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Abstract
With advances in virtualization technology, cloud computing has become the most powerful and 
promising platform for business, academia, public and government organizations. Scheduling these 
workflows and load balancing to get better success rate becomes a challenging issue in cloud com- 
puting. In this paper, we used Cats and Dragonfly Optimization (CSO-DA) algorithm to balance 
the Load in the process of allocating resources to virtual machines in cloud computing in order to 
improve the speed and accuracy of scheduling. The proposed method consists of the following steps:
initialization of the algorithm and cloud computing, determining the number of virtual machines 
and the number of tasks, implementing a dragonfly optimization algorithm for choosing the best 
host and implementing a cat collapse algorithm for balancing the load and Schedule tasks between 
virtual machines. Our experiments show that as far as run time, response time, task immigration 
and significant load balances are concerned, our proposed model combining cat and dragonfly opti- 
mization algorithms achieved better performance in allocating resources and load balance between 
virtual machines than other methods.
Keywords: Task Scheduling, Load Balance, Cat Optimization Algorithm, Dragonfly

Optimization, Cloud Computing.
2010 MSC: 68T20.

1. Introduction

Cloud computing can be described as the ability to share processing resources among users.
Recent developments in virtualization have resulted in its proliferation across data centers [1]. User
programs that run independently of hardware infrastructure and virtual machines (VM) migrate
from one host to another, needless stopping of them is required for the development of data centers
[2]. Cloud computing is distributed computing on the internet that makes computing resources
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available for users in a sharing model [3, 4]. Resource allocation, load balancing, energy consumption
management, and task scheduling improvements are important challenges to cloud computing [5].
Data centers should schedule tasks dynamically to avoid having busy or idle hosts and balance the
load between them [6, 7]. Response time reduction, fault tolerance improvement, better scalability,
increasing user satisfaction, reducing heat and greenhouse gases through optimization of electrical
energy consumption are the most important benefits of the optimized use of resources.
The task of the scheduler in cloud computing is the scheduling of tasks and allocation of resources.
Upon sending a task, the node selection process begins based on the information provided by the
functionality of the nodes. Static algorithms do not take into account dynamic changes in node
attributes at runtime. The static scheduler makes non-preemptive decisions and all task assignments
are done before running the program. These decisions are based on information related to the tasks’
execution time and the status of resources [8, 9]. Heterogeneous resources in hosts and the variety of
requests in the cloud computing environment complicates the achievement of the precision required
for predictions in this environment.
The use of optimization algorithms in this environment can increase the efficiency and productivity
of cloud computing. Providing a scheduling optimizing method considering load balancing, response
time, execution time, task migration, and so forth is of great importance, due to the complexity and
variety of scheduling algorithms.
Some popular cloud computing infrastructures, such as Eucalyptus, use well-known greedy or round-
robin scheduling algorithms. Simplicity is the main advantage of a greedy scheduling algorithm and
the major drawback is low resource utilization. Xen uses a weighted distribution scheduling method
and is least concerned about load balancing [10]. Optimization algorithms such as the dragonfly
algorithm can be used for optimization application, such as network traffic. Polepally et al. in [11]
eveloped a practical application for the dragonfly algorithm in the cloud computing domain. They
used the dragonfly algorithm and a gravitational search algorithm to maintain load balancing in
cloud computing. In the cloud environment, computational resources need to be scheduled in such a
way as to maximize the use of resources from suppliers and users of the applications and provide for
their needs at the lowest cost possible. Maximizing resource utilization in cloud suppliers, resource
scheduling aims to minimize the user’s cost for the applications.
In fact, the large scale of applications, the heterogeneity, and dynamism of resource characteristics of
virtual machines, and the existence of various requests in the cloud computing environment make it
difficult to achieve the precision required in the predictions of this environment. However, by using
time estimation techniques and optimization algorithms, it is possible to increase the efficiency of
cloud processing networks. The work scheduler in the cloud computing environment is used to ensure
that user requests are properly scheduled for existing resources.
The current study was undertaken to examine load balances, service quality, and migration costs.
Their features and abilities make them suitable to use the dragonfly and cat swarm optimization
algorithms in cloud computing to optimize resource allocation and task scheduling. They were used
herein to improve resource allocation in cloud computing while maintaining a load balance between
resources.
Section 2 presents related works and section 3 describes the proposed method along with the offered
architecture. In section 4 the obtained results are described and the conclusions presented in section
5.
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2. Related works

