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Abstract

In this paper, based on a fractional order Bergman minimal model, a robust strategy for regulation
of blood glucose in type 1 diabetic patients is presented. Glucose/insulin concentration in the patient
body is controlled through the injection under the patients skin by the pump. Many various con-
trollers for this system have been proposed in the literature. However, most of them have consider
the system as an integer order system. Moreover, the majority of the presented methods suffer from
an important disadvantage that is long settling time of the control system. Thus, the contribution of
this paper in comparison with previous related works is presenting a fractional back-stepping sliding
mode control that considerably reduces the required time for glucose to reach its desired level. Due
to the sliding mode design, the proposed controller is robust against external disturbances. Due to
the back-stepping design, convergence of each state variable of the system to its desired value can
be guaranteed separately. Simulation results verify the satisfactory performance of the proposed
controller.
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1. Introduction

Diabetes is discussed as a serious condition in which the bodys production and use of insulin are
impaired, causing glucose concentration level to increase in the bloodstream. Insulin is a hormone
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generated by specic cells, called beta cells, in the pancreas. In order to transfer blood glucose into
cells, insulin is required. Two types of diabetes have been recognized. In type I diabetes mellitus
(T1DM), the b-cells in the pancreas that are responsible for producing insulin are destroyed by the
immune system of the patients. Thus, the current solution for treatment is the delivery of exogenous
insulin to maintain the glucose levels close to normal [22-30].

Based on continuous glucose monitoring (CGM) systems and insulin pumps technologies, a con-
troller that automatically monitors and regulates the blood glucose level can be designed. In other
words, it can play the role of an articial pancreas system to replace the conventional treatment
strategies in T1DM. In recent decades, various approaches have been presented in the literature for
intelligent control of blood glucose. In this paper, the 3rd order minimal model of Bergman [1] is
adopted. Various approaches have been presented to design a feedback controller for blood glucose
regulation, such as fuzzy logic control [2-5], recurrent neural networks [6], model predictive control
(MPC) [7], high order sliding mode control [8], optimal control [9] and back-stepping sliding mode
control [10].

Fractional calculus can be considered as a generalized version of classical differentiation and in-
tegration to arbitrary (noninteger) order. Recently, fractional calculus has been the focus of many
active researches in several fields in engineering. For example, in control engineering, this approach
coming from applied mathematics has resulted in the new field of fractionalorder modeling con-
trol. One important superiority of fractional differentiation and integration in comparison with their
integerorder counterparts is providing an extra degree of freedom for the designer to improve the
performance of the control system. As a result, fractional calculus has attracted increasing inter-
ests and there has been a rapid growth in the number of applications where fractional calculus has
been used such as secure communication and chaos synchronization [11], viscoelastic systems [12, 13],
magnetic levitation system [14], power systems [15] and many other systems. Biological systems such
as glucose-insulin system were no exception and various fractional order controllers for this system
have been presented in the literature [16-20].

This paper presents a fractional order controller for fractional model of glucose-insulin system
using back-stepping sliding mode design. Although various controllers for this system have been
presented in the literature, most of them suffer from an important disadvantage that is the long time
required for glucose to reach the desired level. For example, glucose settling time in [10] is about 350
minutes. Also, the back-stepping sliding mode controller presented in [16] requires 400 minutes to
reduce the glucose level to the desired value. For another example, this time for the HH∞ controller
presented in [18] is also about 400 minutes which is too long. Therefore, designing a more powerful
controller with shorter glucose settling time is an important contribution of this paper. Moreover,
according to [18], considering a fractional order model for this system results in more satisfactory
responses. Thus, in this paper, the fractional order controller is designed for fractional order model
of the system.

This paper is organized as follows. Section 2, describes the glucose-insulin model. Section 3
develops the proposed controller and presents the stability analysis. Section 4 illustrates simulation
results and comparisons. Finally, section 5 concludes the paper

2. Glucose-insulin dynamics

Many models for describing glucose-insulin process has been presented. Bergmans minimal model
has been proposed in 1980 by Richard Bergman. The main advantage of the Bergman minimal model
is its simplicity. According to [18], it is the common model that is usually referenced in the literature.
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Bergman Minimal Model (BeM) is described as [18]:

C
t0
Dα
t x1 = −p1[x1 −Gb]− x1x2 + δ1 +D(t) (2.1)

C
t0
Dα
t x2 = −p2x2 + p3[x3 − Ib] + ∆2 (2.2)

C
t0
Dα
t x3 = −n[x3 − Ib] + γt[x1 −Gb]

