
	Preliminaries
	Bi-matrix Games with L-R Fuzzy Payoffs
	Parametric Bi-Matrix Games