Kansal et al. proposed an active clustering algorithm based on the grouping of similar nodes to
provide a solution to load balancing in cloud computing. The most important advantages of this
method are high-speed execution and processing tasks [12]. Sethi et al. presented a fuzzy logic based
on turn-based load balancing in virtual machine environments in cloud computing in order to achieve
better response time and better processing time. One of the advantages of this approach is that the
load balancing algorithm is performed before the processing servers arrive [13]. James et al. proposed
a method called turn-around. This algorithm assigns queries to virtual machines in turn [14]. Singh et
al. proposed a method based on the Min-Min algorithm for scheduling tasks with load balancing [15].
Deinsh et al. proposed a load scheduling and load balancing method in cloud computing data centers
based on the load balancing algorithm inspired by the colony honey bee algorithm. The main goal of
this algorithm is to respond to requests and manage the best of virtual machines [16]. Kliazovich et
al. proposed an optimal honey bee algorithm based method for balancing the load in cloud computing
and scheduling tasks [17]. Mondal et al. put forward a parallel approach to the scheduling of data
center tasks in cloud computing. One of the important issues they addressed in this study was the
fast execution of the duties and cost of cloud owners [18]. Choudhary et al. presented a method
called GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing. In
their paper, they proposed a meta-heuristic based algorithm for workflow scheduling that considers
minimization of makespan and cost. The proposed algorithm was a hybridization of the popular
meta-heuristic, Gravitational Search Algorithm (GSA) and equally popular heuristic, Heterogeneous
Earliest Finish Time (HEFT) to schedule workflow applications. They introduced a new factor
called cost time equivalence to make the bi-objective optimization more realistic. They consider the
monetary cost ratio (MCR) and schedule length ratio (SLR) as the performance metrics to compare
the performance of their algorithm with other existing algorithms [19]. Elsherbiny et al. presented
an extended Intelligent Water Drops algorithm for workflow scheduling in the cloud computing
environment. They proposed a novel algorithm extending the natural-based Intelligent Water Drops
(IWD) algorithm that optimizes the scheduling of workflows on the cloud. Their algorithm was
implemented and embedded within the workflows simulation toolkit to achieve enhancements in
the performance and cost [20]. Abazari et al. presented a method called MOWS: Multi-objective
workflow scheduling in cloud computing based on a heuristic algorithm to respect security and
performance together [21]. Zhou et al. presented a method called Minimizing cost and makespan
for workflow scheduling in the cloud using fuzzy dominance sort based HEFT [22]. Razzaghzadeh
et al. suggested a dynamic load balancing technique which relies on distributed queues [23]. This
method uses colorful ants to distinguish the abilities of the human resources (HRs). Mapping was
accomplished between the HRs and tasks by allocating a label to all HRs. Here, load balancing relies
on poison distribution and mapping relies on exponential distribution.
Considering the speed of the algorithm and its efficiency in task scheduling, we used the Dragonfly
optimization (DA) [24] along with the cat swarm optimization (CSO) [25] algorithms to improve
the task scheduling and maintain load balancing in cloud computing data centers and presented
CSO-DA.

3. The proposed method

In this section, we describe the steps of the proposed method and present a hybrid CSO-DA.
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3.1. Select the best host with DA
It is important to maintain the load balancing between virtual machines in hosts in cloud com-

puting. Load balancing in hosts means providing the same operational load between virtual machines
in a host that ultimately ends in the load balancing of the host. The proposed algorithm, according
to its capabilities, establishes the load balancing between virtual machines and selects a host with
a lower overhead based on the amount of data overhead available among the total virtual machines
running in the hosts of the data center. The process of selecting the host based on data overhead is
shown in the following equations. In this process, it is important to calculate the expected response
time, latency, packet sending time and allocated bandwidth, as shown in equations (3.1) to (3.6).

Responce_Time=Fin−artt_TDelay (3.1)

The user login time is artt_TDelay and Fin time is the finishing time of the user request and the
delay of the transfer, which is estimated using equation (3.2):

TDelay = T latency + Transfer (3.2)
TDelay is transmission delay and Tlatency is the network latency and the Transfer is when the

data of a request is transferred from one virtual machine to another destination and is estimated
using equations (3.3) and (3.4).

Transfer =
D

Bwperuser
(3.3)

Bwperuser =
BWTotal

Nr
(3.4)

BWTotal is the total bandwidth available and Nr is the number of current user requests. Tracking
the number of user requests between two virtual machines is maintained by Nr.
Based on these parameters, the fitting function of the dragonfly algorithm calculates the data over-
head of each virtual machine shown in equation (3.5).

fitnessVMj
= ResponceT ime VMj

+ TDelay VMj
+Bandwidth VMj

(3.5)
Equation (3.6) calculates the data overhead.

