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Abstract

It is well known that fixed point problems of contractive-type mappings defined on cone metric
spaces over Banach algebras are not equivalent to those in usual metric spaces (see [3] and [10]).
In this framework, the novelty of the present paper represents the development of some fixed point
results regarding sequences of contractions in the setting of cone metric spaces over Banach algebras.
Furthermore, some examples are given in order to strengthen our new concepts. Also, based on the
powerful notion of a cone metric space over a Banach algebra, we present important applications to
systems of differential equations and coupled functional equations, respectively, that are linked to
the concept of sequences of contractions.
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1. Terminology and preliminary concepts

In the present research article we try to tackle the convergence of sequences of contractions defined
on cone metric spaces over Banach algebras. First of all we need to recall that F.F. Bonsall [2] and
S.B. Nadler Jr. [13] studied some stability results regarding sequences of contractions defined on a
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whole metric space (X, d). Furthermore, an interesting extension of the previous results was made
by M. Păcurar [14], who developed some fixed point results for the convergence of the sequence
of fixed points of almost contractions. M. Păcurar presented two interesting theorems, the first
one regarding the pointwise convergence and the second one concerning uniform convergence of a
sequence of almost contractions defined by the same coefficients. Now, our second aim of the present
section is to remind some mathematical notions that are well established in the field of nonlinear
analysis. For more information regarding these concepts, we kindly refer to [2] and [14]. We first
present the idea of pointwise convergence.

Definition 1.1. Let (X, d) be a metric space. Also, let T : X → X and Tn : X → X be some given
mappings for each n ∈ N. By definition, the sequence (Tn)n∈N converges pointwise to T on X, briefly

Tn
p−→ T , if for each ε > 0 and for every x ∈ X, there exists N = N(ε, x) > 0, such that for each

n ≥ N , we have that d(Tnx, Tx) < ε.

We easily observe that in Definition 1.1, one can replace the strict inequality d(Tnx, Tx) < ε by the
non-strict inequality without changing the idea behind the concept of pointwise convergence.
Similarly, the particular notion of uniform convergence of a sequence of mappings is given as follows.

Definition 1.2. Let (X, d) be a metric space. Also, let T : X → X and Tn : X → X be some
given mappings for each n ∈ N. By definition, the sequence (Tn)n∈N converges uniformly to T on X,
briefly Tn

u−→ T , if for each ε > 0, there exists N = N(ε) > 0, such that for each n ≥ N and for
every x ∈ X, one has the following: d(Tnx, Tx) < ε.

Also, for a family of mappings we can briefly recall the fundamental notions of equicontinuity and
uniform equicontinuity, respectively.

Definition 1.3. Let (X, d) be a metric space and Tn : X → X be some given mappings, for every
n ∈ N. The family (Tn)n∈N is called equicontinuous if and only if for every ε > 0 and for each
x ∈ X, there exists δ = δ(ε, x) > 0, such that for every y ∈ X satisfying d(x, y) < δ, one has that
d(Tnx, Tny) < ε.

Now, regarding uniform equicontinuity of a family of operators, we employ the following definition.

Definition 1.4. Let (X, d) be a metric space and Tn : X → X be some given mappings, for every
n ∈ N. The family (Tn)n∈N is called uniformly equicontinuous if and only if for every ε > 0,
there exists δ = δ(ε) > 0, such that for every x and y in X, satisfying d(x, y) < δ, one has that
d(Tnx, Tny) < ε.

As before, one can easily replace the strict inequality with the non-strict one, such that the two
definitions are equivalent to each other. Now, it is time to remind that the starting point of the
present research article is the paper of L. Barbet and K. Nachi. According to [1], the authors
considered some fixed point results regarding the convergence of fixed points of contraction mappings
in the regular setting of a metric space (X, d). The novelty of the already mentioned paper consists on
redefining pointwise and uniform convergence, respectively, but for operators defined on subsets of the
whole space and not on the entire metric space (X, d). Pointwise convergence was generalized by G-
convergence and uniform convergence was extended as H-convergence. For the sake of completeness,
we recall these two notions here.
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Definition 1.5. Let (X, d) be a metric space and Xn be nonempty subsets of X, for each n ∈ N.
Let Tn : Xn → X for every n ∈ N and T∞ : X∞ → X be some given mappings. By definition T∞ is
the G-limit mapping of the sequence (Tn)n∈N, whenever (Tn)n∈N satisfies property (G), i.e.

(G) : ∀x ∈ X∞, ∃(xn)n∈N ∈
∏
n∈N

Xn, s.t. xn → x and Tnxn → T∞x.

Regarding the generalization of uniform convergence for mappings that are not defined on the whole
metric space, we remind the following concept from [1].

Definition 1.6. Let (X, d) be a metric space and Xn be nonempty subsets of X, for each n ∈ N.
Let Tn : Xn → X for every n ∈ N and T∞ : X∞ → X be some given mappings. By definition T∞ is
the H-limit mapping of the sequence (Tn)n∈N, whenever (Tn)n∈N satisfies property (H), i.e.

(H) : ∀(xn)n∈N ∈
∏
n∈N

Xn,∃(yn)n∈N ⊂ X∞, s.t. d(xn, yn)→ 0 and d(Tnxn, T∞yn)→ 0.

Now, since we have reminded the basic concepts crucially important in our fixed point analysis, we
make the following remark that in Theorem 2 from [1] and in Theorem 1 from [13], the authors
considered the contractions to be defined on a metric space and on subset of a metric space, re-
spectively. Moreover, they have supposed that the contractions have at least a fixed point. On the
other hand, M. Păcurar in [14] considered that the almost contractions were defined on a complete
metric space and, in this case, each of them have a unique fixed point. For this, see This means that
in our case it is of no importance if we consider or not the completeness of the cone metric space
over the given Banach algebra. Similarly, in [Theorem 2] of Nadler’s article, that author considered
the pointwise convergence of a sequence of fixed points under the assumption that the contractions
are defined on a locally compact metric space (X, d). Additionally, in [14], M. Păcurar extended
this result for the case of almost contractions that are defined on a complete metric space, because
these mappings are not continuous so it is not properly to talk about the equicontinuity of a family
of almost contractions. For this, see the observation made by M. Păcurar before Theorem 2.6 in
[14]. So, in our framework of a cone metric space over a Banach algebra, it is of no loss to employ
the analysis of M. Păcurar when dealing with the completeness of such a space. Finally, for other
interesting results concerning the stability of fixed points in 2-metric spaces, stability of fixed points
for sequences of (ψ, φ)-weakly contractive mappings and mappings defined on an usual metric space,
we let the reader follow [11], [12] and [16], respectively.
Now, it is time to move our focus to some articles regarding fixed point results in the setting of cone
metric spaces over Banach algebras. It is well known that the fixed point theorems of contractive-
type mappings defined on cone metric spaces are similar to those of the usual metric spaces, if the
underlying cone is normal. These type of fixed point results were introduced in [6]. On the other
hand, H. Liu and S. Xu [10] introduced the concept of cone metric spaces with Banach algebras in
order to study fixed point results, replacing Banach spaces by Banach algebras and they gave an
example in order to show that the fixed point results defined on this kind of spaces are non-equivalent
to that of usual metric spaces. Furthermore, S. Xu and S. Radenović [17] considered mappings de-
fined on cone metric spaces over Banach algebras but one solid cones, without the usual assumption
of normality. An interesting generalization was made by H. Huang and S. Radenović [4], considering
cone b-metric spaces over Banach algebras. They have studied common fixed points of generalized
Lipschitz mappings. Also, P. Yan et. al. [18] developed coupled fixed point theorems for mappings
in the setting of cone metric spaces. Finally, the idea of replacing the Banach space by a Banach
algebra was motivated by [7] and [8] in which some remarks about the connection between fixed
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point theorems for different mappings and in the case of usual normal cones of Banach spaces and
usual metric spaces was given. Recently, in [3], Huang et. al. studied some topological properties
regarding cone metric spaces over Banach algebras. Also, they have studied some key concepts like
T-stability and well-posedness regarding fixed point problems in these abstract spaces. Now, at the
end of this section, we are ready to review some necessary concepts and theorems regarding cone
metric spaces over Banach algebras. Considering A to be a Banach algebra with zero element θ ∈ A
and unit element e ∈ A,we recall the notion of a cone from [9].