+∆3 + u(t) (2.3)

in which C
t0
Dα
t is the αth-order Caputo fractional derivative, x1(t), x2(t) and x3(t) are plasma glucose

concentration, the insulin inuence on glucose concentration reduction, and insulin concentration in
plasma respectively, u(t) ∈ R is injected insulin rate in (mU/min). All of the parameters have been
completely explained in [18]. In this paper, it has been assumed that the parameters in (2.1)-(2.3)
are nominal parameters that may be different from their actual values. Thus, the terms ∆1, ∆2 and
∆3 are uncertainties originated from these mismatches. It is assumed that these uncertainties are
bounded as |∆1| ≤ k1, |∆2| ≤ d2 and |∆3| ≤ d3 where k1, d2 and d3 are known positive constants.
This disturbance can be modeled by a decaying exponential function of the following form [16]

D(t) = A exp(−Bt) B > 0 (2.4)

The pump can be modeled as a rst order linear system

C
t0
Dα
t u(t) =

1

a
(w(t)− u(t)) + ∆4 (2.5)

where w(t) is insulin rate command in pump as input, and the parameter a is pump time constant.
Also, ∆4 is the uncertainty originated from the mismatch between the actual and nominal a.

3. The proposed controller and stability analysis

Define the tracking error of glucose as [20-23]

e1 = x1(t)− x1d(t) (3.1)

where x1d(t) is the desired blood glucose Also, consider the following sliding surface

s1 = e1 + λ1D
−αe1 (3.2)

in which λ1 is a design parameter. Taking the derivative of (3.2) results

Dαs1 = Dαe1 + λe1 = Dαx1 −Dαx1d + λ1e1 (3.3)

Substitution of Dαx1 from (2.1) into (3.3) and solving Dαs1 = 0 results in

x2eq = (x1)
−1(−p1x1 + p1Gb −DαGd + λ1x1 − λ1Gd + d1sign(s1)) (3.4)

in which d1sign(s1) has been added to the control law to compensate for the external disturbance
D(t) and the uncertainty ∆1 = δ1 + D(t). In other words, we have, d1 > |∆1|. Now, applying the
control law (3.4) into the (2.1) results in

Dαx1 = Dαx1d − λ1e1 +D + ∆1 − d1sign(s1) (3.5)
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which can be rewritten as

Dαs1 = D + ∆1 − d1sign(s1) (3.6)

In order to verify that the control law (3.4) guarantees the stability, consider the following positive
definite function:

V1 =
1

2
s21 (3.7)

According to Lemma 1 in [21], taking the derivative of (3.7) leads to

DαV1 ≤ s1D
αs1 (3.8)

Substitution of (3.6) into (3.8) results in

DαV1 ≤ s1(D + ∆1 − d1sign(s1)) (3.9)

It is obvious that

DαV1 ≤ |s1||D + ∆1| − s1d1sign(s1) (3.10)

In other words, we have

DαV1 ≤ |s1||∆1| − d1|s1| = |s1|(|∆1| − d1) (3.11)

Since d1 ≥ |∆1|, it can be concluded that

DαV1 ≤ −d̃1|s1| (3.12)

in which d̃1 = d1 − |∆1| ≥ 0. Now, consider (2.2). Define the tracking error as

e2 = x2 − x2d (3.13)

where x2d is the desired value of x2. Also, consider the following sliding surface

s2 = e2 + λ2D
−αe2 (3.14)

in which λ2 is a design parameter. Taking the derivative of (3.14) results in

Dαs2 = Dαe2 + λ2e2 = Dαx2 −Dαx2d + λ2e2 (3.15)

Substitution of Dαx2 from (2.2) into (3.15) and solving Dαs2 = 0 results in

x3eq =
p2x2 + p3Ib +Dαx2d − λ2e2 + d2 sign(s2)

p3
(3.16)

in which d2sign(s2) has been considered for compensation of the lumped uncertainty ∆2.
Now, applying the control law (3.16) into the (2.2) results in

Dαx2 = Dαx2d − λ2e2 + ∆2 − d2 sign(s2) (3.17)



Fractional Order Glucose Insulin System... 10 (2019) No. 2, 1-10 5

In other words

Dαs2 = ∆2 − d2 sign(s2) (3.18)

consider the following positive definite function

V2 =
1

2
s22 (3.19)

According to Lemma 1 in [21], taking the time derivative of (3.19) results in

DαV2 ≤ s2D
αs2 (3.20)

Substitution of (3.18) into (3.20) leads to

DαV2 ≤ s2(∆2 − d2 sign(s2)) (3.21)

It follows from (3.21) that

DαV2 ≤ |s2||∆2| − s2d2 sign(s2) (3.22)

which can be rewritten as

DαV2 ≤ |s2||∆2| − d2|s2| = |s2|(|∆2| − d2) (3.23)