HLi =
n∑

j=1

fitnessVMj
(3.6)

Therefore, the data overhead per host is calculated by the parameters based on equations (3.1) to
(3.6) and the desired host is selected based on the finalized overhead.
The Algorithm 1 shows how to obtain the optimal host.

As seen in algorithm 1, this algorithm receives the number of hosts in the data center as the
login argument. In lines 2 and 3, a variable is used to hold the hostname index number and data
overhead per host. In line 4, the list of virtual machines is set to be completed in the process of
executing the load balancing algorithm. In line 5, scrolling on all hosts so that the host can calculate
the data overhead in each host and use it in subsequent processing. Line 6 calculates the number of
virtual machines available per host. In line 8, all virtual machines are scanned and the amount of
data overhead in each virtual machine is calculated according to (3.1) to (3.6). In line 9, the total
data overhead of each virtual machine is computed and eventually, the data overhead of each host
is also calculated. In lines 12 to 15, all the calculated overheads are compared and hosts with less
data overhead are selected as target hosts. So with this simple strategy, while maintaining the load
balancing between hosts, the optimal host to process the request, regarding energy consumption and
resource allocation can be selected.
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Algorithm 1 Pseudo-code of optimal host selection by proposed load balancing algorithm
1: procedure DA-Fitness(Hosts)
2: BestHost← 0
3: HostIndex← 0
4: HostList← {Null}
5: for <i = 1 To Hosts> do
6: VMS ← GetVMS(Hosts)
7: LVM ← 0
8: for <j = 1 To VMS> do
9: fitnessVM ← LVM + (ResponceT ime+ TDelay +Bandwidth)VMj

10: end for
11: HostList[i]← LVM
12: if <HostList[i]is bettet than BestHost> then
13: BestHost← HostList[i]
14: HostIndex← i
15: end if
16: end for
17: end procedure

3.2. Select best VM with CSO
Cat swarm optimization (CSO) is an optimization heuristic algorithm based on the social behavior
of cats [26]. It is inspiring by the social behavior of cats. Cats exhibit two modes of behavior [25]: 1)
Seeking mode, in which cats do not move. They just stay in a certain position and sense for the next
best move, thus having only state and not velocity. 2) Tracing mode, in which cats move to their
next best positions with some velocity, representing how the cats chase their target. In performance
comparison of swarm optimization algorithms, PSO with weighting factor shows better performance
over simple PSO, but the experiments and results obtained from them show that CSO has better
performance and results than PSO with weighting factor [26]. The Algorithm 2 shows the general
steps for the CSO algorithm.

Algorithm 2 general steps of CSO algorithm
Step 1. Create j copies of the kth cat as represented by SMP.
Step 2. Modify the CDC dimension of each copy randomly.
Step 3. Evaluate the fitness of every copy.
Step 4. Find the best solutions among all copies that is the mapping with the minimum cost.
Step 5. Randomly choose a solution among them and replace it for the ith cat

Cats eliminate unnecessary use of energy, leading to efficient convergence towards a solution, by
following these steps.
Proposed CSO algorithm for scheduling
In this paper we propose a customized algorithm based on CSO concept that aims to efficiently
allocate resources to tasks in a cloud environment, focusing on minimizing the total cost incurred in
the execution of all tasks. The proposed algorithm uses an initial population of N cats among which
some are in seeking mode while others are in tracing mode, according to MR. Each cat represents a
task-resource mapping, which is updated as per the mode that the cat is in.
Assessing the fitness value of the cats is to reduce the minimum cost of cat mapping. In each iteration,
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a new set of cats is chosen to be in tracing mode. The final solution, represented by the best position
among the cats, gives the best mapping that has the minimum cost among all mappings.

1) Seeking mode:
This represents the majority of cats that search the global space while being in a resting state

by intelligent position updating. Here the algorithm uses two basic factors - SMP and CDC. SMP
(seeking memory pool) represents the number of copies to be made for each cat. CDC (count of
dimension to change) defines how many of the allocations are to be altered in a single copy.