Definition 1.7. A nonempty closed subset P of A is called a cone if the following conditions hold:

(P1) θ and e are in P,

(P2) αP + βP ⊂ P, for every α, β ≥ 0,

(P3) P 2 ⊆ P,

(P4) P ∩ (−P ) = {θ}.

Furthermore, we recall that P is called a solid cone if int(P ) 6= ∅, where int(P ) represent the
topological interior of the set P . Now, as in [4], one can define a partial ordering � with respect to
the cone P , such as if x and y are in A, then x � y if and only if y − x ∈ P . Also, we shall write
x ≺ y in order to specify that x 6= y and x � y. At the same time, for x, y ∈ A, we denote by x� y
the fact that y − x ∈ int(P ), based on the assumption that we will always suppose that the cone
P is solid. From Definition 1.6 of [9] and Definition 1.1 of [10], we introduce the well-known cone
metric distances over the Banach algebra A and present some useful terminologies.

Definition 1.8. Let X be a nonempty set and d : X × X → A be a mapping that satisfies the
following conditions :

(D1) θ � d(x, y), for each x, y ∈ X, and d(x, y) = θ if and only if x = y,

(D2) d(x, y) = d(y, x), for each x, y ∈ X,
(D3) d(x, y) � d(x, z) + d(z, y), for every x, y, z ∈ X.

Then (X, d) is called a cone metric space over the Banach algebra A.

Furthermore, from [17], we recall the following concepts.

Definition 1.9. Let (X, d) be a complete cone metric space over the Banach algebra A. Also, let
x be an element of X and (xn)n∈N ⊂ X be given. Then, we have the following :

(i) (xn)n∈N converges to x, briefly lim
n→∞

xn = x, if for every c� θ, ∃N = N(c) > 0,

such that d(xn, x)� c, ∀n ≥ N.

(ii) (xn)n∈N is a Cauchy sequence , if for every c� θ, ∃N = N(c) > 0,

such that d(xn, xm)� c, ∀n,m ≥ N.

(iii) (X, d) is complete if each Cauchy sequence is convergent.

In Definition 1.9, c� θ represent an useful notation for θ � c, so it lies no confusion in the rest of
the present article. Now, following the well-known Rudin’s book of Functional Analysis [15], for the
sake of completeness, we recall the idea of the spectral radius of an element of the Banach algebra
A.
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Lemma 1.10. Let k ∈ A be a given element. Then, by definition we consider the spectral radius of
k, by

ρ(k) = lim
n→∞

‖kn‖
1
n = inf

n≥1
‖kn‖

1
n .

If λ ∈ C and ρ(k) < |λ|, then the element λe− k is invertible. Also, one has that :

(λe− k)−1 =
∞∑
i=0

ki

λi+1
.

Now, from [9], we present some important properties regarding the spectral radius of an element of
a Banach algebra A and some notions concerning the idea of a c-sequence, respectively.

Definition 1.11. A sequence (dn)n∈N from a Banach algebra A endowed with a solid cone P is
called a c-sequence if and only if for every c � θ, there exists N = N(c) ∈ N, for which one has
dn � c, for each n > N .

Alternatively, it is easy to see that it is of no loss if we take n ≥ N in the above definition. Moreover,
one can use, as in the case of an usual metric space, alternative definitions such as the Proposition
3.2 from [17] when the sequence (dn)n∈N is from P . Also, we remind the fact that one can rewrite
the definition of convergent sequences and Cauchy sequences respectively, using the Definition 1.11
and Definition 1.8 from [9]. Furthermore, we have the following properties that can be put together
in a single lemma. Regarding these properties, one can follow [4], [7], [9] and [17].

Lemma 1.12. Consider A be a Banach algebra. Then, we have the following :

(1) if u � v � w or u� v � w, then u� w,

(2) if θ � u� c, for every c� θ, then u = θ,

(3) if P is a cone,(un)n∈N, (vn)n∈N are two c-sequences in A and

α, β are in P, then (αun + βvn)n∈N is also a c-sequence,

(4) if P is a cone and k ∈ P with ρ(k) < 1, then ((k)n)n∈N is a c-sequence,

(5) if k ∈ P, k � θ, wih ρ(k) < 1, then (e− k)−1 � θ.

On the other hand, we end this section by reminding the readers that for interesting examples of
complete cone metric spaces over Banach algebras and for useful applications to functional and
integral equations, we refer to [4], [5], [9], and [18]. Last, but not least, if T is an operator, then by
FT we denote the set of fixed points of the mapping T . Finally, since our aim is to use the fixed
point techniques in order to develop applications that have a meaningful connection with nonlinear
systems of functional and differential equations, we kindly refer to [4] and [9] for some important
applications to nonlinear differential problems through fixed point results.

2. Sequences of contractions on cone metric spaces over Banach algebras

In the present section, we consider A to be a Banach algebra and P to be the underlying solid
cone. Our aim is to adapt in a natural way the concepts of pointwise and uniform convergence and
the notions of equicontinuity for a family of mappings, respectively. First of all, we consider the
definition of pointwise convergence in the framework of a cone metric space over the given Banach
algebra A.
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Definition 2.1. Let (X, d) be a cone metric space over the Banach algebra A. Also, let T : X → X
and Tn : X → X be some given mappings for each n ∈ N. By definition, the sequence (Tn)n∈N
converges pointwise to T on X, briefly Tn

p−→ T , if for each c � θ, c ∈ A and for every x ∈ (X, d),
there exists N > 0 that dependens on c and x, such that for each n ≥ N , we have that d(Tnx, Tx)� c.

In a similar way, the particular notion of uniform convergence of a sequence of mappings can be
constructed as follows.

Definition 2.2. Let (X, d) be a cone metric space over the Banach algebra A. Also, let T : X → X
and Tn : X → X be some given mappings for each n ∈ N. By definition, the sequence (Tn)n∈N
converges uniformly to T on X, briefly Tn

u−→ T , if for each c � θ, c ∈ A, there exists N > 0 that
depedens only on c, such that for each n ≥ N and for every x ∈ (X, d), one has the following :
d(Tnx, Tx)� c.

On the other hand, for a family of mappings defined on a cone metric spaces over A, we introduce
the fundamental notions of equicontinuity and uniformly equicontinuity, respectively.

Definition 2.3. Let (X, d) be a cone metric space over the Banach algebra A and Tn : X → X be
some given mappings, for every n ∈ N. The family (Tn)n∈N is called equicontinuous if and only if for
every c1 � θ, c1 ∈ A and for each x ∈ (X, d), there exists c2 � θ, c2 ∈ A that depends on c1 and
x, such that for every y ∈ (X, d) satisfying d(x, y) � c2, one has that d(Tnx, Tny) � c1, for every
n ∈ N.

Definition 2.4. Let (X, d) be a cone metric space over the Banach algebra A and Tn : X → X be
some given mappings, for every n ∈ N. The family (Tn)n∈N is called uniformly equicontinuous if and
only if for every c1 � θ, c1 ∈ A, there exists c2 � θ, c2 ∈ A that depends only on c1, such that for
every x and y in (X, d) with d(x, y)� c2, one has that d(Tnx, Tny)� c1, for every n ∈ N.

Inspired by [Example 2.17] of [4] in which the authors presented a complete cone b-metric space over
a Banach algebra with coefficient s = 2, we are ready to present a modified version in which we have
an usual complete metric space over a Banach algebra.

Example 2.5. Let’s consider A to be set of all the matrices of the form

(
α β
0 α

)
, where α and

β are from R. On A, we define a norm ‖ · ‖, such as for every matrix from A, one has that∥∥∥(α β
0 α

)∥∥∥ = |α|+ |β|. Also, on A we have the usual matrix multiplication. Moreover, one can see

that P =
{(α β

0 α

)
/ α, β ≥ 0

}
is a nonempty solid cone on A. Furthermore, one can verify that A is

a Banach algebra. For the sake of completeness, we verify that the well-know triangle inequality holds
under multiplication. That means that we verify that ‖A ·B‖ ≤ ‖A‖ · ‖B‖, for every matrices A and

B, i.e. when A =

(
α1 β1

0 α1

)
and B =

(
α2 β2

0 α2

)
. It follows that ‖A ·B‖ = |α1α2|+ |α1β2 +α2β1| ≤

|α1α2|+ |α1β2|+ |α2β1|. At the same time, it follows that ‖A‖·‖B‖ = |α1α2|+ |α1β2|+ |α2β1|+ |β1β2|.
From all of this, it is easy to see that ‖A ·B‖ ≤ |A‖ · ‖B‖.
Now, we consider X = [0, 1] and define d : X × X → A, such as for every x, y ∈ X, we have

d(x, y) =

(
|x− y| k · |x− y|

0 |x− y|

)
, where k ≥ 1. Now, we shall validate the fact that d is indeed a

cone metric over the given Banach algebra A with the identity element e to be the identity matrix I2
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and the zero element θ to be the matrix with all elements 0. For this, we consider x, y and z to be
arbitrary elements of X.

