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Abstract

This article presents a robust scheme for regulating blood glucose in the patients suffering from
type I diabetes based on BMM. A pump is used to inject glucose/insulin under the patient’s skin
to control its concentration. Previous studies have presented a variety of such controllers. But,
they mainly suffered from long settling time. This study employs back-stepping sliding control to
reduce the settling time. Since the controller presented in this study employs sliding mode control,
it is robust against external disturbances. Since the back-stepping scheme is used in this design, it
guarantees that the state variables of the system converge to the desired value. The results obtained
from simulation verify performance of the presented scheme.

Keywords: Sliding mode control, back-stepping design, blood glucose regulation, Bergman
minimal model.
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1. Introduction

One of the serious conditions, which impairs body’s insulin secretion and usage and increases glucose
level. Pancreas is responsible to generate the hormone, insulin which is required for transferring
glucose into cells. Diabetes is classified into two types including type I mellitus (T1DM) in which
the immune systems destroys the b-cells of pancreas which have to generate insulin. Currently,
type I diabetes is treated through delivering exogenous insulin such that glucose levels is maintained
at a normal level. A controller can be designed for automatic monitoring and regulation of the
blood glucose level based on continuous glucose monitoring (CGM) systems. In other words, CGM
emulates pancreas performance and can replace the current T1DM treatments. Recently, a number
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of studies have been conducted on intelligent blood glucose control. This study employs the 3rd
order Bergman minimal model [1] A number of strategies have been proposed for feedback controller
for regulating blood glucose among which fuzzy logic control [2, 3, 4, 5], recurrent neural networks
[6], model predictive control (MPC) [7], high order sliding mode control [8], optimal control [9] and
back-stepping sliding mode control [10] can be mentioned. In addition, some approaches have been
presented for blood glucose regulation based on fractional order control [11, 12, 13, 14, 15].
In this study, the back-stepping sliding mode control is used to present a robust glucose-insulin
controller. Most of the previous schemes require a long settling time (the time that takes the glucose
level to reach a desired level). As an example, settling time of the schemes presented in [10] and [11]
is 350 minutes. Thus, this paper tries to present a more robust design with shorter settling time.The
proposed design integrates the tracking error in the sliding surface which decreases the tracking error
and improves glucose settling time [18]-[33].
The rest of this paper is organized as follows. In section 2, the glucose-insulin model is described. The
proposed controller and its stability analysis are presented in section 3. Simulation and comparison
results are given in section 4. Finally, the paper is concluded in section 5.

2. Dynamics of Glucose-Insulin

A variety of models have been presented for describing glucose-insulin. In 1980, Doctor Richard
Bergman presented the Bergman’s minimal model which is simple. As mentioned in [1], Bergman’s
model is commonly used in the literature and it is described as follows [1]:

ẋ1 = −p1[x1 −Gb]− x1x2 + δ1 +D(t) (2.1)

ẋ2 = −p2x2 + p3[x3 − Ib] + ∆2 (2.2)

ẋ3 = −n[x3 − Ib] + γt[x1 −Gb]
+ + ∆3 + u(t) (2.3)

where x1(t), x2(t) and x3(t) represent concentration of plasma glucose, impact of insulin influence on
reducing concentration of glucose, and concentration of insulin in plasma respectively, u(t) ∈ R is the
rate of injected insulin measured in (mU/min), is the basal pre-injection level of glucose (mg/dl), Ib
is the basal pre-injection level of insulin (µU/ml), p1 the insulin independent rate constant of glucose
uptake in muscles and liver (1/min), p2 the decrease rate of in tissue glucose uptake ability (1/min),
p3 the insulin-dependent increase in glucose uptake ability in tissue per-unit of insulin concentration
above the basal level ((µU/ml)/min).
γt[B1(t)−Gb]

+ is the secretion of the pancreatic insulin after a meal in take at t = 0. The parameters
in (2.1)-(2.3) are assumed to be nominal which might differ with their real values. Thus, the lumped
uncertainties resulting from mismatches are represented by ∆1, ∆2 and ∆3. These uncertainties are
assumed to be bounded as |∆1| ≤ k1, |∆2| ≤ d2 and |∆3| ≤ d3 in which k1, d2 and d3 are known
positive constants. Since the focus of this study is on insulin therapy as a treatment for type I
diabetes mellitus, γ is assumed to be zero so that real dynamic of this disease is modelled and p is
also assumed to be zero. The parameter n represents the first order decay rate of insulin in blood.
A decaying exponential function can be used to model disturbance as follows [16]:

D(t) = A exp(−Bt) B > 0 (2.4)
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A first order linear system can be used to model the pump:

u̇(t) =
1

a
(w(t)− u(t)) + ∆4 (2.5)

in which w(t) is the command rate of insulin in the pump as input, and a is the time constant of
the pump. Moreover, ∆4 represent the lumped uncertainty resulting from disagreement of the actual
and nominal values of a.