2) Tracing mode:
This represents the cats that are in a fast-moving mode and search the local space by moving

towards the next best position with high energy. The general steps are as Algorithm 3:

Algorithm 3 The general steps of the tracing mode of implemented CSO algorithm
Step 1. Find velocity vt+1 for the ith cat by (3.7)
Step 2. Update position of the cat as by (3.8)
Step 3. Check if the position goes out of the defined range. If so, assign the boundary value to the
position.
Step 4. Assess the fitness value for the cats.
Step 5. Update the solution set with the best positions of the current iteration.

vt+1
i = w×vti + rl × cl × (xbest − xt

i) (3.7)
where w is the inertia weight, r1 is a random number such that 0≤r1≤1 and c1 is the acceleration
constant. Vi t is the previous velocity, xbest is the best location and xi t is the current location.

xt+1
i = xt

i+ vt+1
i (3.8)

where xti is the current position.
Therefore, using this algorithm, at any given moment, the most suitable virtual machines can be
used to carry out the necessary processes for scheduling tasks in data centers, maintaining load
balances, and providing a scheduling mechanism for tasks. Finding this virtual machine is shown in
the flowchart of Figure 1.

4. Experimental results

The specifications of the computer we implemented the algorithm and results are as follows: 4 GB
main memory Intel 8-core processor (CoreTM) i7 CPU Q 720@1.60 GHz. Table 1 shows the resources
required by VMs and the tasks (processor, hard disk, RAM, etc.) used in this method.
The results obtained in this paper are compared with [16] and [27]. In order to compare the results,
we have considered scenarios and examined the criteria. The criteria used are:
Execution time: The time between receiving and ending the execution of a request by a VM. The
measurement unit of the execution time is the millisecond. The cost of execution time is calculated
as the equation. (4.1):

EMT =
N∑
i=1

TaskExecutionT imei
NumberOfTasks

(4.1)
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Figure 1: Flowchart of general steps for the implemented algorithm

Table 1: Resources required by VMs and tasks
Factor Levels

Disk size 8GB and 16GB
Network type Megabit and Gigabit
Memory RAM capacity 512MB and 1024MB
VMs number 5, 20, and 40
vCPUs number 2
Tasks Number 10. 20 and 500

Response time: The time it takes from the moment a request is received by the VM until the
processing of that request is completed. The measurement unit of response time is the millisecond.
The cost of response time is calculated as the equation (4.2):

Response time = NumberOfTasks×Time (4.2)
Migrating tasks: This process occurs when the current virtual machine is not suitable to run a
task, and the task has to migrate to another virtual machine.
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With regard to the above scenarios, the scenarios for implementing the CSO-DA algorithm are defined
as:

1. 10 tokens and 5, 20 and 40 virtual machines

2. 20 tokens and 5, 20 and 40 virtual machines

3. 100 tokens and 5, 20 and 40 virtual machines

4. 200 tokens and 5, 20 and 40 virtual machines

5. 500 tokens and 5, 20 and 40 virtual machines

Based on the above scenario, the results are examined and compared.

4.1. Evaluation of execution time
One of the most important parameters that are highly considered in scheduling tasks and re-

source allocation problems in a cloud computing system is the task execution time. This criterion
is calculated based on CPU time and represents the efficiency of the scheduling algorithm. Table
2 shows the results of the execution time for scheduling and allocating of resources for 10 to 500
tasks and 5, 20 and 40 VMs. The aim of maintaining the load balance in cloud computing using the
dragonfly optimization algorithm was compared with methods presented in [16] and [27]. As shown
in Table 2, the execution time achieved using the CSO-AD algorithm in the proposed method is less
than for the other methods and tasks were performed in less time. The execution time comparison
is shown in Figure 2.

Table 2: Comparison of execution time of proposed algorithm with other methods.
Number of tasks

Number of VMs=5 10 20 40 100 200 500
Dragonfly 0.27 0.50 0.31 1.36 1.59 1.40
ACO 0.45 0.75 0.81 1.54 1.84 1.90
PSO 0.54 0.87 0.98 1.63 1.96 2.07

Number of tasks
Number of VMs=20 10 20 40 100 200 500
Dragonfly 0.27 0.50 0.31 0.92 1.15 0.96
ACO 0.45 0.75 0.81 1.10 1.40 1.46
PSO 0.54 0.87 0.98 1.19 1.52 1.63

Number of tasks
Number of VMs=40 10 20 40 100 200 500
Dragonfly 0.27 0.50 0.31 0.71 0.94 0.75
ACO 0.45 0.75 0.81 0.89 1.19 1.25
PSO 0.54 0.87 0.98 0.98 1.31 1.42
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Figure 2: Comparison of execution time of proposed algorithm with other methods [24].