• We easily observe that d(x, y) = d(y, x),

• d(x, y) � θ ⇔
(
|x− y| k · |x− y|

0 |x− y|

)
�
(

0 0
0 0

)
⇔
(
|x− y| k · |x− y|

0 |x− y|

)
−
(

0 0
0 0

)
∈ P

⇔
(
|x− y| k · |x− y|

0 |x− y|

)
∈ P

⇔ |x− y| ≥ 0.

• Taking A := d(x, y), B := d(x, z) and C := d(z, y),

we shall show that A ≤ B + C, i.e. B + C − A ∈ P.

This means that :(
|x− z|+ |z − y| k · [|x− z|+ |z − y|]

0 |x− z|+ |z − y|

)
−
(
|x− y| k · |x− y|

0 |x− y|

)
∈ P

⇐⇒

{
|x− z|+ |z − y| ≥ |x− y|
k · [|x− z|+ |z − y|] ≥ k · |x− y|

, which is valid.

Now, based on the Example 2.5, we shall present also an example, in which we have the uniform
convergence of a sequence of mappings defined on the previous cone metric space (X, d) over the
Banach algebra A given above.
Moreover, from now on we specify that the notation lim

n→∞
(A)

xn = θ means the convergence under

the Banach algebra A, i.e. (xn)n∈N is a given sequence that satisfies the fact that is a c-sequence.
Furthermore, for a real given sequence (yn)n∈N that converges to a real number y, we denote lim

n→∞
(R)

yn =

y. Finally, we make the observation that if we work with sequences of mappings, the latter covergence
can be understood pointwise or uniformly, depending on the given context.

Example 2.6. For every n ∈ N, let fn : [0, 1]→ [0, 1], such as fn(x) =
x

n
, for each x ∈ [0, 1]. Also,

consider f to be the null mapping from [0, 1] to {0}. Step by step, we show that fn
u−→ f with respect

to the cone metric d from Example 2.5. This means that for every c� θ, there exists N = N(c) > 0,
such that for all n ≥ N and for each x ∈ (X, d), we have that d(fnx, fx)� c.

Furthermore, we observe that d(fnx, fx) = d
(x
n
, 0
)

=


∣∣∣x
n
− 0
∣∣∣ k ·

∣∣∣x
n
− 0
∣∣∣

0
∣∣∣x
n
− 0
∣∣∣
. Furthermore, since

the null element θ is the null matrix, we obviously have that

(
0 0
0 0

)
�

xn k · x
n

0
x

n

 . First of all, we

show that

xn k · x
n

0
x

n

 �
 1

n
k · 1

n

0
1

n

. Equivalently, this means that

 1

n
k · 1

n

0
1

n

−
xn k · x

n
0

x

n

 ∈
P . Since

1− x
n
≥ 0, because x ≤ 1, then the above relation is valid.
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Denoting by An :=

 1

n
k · 1

n

0
1

n

, we shall show that lim
n→∞
(A)

An = θ. This means that (An)n∈N is a c-

sequence, i.e. for an arbitrary c� θ, c ∈ A, there exists N > 0 that depends on c, such that for every
n ≥ N , it follows that An � c. For this, let’s consider c ∈ int(P ). Since c is arbitrary, we can freely

choose c =

(
α β
0 α

)
, with α, β > 0. We must show that there exists an index N > 0 that depends on

c, i.e. N depends on α and β, such that for all n ≥ N , it must follow that

 1

n
k · 1

n

0
1

n

� (
α β
0 α

)
.

This is the same as

α− 1

n
β − k · 1

n

0 α− 1

n

 ∈ int(P ), i.e.


α >

1

n
,

β > k · 1

n
.

We know that lim
n→∞

(R)

1

n
= 0

and also lim
n→∞

(R)

k

n
= 0. From the first limit, it follows that for the above α > 0, there exists N1 that

depends on α, such that for every n ≥ N1, one has that
1

n
< α. Now since n ≥ N1, it follows that

there indeed exists N1 :=

[
1

α

]
+ 1, such as

1

n
≤ 1

N1

< α. Now, for the second limit and for the above

β > 0, there exists N2 that depends solely on β, such that for every n ≥ N2, one has that
k

n
< β.

Now since n ≥ N2, we get that there exists N2 :=

[
k

β

]
+ 1, such as

k

n
≤ k

N2

< β. In our analysis, we

recall that the notation with the square brackets means the well-known integer part of a given number.
From all of this, we can find N := max{N1, N2} that obviously depends on α and β, i.e. depends on

c, such that α >
1

n
and β >

k

n
, respectively. This means that (An)n∈N is a c-sequence. So, it implies

that for an arbitrary element c � θ, c ∈ A, there exists N = N(c) > 0, such that for every n ∈ N,
we have that An � c. Using the fact that d(fnx, fx) � An for each x ∈ [0, 1] and using (1) of Lemma
1.12, we get the desired conclusion.

From [9], we recall an example of a cone metric space over a Banach algebra, which will be used
further in this paper.

Example 2.7. Let A = R2. Then A is a Banach algebra, with the norm given by ‖(u1, u2)‖ = |u1|+
|u2|, for any arbitrary element (u1, u2) of A. Moreover, we have the multiplication u·v = (u1v1, u1v2+
u2v1), where u = (u1, u2) and v = (v1, v2) are given elements. Also P = {u = (u1, u2) / u1, u2 ≥ 0}
is a solid cone over R2. Taking X̃ = R2, we can define the operator d : X̃ × X̃ → A, by d(x, y) =
(|x1−y1|, |x2−y2|), where x = (x1, x2) and y = (y1, y2). Then (X̃, d) is a cone metric space over R2.

We mention that if we take X = [0, 1) × [0, 1) ⊂ X̃, then it is easy to see that (X, d) is also a
cone metric space over R2, where d is defined in Example 2.7. Also, based on the previous example,
we shall present a sequence of mappings that converges pointwise and does not converge uniformly
toward the null mapping, with respect to the cone metric d.

Example 2.8. For every n ∈ N, let Tn : [0, 1)× [0, 1)→ [0, 1)× [0, 1), defined as Tn(x) = (xn
2

1 , x
n
2 ),

where x = (x1, x2) ∈ [0, 1)2. Also, we consider the null operator T , i.e. T (x) = (0, 0), where
x ∈ [0, 1)2 and T : [0, 1)× [0, 1)→ {0} × {0} ⊂ [0, 1)× [0, 1). In the present example, we shall show
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that Tn
p−→ T , but Tn 6

u−→ T .
• First of all, we shall show that the sequence (Tn)n∈N converges pointwise to T with respect to d.
This means that for an arbitrary c � θ, c ∈ R2 and for every x ∈ [0, 1)2, we must find an index
N > 0 that depends on c and x, such that for all n ≥ N , one has d(Tnx, Tx) � c. For this, let’s
consider c = c(c1, c2), with c1, c2 > 0. Also, let x to be the pair (x1, x2), such that x1, x2 ∈ [0, 1).
Then, it follows that :

d(Tnx, Tx)� c

⇔ (c1, c2)− d(Tnx, Tx) ∈ int(P )

⇔ (c1, c2)− d
((
xn

2

1 , x
n
2

)
, (0, 0)

)
∈ int(P )

⇔

{
c1 − xn

2

1 > 0

c2 − xn2 > 0
⇔

{
c1 > xn

2

1

c2 > xn2 .

Now, we shall use the fact that lim
n→∞

(R)

xn
2

1 = 0 and also lim
n→∞

(R)

xn2 = 0, i.e. the functions fn(x1) = xn
2

1

and gn(x2) = xn2 coverge pointwise toward 0. From the first limit, it follows that for c1 > 0 considered

above, there exists N1 = N1(c1, x1) > 0, such that for each n ≥ N1, we have that xn
2

1 ≤ x
N2

1
1 < c1.