3. The Proposed Controller And Stability Analysis

The tracking error of glucose is defined as

e1 = x1(t)− x1d(t) (3.1)

in which x1d(t) shows the favorable level of blood glucose. The following sliding surface is considered:

s1 = e1 +

∫ t

0

λ1e1dt (3.2)

where λ1 is a design parameter. By differentiating (3.2), we have:

ṡ1 = ė1 + λ1e1 = ẋ1 − ẋ1d + λ1e1 (3.3)

By substituting ẋ1 from (2.1) into (3.3) and solving , we have:

x2eq = (x1)
−1(−p1x1 + p1Gb − Ġd + λ1x1 − λ1Gd + d1sign(s1)) (3.4)

where d1sign(s1) is added to the control law to compensate the lumped certainty ∆1 = δ1 + D(t)
and the external disturbance D(t). In other words, we have, d1 > |∆1|. By applying the control law
(3.4) to (2.1), we have:

ẋ1 = ẋ1d − λ1e1 +D + ∆1 − d1sign(s1) (3.5)

it can be rewritten as follows

ṡ1 = D + ∆1 − d1sign(s1) (3.6)

The following positive definite function is considered to verify that stability of the control law (3.4)

V1 =
1

2
s21 (3.7)

By differentiating (3.7), we have:

V̇1 = ṡ1s1 (3.8)

By substituting (3.6) into (3.8), we have:

V̇1 = s1(D + ∆1 − d1sign(s1)) (3.9)

It is clear that

V̇1 ≤ |s1||D + ∆1| − s1d1sign(s1) (3.10)
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which can be considered as follows

V̇1 ≤ |s1||∆1| − d1|s1| = |s1|(|∆1| − d1) (3.11)

The following is concluded since d1 ≥ |∆1|

V̇1 ≤ 0 (3.12)

By considering (2.2), the tracking error is defined as follows:

e2 = x2 − x2d (3.13)

in which x2d represents the desired value of x2. Consider the sliding surface defined in the following

s2 = e2 +

∫ t

0

λ2e2dt (3.14)

where λ2 is a design parameter. By differentiating (3.14), we have:

ṡ2 = ė2 + λ2e2 = ẋ2 − ẋ2d + λ2e2 (3.15)

By substituting ẋ2 from (2.2) into (3.15) and solving ṡ2 = 0, we have:

x3eq =
p2x2 + p3Ib + ẋ2d − λ2e2 + d2sign(s2)

p3
(3.16)

where d2sign(s2) is used to compensate the lumped uncertainty ∆2. By applying the control law
(3.16) into (2.2), we have:

ẋ2 = ẋ2d − λ2e2 + ∆2 − d2sign(s2) (3.17)

in other words

ẋ2 = ∆2 − d2sign(s2) (3.18)

By considering the following positive definite function

V2 =
1

2
s22 (3.19)

and differentiating (3.19), we have

V̇2 = ṡ2s2 (3.20)

By substituting (3.18) into (3.20), we have

V̇2 = s2(∆2 − d2sign(s2)) (3.21)

which results in the following

V̇2 ≤ |s2||∆2| − s2d2sign(s2)) (3.22)
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which can be rewritten as follows

V̇2 ≤ |s2||∆2| − d2|s2| = |s2|(|∆2| − d2) (3.23)

The following is concluded since

V̇2 ≤ 0 (3.24)

By considering (2.3), the tracking error is defined as follows

e3 = x3 − x3d (3.25)

in which x3d represents the desired value of x3. In addition, consider the sliding surface defined as
follows:

s3 = e3 +

∫ t

0

λ3e3dt (3.26)

where λ3 is a design parameter. By differentiating (3.26), we have:

ṡ3 = ė3 + λ3e3 = ẋ3 − ẋ3d + λ3e3 (3.27)

By substituting ẋ3 from (2.3) into (3.27) and solving ṡ3 = 0, we have:

ud = n[x3 − Ib] + ẋ3d − λ3e3 + d3sign(s3) (3.28)

Just like the procedure represented in (3.1) to (3.12), it can be demonstrated that:

V̇3 ≤ |s3|(|∆3| − d3) ≤ 0 (3.29)

where

V3 =
1

2
s23 (3.30)

wd = u+ au̇d − aλ4e4 − ad4sign(s4) (3.31)

It is easily shown that this control law results in the following:

V̇4 ≤ |s4|(|∆4| − d4) ≤ 0 (3.32)

where

V4 =
1

2
s24 (3.33)

s4 = e4 +

∫
λ4e4dt (3.34)

e4 = u− ud (3.35)

Now the following theorem is presented.
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Theorem 3.1. Considering the dynamic system (2.1)-(2.3) and applying the control laws (3.4),
(3.16), (3.28) and (3.31), the closed-loop signals are bounded and the tracking errors e1, e2, e3 and
e4 converge to zero, asymptotically.