4.2. Evaluation of response time of requests
Response time is another criterion for evaluating the efficiency of allocation of cloud resources.

Obviously, a lower the response time to a request for a resource allocation algorithm means better
performance by the algorithm and better load balancing by the VMs. Table 3 shows the response
time obtained using the CSO-DA optimization algorithm to schedule tasks between 10 to 500 tasks
for 5, 20 and 40 VMs compared with [16] and [27]. As shown in Table 3, the total response time of
the VMs to the tasks decreased as the number of VMs increased, but this downward trend does not
continue endlessly. With a widespread increase in the number of VMs, only the cost of the cloud
service provider increases.

Table 3: Comparison of response time of proposed algorithm with other methods.
Number of tasks

Number of VMs=5 10 20 40 100 200 500
Dragonfly 0.44 0.54 0.81 1.79 1.89 2.16
ACO 1.02 1.75 2.81 2.37 3.10 4.16
PSO 1.24 2.87 4.98 2.59 4.22 6.33

Number of tasks
Number of VMs=20 10 20 40 100 200 500
Dragonfly 0.44 0.54 0.81 1.16 1.26 1.53
ACO 1.02 1.75 2.81 1.74 2.47 3.53
PSO 1.24 2.87 4.98 1.96 3.59 5.70

Number of tasks
Number of VMs=40 10 20 40 100 200 500
Dragonfly 0.44 0.54 0.81 1.00 1.10 1.37
ACO 1.02 1.75 2.81 1.58 2.31 3.37
PSO 1.24 2.87 4.98 1.8 3.43 5.54
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Table 4: Comparison of number of migrations of tasks by proposed algorithm with other methods
Number of tasks

Number of VMs=5 10 20 40 100 200 500
Dragonfly 1 1 2 4 5 9
ACO 2 2 3 7 10 19
PSO 3 3 4 10 13 28

Number of tasks
Number of VMs=20 10 20 40 100 200 500
Dragonfly 0 1 1 2 4 6
ACO 1 2 2 5 7 15
PSO 2 3 3 8 10 17

Number of tasks
Number of VMs=40 10 20 40 100 200 500
Dragonfly 0 0 1 1 2 5
ACO 1 2 2 4 5 12
PSO 2 2 3 7 8 15

As the number of migrating tasks in the cloud decreases, the better is the load balancing between
the VMs. As the execution time and the response time of the tasks increase, the number of task
migrations increase. Table 4 compares the number of tasks migrating between VMs in the CSO-DA
algorithm and the methods presented by [16] and [27] for 10 to 500 tasks and 5, 20, and 40 VMs.
The results show that considering the number of repetitions, the rate of migrating tasks from one
VM to another in the proposed method is less than for the other methods presented in [16] and [27].
As the number of VMs increased, the number of migrations of tasks decreased, but the cost of the
system also increased sharply with an increase in the number of VMs.

Figure 3 shows the decrease in the migration of tasks in the VMs and the consequent improvement
in load balancing for the proposed method. As shown in Figure 3, the number of migrating tasks
performed after several repetitions reached zero while maintaining the load balance. In the first
repetitions, a relatively large number of tasks migrated, but gradually the number of migrations fell
to zero. The proposed algorithm performed better than the other methods as the number of virtual
machines and data centers increased, although the efficiency of the proposed method decreases with
an increase in the number of VMs and data centers. As can be seen in Figure 3, the number of
migrating tasks reaches the zero value after the load balancing.

5. Conclusion

In this paper, the efficiency of the CSO-DA optimization algorithm was examined based on the
following criteria: runtime, response time, task migration and load balance. The results established
that the hybrid CSO-DA algorithm is significantly more efficient, compared to other methods when
it comes to task scheduling, load balancing, and resource allocation. Table 5 shows the results we
obtained.
So, by these results of the above tables, it can be proved that CSO-DA algorithm provides significant
improvements in task scheduling, load balancing, and resource allocations when comparing to other
method.
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Figure 3: Reducing migration of tasks with proposed algorithm by maintaining load balance between VMs.

Table 5: Final comparison of dragonfly algorithm and other methods.

metrics CSO-DA ACO PSO
Improvement
compared
to ACO

Improvement
compared
to PSO

Run-time average 0.723 1.033 1.16 41% 47%
Response time average 1.035 2.298 3.468 31% 39%
Task migration average 2 6 8 25% 42%
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