Analogous, for the second limit and for c2 > 0 considered above, there exists N2 = N2(c2, x2) > 0,
such that for each n ≥ N2, one has that xn2 ≤ xN2

2 < c2. Also, we mention that N1 and N2 ca be
formally determined as in Example 2.6.
From all of this, we find N = max{N1, N2}, that depends on c1, c2, x1 and x2 and so depend on c and
x, for which we have d(Tnx, Tx)� c, for every n ≥ N .
• Now, it is time to show that (Tn)n∈N does not converge uniformly to T with respect to d. We know
that if Tn

u−→ T , then for every c� θ, c ∈ A, there exists N = N(c) > 0, such that for every n ≥ N ,
one has d(Tnx, Tx) � c, for each x ∈ [0, 1)2. For this, let’s consider c = (c1, c2), with c1, c2 > 0.
We know that d(Tnx, Tx) � c requires that xn

2

1 < c1 and xn2 < c2 simulatenously. For all n ∈ N,
we can take the particular case when x depends on n and choose x1(n) = 5−1/n2

and x2(n) = 3−1/n.

In this manner, we obtain that xn
2

1 =
1

5
< c1 and xn2 =

1

3
< c2. This leads to the fact that taking

c = (c1, c2), with c1 ≤
1

5
and c2 ≤

1

3
, then c �

(
1

5
,
1

3

)
. So, for example, if we take c =

(
1

11
,
1

8

)
, we

get a contradiction.

Now, we are ready to present our main results, i.e. regarding the pointwise and uniform conver-
gence respectively of a sequence of mappings with respect to a cone metric over a Banach algebra
A.

Theorem 2.9. Let (X, d) be a cone metric space over a Banach algebra A. Also, consider Tn, T :
X → X, for each n ∈ N such that they satisfy the following assumptions :

(i) for every n ∈ N, Tn has at least a fixed point, i.e. there exists xn ∈ Tn,
(ii) the operator T is an α− contraction with respect to the cone metric d, i.e. there exists α ∈ P,
with ρ(α) < 1, such that d(Tx, Ty) � αd(x, y), for all x, y ∈ X,

(iii)Tn
u−→ T as n→∞, with respect to the cone metric,

(iv)(X, d) is a complete cone over the Banach algebra A.

Then, following the fact that x∗ is the unique fixed point of the operator T , we have that (d(xn, x
∗))n∈N

is a c-sequence.
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Proof . Following [17], we know that there exists a unique fixed point of T , i.e. x∗ ∈ FT . Since we
need a major bound for d(xn, x

∗), we consider the following estimations :

d(xn, x
∗) =d(Tnxn, Tx

∗) �
d(Tnxn, Txn) + d(Txn, Tx

∗) �
d(Tnxn, Txn) + αd(xn, x

∗).

Using the idea of a solid cone in the Banach algebra A, this leads to

αd(xn, x
∗) + d(Tnxn, Txn)− d(xn, x

∗) ∈ P ⇔
(α− e)d(xn, x

∗) + d(Tnxn, Txn) ∈ P ⇔
d(Tnxn, Txn)− (e− α)d(xn, x

∗) ∈ P.
We specify that here we have used the fact that (e−α) is the opposite element of (α−e) in the setting
of the given Banach algebra. Also. we know that (e − α)−1 � θ because α � θ and that (e − α)−1

is well defined since ρ(α) < 1. Now, using the fact that P 2 ⊂ P and multiplying by (e − α)−1, it
follows that

(e− α)−1d(Tnxn, Txn)− d(xn, x
∗) ∈ P ⇔

d(xn, x
∗) � (e− α)−1d(Tnxn, Txn).

Now, we need to show that

for every c� θ, c ∈ A, there exists N1 ∈ N that depends on c,

such that for every n ≥ N1, one has d(xn, x
∗) � c.

For this, let’s consider c ∈ A, c� θ an arbitrary fixed element. We know that Tn
u−→ T . This means

that

for every c̄� θ, c̄ ∈ A, there exists N2 ∈ N that depends on c̄,

such that for every n ≥ N2, one has d(Tn(x), T (x))� c̄, for all x ∈ (X, d).

We know that d(xn, x
∗) � (e−α)−1d(Tn(xn), T (xn)). Also (e−α)−1 ∈ P because α ∈ P . Furthermore

d(Tnxn, Txn) ∈ P ⊂ A, by Proposition 3.3 from [17] and at the same time taking x = xn in the
definition of uniform convergence, we get that (d(Tnxn, Txn))n∈N is a c-sequence. This leads to the
fact that ((e− α)−1d(Tnxn, Txn))n∈N is also a c-sequence. So, we obtain that :

for c� θ, c ∈ A, there exists N2 = N2(c), such that for all n ≥ N2, we have

d(xn, x
∗)� c.

Using (1) of Lemma 1.12, the conclusion follows properly. �
Now we are ready to present our second crucial result concerning the pointwise convergence of a

sequence of operators with respect to a given Banach algebra A.

Theorem 2.10. Let (X, d) be a cone metric space over a Banach algebra A. Also, consider Tn, T :
X → X, for each n ∈ N such that they satisfy the following assumptions :

(i) the operator Tn is an α− contraction with respect to the cone metric d, i.e. there exists α ∈ P,
with ρ(α) < 1, such that d(Tnx, Tny) � αd(x, y), for all x, y ∈ (X, d) and n ∈ N,

(ii) the operator T is an α0 − contraction with respect to the cone metric d, i.e. there exists α0 ∈ P
with ρ(α0) < 1, such that d(Tx, Ty) � α0d(x, y), for all x, y ∈ X,

(iii)Tn
p−→ T as n→∞,

(iv)(X, d) is a complete cone over the Banach algebra A.
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Then, following the fact that x∗n are the unique fixed points of the operators Tn, we have that
(d(x∗n, x

∗))n∈N is a c-sequence.

Proof . From (i) and (iv), we obtain that for each n ∈ N, there exists a unique fixed point of Tn,
i.e. x∗n ∈ FTn . Furthermore, from hyphotesis (ii) and (iv), it follows that there exists a unique fixed
point of the operator T , namely x∗ ∈ FT . Now, in order to obtain some bounds on d(x∗n, x

∗), we
consider the following estimations:

d(x∗n, x
∗) =d(Tnx

∗
n, Tx

∗) �
d(Tnx

∗
n, Tnx

∗) + d(Tnx
∗, Tx∗) �

αd(x∗n, x
∗) + d(Tnx

∗, Tx∗)⇔ .

This leads to the following inequalities with respect to the solid cone P of the Banach algebra A :

d(Tnx
∗, Tx∗) + αd(x∗n, x

∗)− d(x∗n, x
∗) ∈ P ⇔

d(Tnx
∗, Tx∗) + (α− e)d(x∗n, x

∗) ∈ P ⇔
d(Tnx

∗, Tx∗)− (e− α)d(x∗n, x
∗) ∈ P.

From α ∈ P and by the fact that ρ(α) < 1, it follows that there exist (e−α)−1 ∈ P . Multiplying by
(e− α)−1 and using the fact that P 2 ⊆ P , we have that

(e− α)−1d(Tnx
∗, Tx∗)− d(x∗n, x

∗) ∈ P.

We obtain the following :
d(x∗n, x

∗) � (e− α)−1d(Tnx
∗, Tx∗).

Now, one can observe that (e − α)−1 =
∞∑
i=0

αi. Since α and e are in P , by induction one can prove

that αi ∈ P , for every i ≥ 0. So (e− α)−1 ∈ P . Now, we want to show that :

for every c� θ, c ∈ A, there exists N2 ∈ N that depends on c,

such that for all n ≥ N2, we have d(x∗n, x
∗) � c.

Now, from the fact that Tn
p−→ T , it follows that

for every c̄� θ, c̄ ∈ A and for x ∈ (X, d), there exists N2 ∈ N that depends on c̄ and x,

such that for all n ≥ N2, we have that d(Tnx, Tx)� c̄.