Since d2 > |∆2|, it can be concluded that

DαV2 ≤ −d̃2|s2| (3.24)

in which d̃2 = d2 − |∆2| ≥ 0. Now, consider (2.3). Define the tracking error as

e3 = x3 − x3d (3.25)

where x3d is the desired value of x3. Also, consider the following sliding surface

s3 = e3 + λ3D
−αe3 (3.26)

in which λ3 is a design parameter. Taking the derivative of (3.26) results in

Dαs3 = Dαe3 + λ3e3 = Dαx3 −Dαx3d + λ3e3 (3.27)

Substitution of ẋ3 from (2.3) into (3.27) and solving ṡ3 = 0 results in

ud = n[x3 − Ib] +Dαx3d − λ3e3 + d3 sign(s3) (3.28)

Similar to the procedure given in (3.1) to (3.12), it can be shown that

DαV3 ≤ |s3|(|∆3| − d3) ≤ 0 (3.29)

in which

V3 =
1

2
s23 (3.30)
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Table 1: The model parameters

Bergman minimal model
P1(min)−1 0
P2(min)−1 0.0123
P2(min)−1 8.2× 10−8

n(min−1) 0.2659
Ib 7
Gb 70

X1(0) 200
X3(0) 50

Also, the same procedure will lead to

wd = u+ aDαud − aλ4e4 − ad4 sign(s4) (3.31)

In fact, it can be simply shown that this control law will result in

DαV4 ≤ |s4|(|∆4| − d4) ≤ 0 (3.32)

in which

V4 =
1

2
s24 (3.33)

s4 = e4 + λ4D
−αe4 (3.34)

e4 = u− ud (3.35)

Now the following theorem is presented.

Theorem 3.1. Consider the dynamic system (1). If the control laws (3.4), (3.16), (3.28) and (3.31)
are applied to this system, then the closed-loop signals are bounded and the tracking errors e1, e2, e3
and e4 asymptotically converge to zero.
Proof . Define the Lyapunov function candidate as

V =
4∑
i=1

Vi =
4∑
i=1

1

2
s2i (3.36)

in which V1, V2, V3 and V4 are defined in (3.7), (3.19), (3.30) and (3.33), respectively. Based on
(3.11), (3.23), (3.29) and (3.32) it can be concluded that

DαV ≤ −
4∑
i=1

|si|d̃i (3.37)

According to Theorem1 in [21], (3.37) implies the asymptotic stability of the system. �
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4. SIMULATION RESULTS

Consider the model described in [20]. Its parameters are given in Table 1. The parameter of the
controller have been set to λ1 = 0.08, λ2 = 7.6, λ3 = 0.1, λ4 = 0.5. The fractional order has been set
to α = 0.88. In order to investigate the controller robustness against parametric uncertainties, we
have applied 10% uncertaintiy to the parameters presented in Table 1 and used them in the controller
design. To be more presice, the parameters p2, p3 and n have been multiplied by 1.1. The blood
glucose level is presented in Fig. 1. As shown in this figure, the controller can reduce the blood
glucose concentration from the initial value of 200 (mg/dl) to the approximate value of 80 (mg/dl)
which is our desired level within 150 minutes. The external disturbance is selected as [20]

Figure 1: Blood glucose concentration with α = 0.88

D(t) = 10 sin(ωt) (4.1)

in which ω = 2π
T

and T = 6h. In comparison with [20], the settling time of the proposed method is
improved. The settling time in this paper is less than 150 minutes while in [20], the settling time is
about 400 minutes. Thus, the proposed fractional controller is superior than the controller presented
in [20, 26]. Insulin concentration has been plotted in Fig. 2. As shown in this figure, this signal is
bounded and converges to 7(µU/dl) in the steady state.

Figure 2: Insulin concentration using the proposed controller

The rate of injected insulin through pump is illustrated in Fig. 3. As shown in this figure, this signal
is in acceptable range without any chattering. In order to show the superiority of fractional order
control in comparison with integer order control, the parameter α can be set to 1. All of the other
controller parameters are the same. In this situation, blood glucose concentration is presented in
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Fig. 4. As shown in this figure, the performance of the integer order controller is not satisfactory
and the blood glucose concentration reduces considerably which is dangerous. Therefore, fractional
controller outperforms the classical integer controller. Also, the proposed fractional controller can
reduce the settling time of glucose concentration in patient body considerably which the important
superiority of this controller in comparison with previous related works.

Figure 3: Insulin injection rate using the proposed method

Figure 4: Blood glucose concentration with α = 1

5. CONCLUSION

In this paper, a fractional order controller for blood glucose regulation in type I diabetes patients
has been presented. Uncertainties have been estimated and compensated using the Fourier series
expansion which is less computational in comparison with other uncertainty estimators. The sliding
mode control strategy has been adopted to make the controller robust against external disturbances.
Simulation results verify the satisfactory performance of the proposed controller in comparison with
a previous related work. In fact, the settling time of glucose concentration has been improved
considerably in the proposed method. Moreover, the fractional controller outperforms the integer
controller with the same parameters.
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