Proof . The Lyapunov function candidate is defined as follows:

V =
4∑
i=1

Vi =
4∑
i=1

1

2
s2i (3.36)

where (3.7), (3.19), (3.30) and (3.33) define V1, V2, V3 and V4, respectively. The following is concluded
according to (3.11), (3.23), (3.29) and (3.32):

V̇ ≤ −
4∑
i=1

|si| (|∆i| − di)︸ ︷︷ ︸
αi

(3.37)

Assume that Γi(si) is a positive semi definite differentiable function satisfying Γi(si) ≤ αi|si|
Thus,

∑4
i=1 Γi(si) ≤

∑4
i=1 αi|si|. The following results from (3.37)

F (t) =
4∑
i=1

Ωi(si) ≤ −V̇ (3.38)

Integrating it with respect to time yields∫ t

0

F (τ)dτ ≤ V (0)− V (t) (3.39)

The following is concluded from boundedness of V (0) and V (t) being non-increasing and bounded

lim
t→∞

∫ t

0

F (τ)dτ ≤ ∞ (3.40)

ṡ1 and ṡ2 are bounded according to (3.6) and (3.18). And the same holds for ṡ3 and ṡ4. d(Ωi)/dsi
is bounded. Thus, Ω̇i = ṡid(Ωi)/dsi is bounded and it follows from (3.38) that Ḟ is also bounded.
Barbalat’s lemma [17] guarantees convergence of the tracking error. �

Remark 3.2. (Barbalat’s lemma [17]): Assume that f(t) has a finite time limit as t→∞ and ḟ(t)
is uniformly continuous (in other words, f̈(t) is bounded), then ḟ(t)→ 0 as t→∞.

Proof . If f(t) in Barbalat’s lemma is as follows

f(t) =

∫ t

0

F (τ)dτ (3.41)

It follows from (3.40) that f(t) has a finite time limit as t→∞. According to the above discussion,
boundedness of f̈(t) results from boundedness of Ḟ (t). Hence, it can be concluded from Barbalat’s
lemma that as t → ∞, ḟ(t) = F (t) → 0. Thus, (3.38) results in asymptotic convergence of Ωi(si)
to zero indicating the asymptotic convergence of the sliding surfaces si to zero and asymptotic
convergence of e1, e2, e3 and e4 to zero. �

Remark 3.3. To reduce the chattering problem resulting from the sign function, the proportional-
integrator structure proposed in [17] or the modification proposed in can be used.
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Table 1: The model parameters

Bergman minimal model
P1(min)−1 0
P2(min)−1 0.0123
P3(min)−1 8.2× 10−8

n(min−1) 0.2659
Ib 7
Gb 70
x1(0) 200
x3(0) 50

Figure 1: Concentration of Glucose

Figure 2: Concentration of Plasma insulin
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4. Simulation Results

Parameters of the model described in [11] are given in Table 1. The controller’s parameters are
λ1 = 0.015, λ2 = 0.05, λ3 = 0.14, λ4 = 0.1. To study robustness of the controller against uncertainty,
10 percent uncertainty is applied to P2 and P3. Moreover, the control system is affected by the
external disturbance D(t) = 20 exp(−0.5t) at t = 400 (min). Fig. 1 represents the blood glucose
level. It can be seen that concentration of the blood glucose can be reduced by the controller from 200
(mg/dl) to the desired level of 80 (mg/dl). Comparison with the controller proposed in [10, 13, 14]
shows superiority of the controller presented in this study because there is a clear steady state in
the response of the proposed controller, while the design presented in [10] has no steady state in its
response.

Figure 3: Control law (insulin injection with pump)

Fig. 2 shows concentration of the plasma insulin measured in (mU/L). It can be seen that values
of this signal are acceptable. Fig. 3 shows he control signal w(t) which is the insulin injection with
pump. It can be seen that the control signal is bounded and no chattering is present.

5. Conclusion

This paper presented a robust controller for regulating blood glucose in type I diabetes using back-
stepping sliding mode controller. In this design, external disturbance and parametric uncertainty
are also considered. This design reduces the tracking error by integrating the tracking error in the
sliding surface. The proposed controller outperforms previous designs. Simulation results verify the
satisfactory performance of the proposed controller.
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