Now, taking x = x∗ fixed, we get that (d(Tnx
∗, Tx∗)) is a c-sequence. Also, since (e− α)−1 ∈ P , by

Proposition 3.3 of [17], it follows that (d(x∗n, x
∗))n∈N is also a c-sequence. This reasoning can be done

as in the proof of Theorem 2.9 and this completes our proof. We observe that x∗ is fixed from the
beginning, so it does not influence the rank N2 from the definition of a c-sequence. This means that
our conclusion is well defined. Finally, as in Theorem 2.9, using Proposition 3.2 of [17], it follows
also that d(x∗n, x

∗) � c and the proof is over. � Now, as in Theorem 2.9, one can observe that we
can use an equivalent definition of pointwise convergence using non-strict inequalities, and this does
not influence the obtained results.
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3. (G)-convergence and (H)-convergence

Following [1], our aim of the present section is to extend the concepts of (G)-convergence and
(H)-convergence, respectively for sequences of operators that have different domains, from the case of
usual metric spaces to the case of cone metric spaces over a Banach algebra. We begin by extending
some notions regarding these two types of convergence from metric spaces to cone metric spaces.
The first concept concerns an extension of the well-known pointwise convergence, but for operators
that do not have the same domain of definition.

Definition 3.1. Let Xn, X∞ be subsets of X, where (X, d) is a cone metric space (not necessarily
complete) over a given Banach algebra A. Also, let’s consider for each n ∈ N some operators
Tn : Xn → X and T∞ : X∞ → X. By definition, T∞ is a (G)-limit of the sequence (Tn)n∈N, when
the family of mappings (Tn)n∈N satisfies the following property :

(G) : for each x ∈ X∞, there exists a sequence (xn)n∈N, with xn ∈ Xn (n ∈ N), such that :

(d(xn, x))n∈N is a c-sequence and (d(Tnxn, T∞x))n∈N is also a c-sequence.

Now, the second definition of the present section concerns a generalization of the uniform convergence,
but for mappings that do not have the same domain.

Definition 3.2. Let Xn, X∞ be subsets of X, where (X, d) is a cone metric space (not necessarily
complete) over a given Banach algebra A. Also, let’s consider for each n ∈ N some operators
Tn : Xn → X and T∞ : X∞ → X. By definition, T∞ is a (H)-limit of the sequence (Tn)n∈N, when
the family of mappings (Tn)n∈N satisfies the following property :

(H) : for each sequence (xn)n∈N, with xn ∈ Xn, for every n ∈ N,
there exists a sequence (yn)n∈N ⊂ X∞, such that :

(d(xn, yn))n∈N is a c-sequence and (d(Tnxn, T∞yn))n∈N is also a c-sequence.

Our first result from this section concerns the fact that the (H)-limit of a sequence of operators is
also a (G)-limit, under suitable circumstances. Moreover, since we need the idea of continuity of an
operator, we can employ two definitions : an extension of the definition of continuity from the case
of metric spaces to the case of cone metric spaces over Banach algebras and the second one the idea
of sequential continuity (for this see (iii) of Definition 2.1 from [9]). Namely, we have the following
remark.

Remark 3.3. If (X, d) is a cone metric space over a Banach algebra A, then :
a) An operator T is continuous in x0 ∈ (X, d) if and only if for each c � θ, c ∈ A, there exists
c̄ ∈ P that depends on c, such that for every x ∈ (X, d), satisfying d(x, x0) � c̄, one has that
d(T (x), T (x0))� c. Moreover, the operator T is continuous if it is continuous at every point of it’s
domain.
b) An operator T is sequential continuous if for every sequence (yn)n∈N convergent to x ∈ X, i.e.
satisfying (d(yn, x))n∈N is a c-sequence, then (d(Tyn, Tx))n∈N is also a c-sequence.

Proposition 3.4. Let (X, d) be a cone metric space over a given Banach algebra A. Also, for each
n ∈ N, let Xn be some nonempty subsets of X. Also, consider another nonempty subset of X, namely
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X∞. Furthermore, suppose that the following conditions are satisfied :

(i) if x ∈ X∞, then there exists (xn)n∈N, with xn ∈ Xn for every n ∈ N,
such that (d(xn, x))n∈N is a c-sequence,

(ii) T∞ : X∞ → X is sequential continuous,

(iii) T∞ is a (H)-limit for the family (Tn).

Then, T∞ is a (G)-limit for the family (Tn).

Proof . Let x ∈ X∞. Then, from (i), we find a sequence (xn)n∈N, with xn ∈ Xn for n ∈ N, such that
(d(xn, x))n∈N is a c-sequence. From (iii), we obtain that there exists a sequence (yn)n∈N, such that
(d(yn, xn))n∈N and (d(Tnxn, T∞yn))n∈N are c-sequences. At the same time, we need to show that for an
arbitrary x from X∞, there exists a sequence (zn)n∈N, such that (d(zn, x))n∈N and (d(Tnzn, T∞x))n∈N
are c-sequences. We shall show that zn = xn, for every n ∈ N. So, we have that

d(yn, x) � d(yn, xn) + d(xn, x).

Also, since (d(yn, x))n∈N and (d(xn, x))n∈N are c-sequences, then we obtain that the right hand side
is also a c-sequence, i.e.

for each c� θ, c ∈ A, there exists N = N(c) ∈ N, such that for all n ≥ N,

we have that (d(yn, x)) � d(yn, xn) + d(xn, x)� c, so (d(yn, x))n∈N is a c-sequence.

From Remark 3.3, since (d(yn, x))n∈N is a c-sequence, then it follows that (d(T∞yn, T∞x))n∈N is a
c-sequence. Then, by aplying the triangle inequality in the setting of the cone metric space over A,
we obtain that

d(Tnxn, T∞x) � d(Tnxn, T∞yn) + d(T∞yn, T∞x).

Since the right hand side from above is a c-sequence, then the left hand side, namely
(d(Tnxn, T∞x))n∈N is also a c-sequence and the proof is done. �

Now, it is time to show that under certain assumptions the (G)-limit of a sequence of mappings
is unique. We have the following result.

Theorem 3.5. Let (X, d) be a cone metric space over a given Banach algebra A. Also, consider Xn

(for every n ∈ N) and X∞ be some nonempty subsets of X. Suppose that the following assumptions
are satisfied:

(i) for all n ∈ N, let Tn to be a k-Lipschitz with respect to the Banach algebra A, i.e. there exists k ∈ P,
such that d(Tn(x), Tn(y)) � k · d(x, y), for each x, y ∈ Xn

(ii) T∞ : X∞ → X is a (G)-limit for the family (Tn).

Then, T∞ is the unique (G)-limit on X∞.

Proof . Let T∞ and T ′∞ be two (G)-limit mappings for the family (Tn), defined on X∞. This means
that for an arbitrary x of X∞, there exists two sequences (xn)n∈N and (yn)n∈N, with xn, yn ∈ Xn,
such that :

(d(xn, x))n∈N and (d(Tnxn, T∞x))n∈N are c-sequences,

(d(yn, x))n∈N and (d(Tnyn, T
′
∞x))n∈N are also c-sequences.
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Then, we obtain that

d(Tnxn, Tnyn) � k · d(xn, yn)

� k [d(xn, x) + d(yn, x)]

= kd(xn, x) + kd(yn, x).

Furthermore, since (d(xn, x))n∈N and (d(yn, x))n∈N are c-sequences, then it follows easily that (k ·
d(xn, x))n∈N and (k · d(yn, x))n∈N are also c-sequences. Then, by (3) of Lemma 1.12, we get that
(kd(xn, x) + kd(yn, x))n∈N is also a c-sequence. This means that

for each arbitrary elements c1 � θ, c1 ∈ A, there exists N1 that depends on c1,

such that for every n ≥ N1, one has that kd(xn, x) + kd(yn, x)� c1.

Then, for a fixed element x ∈ X∞, it follows that

d(T∞x, T
′
∞x) � d(T∞x, Tnxn) + d(Tnxn, Tnyn) + d(Tnyn, T

′
∞x).

Since (d(Tnxn, T∞x) + d(Tnyn, T
′
∞x))n∈N is a c-sequence, it implies that for every c1 � θ, c1 ∈ A,

there exists an index N1 = N1(c1) ∈ N, such that for every n ≥ N1, we have that d(Tnxn, Tnyn) �
kd(xn, x) +kd(yn, x)� c1. Now, this implies that (d(Tnxn, Tnyn))n∈N is a c-sequence. This leads to :

(d(T∞x, Tnxn) + d(Tnxn, Tnyn) + d(Tnyn, T
′
∞x))n∈N is a c-sequence, i.e.

for every c� θ, c ∈ A, there exists an index N = N(c) ∈ N, such that for every n ≥ N,

we have that d(T∞x, T
′
∞x) � d(T∞x, Tnxn) + d(Tnxn, Tnyn) + d(Tnyn, T

′
∞x)� c.

Since for c� θ, one has 0 � d(T∞x, T
′
∞x)� c, following [17] and (2) of Lemma 1.12, we obtain that

d(T∞x, T
′
∞x) = 0, so the proof is over. �

Our third result from this section concerns the convergence of a sequence of fixed points of a
family of mappings that has property (G), with respect to a given Banach algebra.

Theorem 3.6. Let (X, d) be a cone metric space over a given Banach algebra A. Also, consider Xn

(for n ∈ N) and X∞ to be some nonempty subsets of X. Also, consider some mappings Tn : Xn → X
and T∞ : X∞ → X that satisfy the following assumptions :

(i) for each n ∈ N, Tn is a k-contraction, i.e. there exists k ∈ P with ρ(k) < 1,

such that d(Tn(x), Tn(y)) � k · d(x, y), for each x, y ∈ Xn,

(ii) the family (Tn) has property (G),

(iii) there exists x∞ ∈ FT∞ , i.e. x∞ is a fixed point of T∞.

Then, (d(xn, x∞))n∈N is a c-sequence.

Proof . We know that xn = Tn(xn) and that x∞ = T∞(x∞). Furthermore, since T∞ is a (G)-limit
for the family (Tn), then for an arbitrary element x ∈ X∞, there exists a sequence (yn)n∈N, with
yn ∈ Xn for each n ∈ N, such that (d(yn, x))n∈N and (d(Tnyn, T∞x))n∈N are c-sequences. Moreover,
taking x = x∞ we obtain that (d(yn, x∞))n∈N and (d(Tnyn, T∞x∞))n∈N are also c-sequences. Then,
it follows that

d(xn, x∞) = d(Tnxn, T∞x∞)

� d(Tnxn, Tnyn) + d(Tnyn, T∞x∞)

� k · d(xn, yn) + d(Tnyn, T∞x∞)

� k · d(xn, x∞) + k · d(yn, x∞) + d(Tnyn, T∞x∞).
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This means that

k · d(xn, x∞) + k · d(yn, x∞) + d(Tnyn, T∞x∞)− d(xn, x∞) ∈ P ⇔
k · d(yn, x∞) + d(Tnyn, T∞x∞) + (k − e) · d(xn, x∞) ∈ P ⇔
k · d(yn, x∞) + d(Tnyn, T∞x∞)− (e− k) · d(xn, x∞) ∈ P.

Now, since ρ(k) < 1 and k � θ, then there exists (e− k)−1 � θ. Furthermore (e− k)−1 =
∞∑
i=0

ki ∈ P ,

since k ∈ P . At the same time, using the fact that P 2 ⊂ P and multiplying by (e− k)−1 , we obtain
that (e− k)−1 [kd(yn, x∞) + d(Tnyn, T∞x∞)]− d(xn, x∞) ∈ P . This is equivalent to

d(xn, x∞) � (e− k)−1 [kd(yn, x∞) + d(Tnyn, T∞x∞)] .

Finally, since (d(yn, x∞))n∈N and (d(Tnyn, T∞x∞))n∈N are c-sequences, then also
((e − k)−1d(yn, x∞))n∈N and ((e − k)−1d(Tnyn, T∞x∞))n∈N are c-sequences. So, for an arbitrary
element c � θ, c ∈ A, there exists N = N(c) ≥ 0, such that for every n ≥ N , one has that
d(xn, x∞) � (e − k)−1kd(yn, x∞) + (e − k)−1d(Tnyn, T∞x∞) � c, so the sequence (d(xn, x∞))n∈N is
indeed a c-sequence. �

Remark 3.7. In Theorem 3.6 we supposed that indeed there exists xn ∈ FTn. An alternative way is
to suppose that (X, d) is a complete cone metric space over A and after that one can establish a local
variant of existence and uniqueness of fixed points for the mappings Tn, since they are contractions
with respect to the cone metric, but not on the whole metric space.

Now, it is time to present a consequence of Theorem 3.6 in which we refer to the connection
between the pointwise convergence of a sequence of self-mappings and the (G)-property of the same
sequence.

Corollary 3.8. Let (X, d) be a cone metric space over a Banach algebra A. Also, consider Tn, T∞ :
X → X some given mappings. Suppose the following assumptions are satisfied :

(i) Tn
p−→ T∞ as n→∞,

(ii) Tn is a k-contraction with respect to the cone metric, for eac n ∈ N,
(iii) there exists xn ∈ FTn and x∞ ∈ FT∞ .

Then, (Tn)n∈N has the property (G), with T∞ as the (G)-limit.

Proof . From (i), it follows that for each c � θ, c ∈ A and for every x ∈ (X, d), there exists and
index N that depends on c and x, such that for all n ≥ N , one has that d(Tnx, T∞x)� c. We shall

show that if Tn
p−→ T∞, then the family (Tn) has the property (G), with T∞ as the (G)-limit. For the

case when (Tn) has the (G) property, then for every x ∈ X∞ = X, there exists (xn)n∈N, with xn ∈ X
for each n ∈ N, such that (d(xn, x))n∈N and (d(Tnxn, T∞x))n∈N are c-sequences. Furthermore, let’s
consider an arbitrary element x ∈ X. Taking xn = x, for each n ∈ N, we obtain that d(xn, x) = θ � c,
so (d(xn, x))n∈N is a c-sequence. Moreover, (d(Tnxn, T∞x))n∈N is also a c-sequence, because of (i). �

Now, we shall present a theorem in which we are concerned with the relationship between the
pointwise convergence of a sequence of mappings in the setting of cone metric spaces and the equicon-
tinuity of the family of mappings.



242 Alecsa, Cristian Daniel

Theorem 3.9. Let (X, d) be a cone metric space over a Banach algebra A and M be a nonempty
subset of X. Furthermore, let Tn : M → X be a given operator such that the family (Tn) has the (G)
property with the (G)-limit T∞. Also, let’s suppose that the following conditions are satisfied :

(i) the family (Tn) is equicontinuous on M,

(ii) there exists xn ∈ FTn , for each n ∈ N and x∞ ∈ FT∞ .

Then Tn
p−→ T∞.

Proof . By (i), since the family (Tn) is equicontinuous, it follows that for each c1 � θ, c1 ∈ A and
for every x ∈ (X, d), there exists c2 � θ, c2 ∈ A that depends on c1 and x, such that for all y ∈ (X, d)
with d(x, y) � c2, one has that d(Tnx, Tny) � c1. Let’s suppose that (Tn) has the (G) property
with the (G)-limit T∞, i.e. for each x ∈ M , there exists a sequence (xn)n∈N from M , for which one
has (d(xn, x))n∈N and (d(Tnxn, T∞x))n∈N are c-sequences. Moreover, we want to show that for every
arbitrary element c � θ, c ∈ A and for each x ∈ (M,d), there exists an index N ≥ 0 that depends
on c and x such that for every n ≥ N , one has d(Tnx, T∞x)� c. So, let c� θ be a fixed arbitrary
element of the given Banach algebra and x ∈ M ⊂ X. From the equicontinuity of the family (Tn)
over A, there exists c̄ that depends on c and x, where c̄ is from P , such that d(x, y)� c̄ implies that
d(Tnx, Tny)� c, with y ∈M and n ∈ N. For x and c, there exists an index N1 ≥ 0 that depends on
c and x, such that for every n ≥ N1, one has that d(Tnxn, Tnx) � c. Taking n ≥ max{N,N1}, we
have that

d(Tnx, T∞x) � d(Tnxn, T∞x) + d(Tnxn, Tnx)� c,

where we have used the fact that (d(Tnxn, T∞x))n∈N and (d(Tnxn, Tnx))n∈N are c-sequences, so their
sum is also a c-sequence by (3) of Lemma 1.12. Also, N2 is the index that is found out from the fact
that (d(Tnxn, T∞x))n∈N is a c-sequence. Finally, we recall that we also have used the idea that if a, b
and c′ are elements from A, such that a � b and b� c′, then a� c′. �

Now, the next theorem of this section is an existence result for the fixed points of the (G)-limit
mapping of a sequence of contractions with respect to the cone metric space over a given Banach
algebra.

Theorem 3.10. Let (X, d) be a cone metric space over a Banach algebra A. Also, consider Xn and
X∞ some given nonempty subsets of X. Let Tn : Xn → X and T∞ : X∞ → X be some mappings
that satisfy :

(i) the family (Tn) has property (G) with the (G)-limit T∞,

(ii) Tn are k-contractions in the sense of the given cone metric,

(iii) there exists xn ∈ FTn .

Then, there exists x∞ ∈ FT∞ if and only if the sequence (xn)n∈N is convergent in X∞ in the sense of
the Banach algebra (i.e. there exists y ∈ X∞ such that (d(xn, y))n∈N is a c-sequence).

Proof . From Theorem 3.6 it follows that if there exists x∞ ∈ FT∞ , then (d(xn, x∞))n∈N is a c-
sequence. Now, we consider the reverse implication, namely let (xn)n∈N, with xn ∈ Xn for each
n ∈ N and x∞ ∈ X∞ be such that (d(xn, x∞))n∈N is a c-sequence. For the element x∞, by (i) we
have that there exists a sequence (yn)n∈N, with yn ∈ Xn for every n ∈ N such that (d(yn, x∞))n∈N
and (d(Tnyn, T∞x∞))n∈N are c-sequences. Then, we obtain

d(x∞, T∞x∞) � d(x∞, xn) + d(Tnxn, Tnyn) + d(Tnyn, T∞x∞)

� d(x∞, xn) + k · d(xn, yn) + d(Tnyn, T∞x∞)

� d(x∞, xn) + k · d(xn, x∞) + k · d(yn, x∞) + d(Tnyn, T∞x∞).
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Since all the elements from the right hand side are c-sequences, by (3) of Lemma 1.12, the whole
sum from the right hand side is a c-sequence. This means that for an arbitrary c� θ we have that
0 � d(x∞, T∞x∞)� c. By (2) of Lemma 1.12 it follows that x∞ = T∞x∞, so the proof is over. �

Now, we are ready to present our last two results from the present section regarding the link
between the uniform convergence with respect to the cone metric and the (H)-property of a given
sequence of operators.

Theorem 3.11. Let (X, d) be a cone metric space over a Banach algebra A. Also, consider M ⊂ X
a nonempty set. Let Tn, T∞ : M → X some given mappings.
a) If Tn

u−→ T∞, then T∞ is the (H)-limit of the family (Tn).
b) If T∞ is the (H)-limit of (Tn) and if T∞ is uniformly continuous on M , then Tn

u−→ T∞.

Proof . a) Suppose that Tn
u−→ T∞, i.e. for each c � θ, with c ∈ A, there exists an index

N = N(c) ≥ 0, such that for all n ≥ N , it follows that d(Tnx, T∞x)� c, for each arbitrary x. Let’s
consider a sequence (xn)n∈N, such that xn ∈ Xn for every n ∈ N. Taking yn = xn ∈ Xn = X∞ = M ,
we only need to show that (d(Tnxn, T∞yn))n∈N = (d(Tnxn, T∞xn))n∈N is a c-sequence. Finally, taking
x = xn in the definition of uniform convergence with respect to the cone metric d of the family (Tn),
then the proof is over.
b) We let the proof to the reader, since it follows in a similar way [1], namely the one from the case
of metric spaces. Furthermore, the concept of uniform continuity in the framework of a cone metric
space over a Banach algebra can be extended from the case of usual metric spaces. �

Now, our last theorem of this section concerns the convergence of a sequence of fixed points of a
family of mappings to the fixed point of the (H)-limit of the same family of operators.

Theorem 3.12. Let (X, d) be a cone metric space over a Banach algebra A. Consider Xn for each
n ∈ N and X∞ to be some nonempty subset of X. Also, let Tn : Xn → X and T∞ : X∞ → X be
some mappings that satisfy the following assumptions :

(i) xn ∈ FTn ,
(ii) (Tn) has the property (H) with the (H)-limit T∞,

(iii) T∞ is a k∞ − contraction with respect to the cone metric d,

(iv) there exists and is unique x∞ ∈ FT∞ .

Then (d(xn, x∞))n∈N is a c-sequence.

Proof . From the property (H) and for the sequence (xn)n∈N, there exists another sequence (yn)n∈N
from X∞, for which one has that (d(xn, yn))n∈N and (d(Tnxn, T∞yn))n∈N are c-sequences. Further-
more, we consider the following chain of inequalities :

d(xn, x∞) = d(Tnxn, T∞x∞)

� d(Tnxn, T∞yn) + d(T∞yn, T∞x∞)

� d(Tnxn, T∞yn) + k∞ · d(yn, x∞)

� d(Tnxn, T∞yn) + k∞ · d(yn, xn) + k∞ · d(xn, x∞).

After some easy algebraic manipulations, one obtains that

d(Tnxn, T∞yn) + k∞ · d(yn, xn)− (e− k∞) · d(xn, x∞) ∈ P.
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As in the proofs of the above theorems, using the property of the solid cone P , namely P 2 ⊂ P , the
fact that ρ(k∞) < 1 and multiplying by (e− k∞)−1, it follows that

(e− k)−1 · d(Tnxn, T∞yn) + (e− k)−1 · k∞ · d(yn, xn)− d(xn, x∞) ∈ P.

This is equivalent to

d(xn, x∞) � (e− k)−1 · d(Tnxn, T∞yn) + (e− k)−1 · k∞ · d(yn, xn).

Using the fact that, by Lemma 1.12, the right hand side is a c-sequence, the conclusion follows easily.
�

At last, we are ready to give a crucial remark regarding the assumption (iv) from Theorem 3.12.

Remark 3.13. One can omit condition (iv) from the previous theorem if we suppose that (X, d) is
a complete cone over the Banach algebra A. With this assumption, since T∞ is a contraction on a
subset of the space in the sense of the cone metric d, then one can prove a local variant principle in
which the operator has a unique fixed point.

4. Applications to systems of functional and differential equations

In this section we shall present some applications linked to functional coupled equations and
systems of differential equations, respectively. Also, we shall show that our theorems from the
second section are a viable tool for studying the convergence of the unique solution of different types
of sequences regarding generalized type of functional and differential equations. Furthermore, in our
first result, following Theorem 3.1 of [4] we shall present the convergence of the solutions of some
coupled equations, using our results that are based upon the idea of an Banach algebra.

Theorem 4.1. Let Fn, Gn, F̃ , G̃ : R2 → R2 be some given mappings (for n ∈ N). Also, consider the
following systems of coupled functional equations :{

Fn(x, y) = 0

Gn(x, y) = 0
, with (x, y) ∈ R2 , (4.1)

and {
F̃ (x, y) = 0

G̃(x, y) = 0
, with (x, y) ∈ R2. (4.2)

Suppose that the mappings Fn, Gn, F̃ and G̃ satisfy the following assumptions :
(1) There exists M > 0, such as for n ∈ N, there exists Ln > 0 satisfying max

n≥1
Ln ≤ M < 1, such

that {
|Fn(x1, y1)− Fn(x2, y2) + x1 − x2| ≤ Ln|x1 − x2|
|Gn(x1, y1)−Gn(x2, y2) + y1 − y2| ≤ Ln|y1 − y2|

where (x1, x2) and (y1, y2) are from R2.
(2) There exists L̃ ∈ (0, 1), such that{

|F̃ (x1, y1)− F̃ (x2, y2) + x1 − x2| ≤ L̃|x1 − x2|
|G̃(x1, y1)− G̃(x2, y2) + y1 − y2| ≤ L̃|y1 − y2|
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where (x1, x2) and (y1, y2) are from R2.
(3) The sequence (Fn)n∈N converges pointwise to F̃ and (Gn)n∈N also converges pointwise to G̃ in the
classical sense, i.e. :{

Fn
p−→ F̃

Gn
p−→ G̃

, i.e.

 lim
n→∞

Fn(x) = F̃ (x)

lim
n→∞

Gn(x) = G̃(x)
, for each x ∈ R2.

Then xn converges to x̃ and yn converges to ỹ, where (xn, yn) is the unique solution of 4.1 and (x̃, ỹ)
is the unique solution of 4.2.

Proof . Let’s consider the Banach algebra A = R2 from Example 2.7. Also, let X = R2. Further-
more, consider the operators Tn, T : X → X, defined as

Tn(x, y) = (Fn(x, y) + x,Gn(x, y) + y) and

T (x, y) = (F̃ (x, y) + x, G̃(x, y) + y),

for each (x, y) ∈ R2. As in [4] it is easy to see that for every n ∈ N, the operator Tn is a contraction
with coefficient (Ln, 0) and that T is also a contraction with respect to the Banach algebra A, but
with coefficient (L̃, 0). Moreover, also following [4], one can easily show that for each n ∈ N, there
exists and is unique (xn, yn) the solution for the coupled equation system 4.1 and (x̃, ỹ) the solution
for 4.2, respectively. Now, our aim is to show that (d((xn, yn), (x̃, ỹ)))n∈N is a c-sequence with respect
to the Banach algebra R2 endowed with the cone metric d from Example 2.7. Now, in Theorem
2.10 we considered contractions with the same coefficient α, with ρ(α) < 1. At the same time, one
can easily see that the same theorem can be proved in the case when the operators have different
contraction coefficients αn for n ∈ N, but endowed with the property that the sequence (αn)n∈N is
bounded, i.e. there exists M ∈ P satisfying ρ(M) < 1, such as αn � M , for all n ∈ N. In our case,

one can see that ρ((Ln, 0)) = lim
n→∞

‖(Ln, 0)n‖
1/n

and that (Ln, 0) � (M, 0), with ρ(M, 0) = M < 1.

Finally, the property that the sequence of coefficients is bounded leads to max
n∈N

Ln ≤M < 1.

For example, we can modify the proof of Theorem 2.10, with :

d(x∗n, x
∗) � αnd(x∗n, x

∗) + d(Tnx
∗, Tx∗) �Md(x∗n, x

∗) + d(Tnx
∗, Tx∗),

when αn � M , for every n ∈ N. Here we have used the fact that if αn � M , then αndn � Mdn,
where dn ∈ P , because this leads to dn · (M −αn) ∈ P . This is of course a valid affirmation, because
we can use the property P 2 ⊆ P on dn and M−αn, which are both from the solid cone P . Moreover,
we see that it is also a valid assumption that (e−M)−1 ∈ P , since M is from the nonempty cone P .

Now, using the above reasoning with respect to Theorem 2.10, we only need to show that Tn
p−→ T ,

i.e. :

for each c� (0, 0) and for z ∈ R2, there exists N = N(c, z) ≥ 0, such that for every n ≥ N,

we must have that d(Tnz, Tz)� c.

Now, let c = c(c1, c2) ∈ R2, with c1, c2 > 0 and let z = (x, y) an arbitrary element from R2. Then,
we only need to show that

(c1, c2)− d((Fn(x, y) + x,Gn(x, y) + y), (F̃ (x, y) + x, G̃(x, y) + y)) ∈ int(P )⇔
(c1, c2)− (|Fn(x, y)− F̃ (x, y)|, |Gn(x, y)− G̃(x, y)|) ∈ int(P ).
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This is equivalent to showing that {
|Fn(x, y)− F̃ (x, y)| < c1 ,

|Gn(x, y)− G̃(x, y)| < c2 .

Now, from the assumption (3), we obtain that for c1 > 0 and for z = (x, y) ∈ R2, there exists
N1 = N1(c1, x, y) ≥ 0, such as for every n ≥ N1, it follows that |Fn(x, y)− F̃ (x, y)| < c1. In a similar
way, for c2 > 0 and for z = (x, y) ∈ R2, there exists N2 = N1(c2, x, y) ≥ 0, such as for every n ≥ N2,
it follows that |Gn(x, y) − G̃(x, y)| < c2. Finally, taking n ≥ N := max{N1, N2}, the conclusion
follows easily. �

Now, our second crucial result from the present section concerns an application to systems of
differential equations. In fact, using the results from the second section and the idea of a Banach
algebra, we present an existence and uniqueness theorem for the solution of a nonlinear systems of
differential equations.

Theorem 4.2. Let D ⊂ R3 and (α, β, γ) ∈ D. Also, consider ᾱ, β̄ and γ̄ sufficiently small such
that the compact set ∆ := {(x, y, z) / |x− a| ≤ ā, |y − β| ≤ β̄, |z − γ| ≤ γ̄} is a subset of D.
Consider the following nonlinear system of differential equations :

y′(x) = f(x, y(x), z(x))

z′(x) = g(x, y(x), z(x))

y(a) = β

z(a) = γ

, where x ∈ I := [a− ā, a+ ā]. (4.3)

Also, suppose the following assumptions are satisfied :

(1) the mappings f and g are continuous on D,

(2) there exists L1, L2 > 0, such that{
|f(x, y, z)− f(x, ȳ, z̄)| ≤ L1|y − ȳ|
|g(x, y, z)− g(x, ȳ, z̄)| ≤ L2|z − z̄|

, for every (x, y, z) and (x, ȳ, z̄) ∈ D.

Then, there exists a unique solution for the nonlinear differential system 4.3 on I = [a− ā, a+ ā].

Proof . First of all, we observe that the system of differential equation 4.3 can be written under the
following integral form :

y(x) = β +
x∫
a

f(s, y(s), z(s)) ds

z(x) = γ +
x∫
a

g(s, y(s), z(s)) ds
, where x ∈ I. (4.4)

Furthermore, we consider the operator T : C(I)× C(I)→ C(I)× C(I), defined as

T (y, z)(x) =

β +

x∫
a

f(s, y(s), z(s)) ds, γ +

x∫
a

g(s, y(s), z(s)) ds

 , with x ∈ I.
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In a more simplified form, T can be written as T = (T1, T2), with T (y, z) = (T1(y, z), T2(y, z)).
Moreover, for each x ∈ I, one has that

T (y, z)(x) = (T1(y, z)(x), T2(y, z)(x)) .

Here T1, T2 : C(I)× C(I)→ C(I), where
T1(y, z)(x) = β +

x∫
a

f(s, y(s), z(s)) ds

T2(y, z)(x) = γ +
x∫
a

g(s, y(s), z(s)) ds
, where x ∈ I. (4.5)

Now, it is time to recall that the space C(I) can be endowed with two norms, namely for all x ∈ C(I),
one has the Chebyshev norm ‖x‖C = max

t∈I
|x(t)| and the Bielecki norm ‖x‖B,τ = max

t∈I
|x(t)|e−τ(t−(a−ā)).

Now, since we shall work very often with C(I), it is intuitive to specify what norm is appropriate in
each particular case. So, let’s denote X̄ = C(I, ‖ · ‖B,τ1) × C(I, ‖ · ‖B,τ2). One the other hand, we
define the operator d : X̄ × X̄ → R2, by

d(a1, a2) = d((y1, z1), (y2, z2)) = (‖y1 − y2‖B,τ1 , ‖z1 − z2‖B,τ2) ,

where a1 = (y1, z1) and a2 = (y2, z2) are from X̄. This means that y1, y2 ∈ C(I, ‖ · ‖B,τ1) and
z1, z2 ∈ C(I, ‖ · ‖B,τ2), respectively. Now, it is time to show that the mapping d is a complete cone
metric over R2. From Example 2.7, we know that R2 is a Banach algebra with the solid ’positive’
cone P = {(y, z) / y ≥ 0 and z ≥ 0} ⊂ R2. First of all, we shall show that d satisfies the basic
axioms of the cone metric over R2 :
(I) For each (a1, a2) = ((y1, z1), (y2, z2)) ∈ X̄ × X̄, we have that d(a1, a2) � (0, 0) is equivalent to
‖y1 − y2‖B,τ1 ≥ 0 and ‖z1 − z2‖B,τ2 ≥ 0, which is evidently true.
(II) For each (a1, a2) = ((y1, z1), (y2, z2)) ∈ X̄ × X̄, we have that
d(a1, a2) = d((y1, z1), (y2, z2)) = (‖y1 − y2‖B,τ1 , ‖z1 − z2‖B,τ2) and that d(a2, a1) = d((y2, z2), (y1, z1)) =
(‖y2 − y1‖B,τ1 , ‖z2 − z1‖B,τ2), so the second axiom is also satisfied.
(III) Now, for the triangle inequality, we consider a1 = (y1, z1), a2 = (y2, z2) and a3 = (y3, z3) three
arbitrary elements from X̄. We must show that d(a1, a3) � d(a1, a2) + d(a2, a3), which is equivalent
to d(a1, a2) + d(a2, a3)− d(a1, a3) ∈ P . This leads to{

‖y2 − y3‖B,τ1 + ‖y1 − y2‖B,τ1 ≥ ‖y1 − y3‖B,τ1
‖z2 − z3‖B,τ2 + ‖yz − z2‖B,τ2 ≥ ‖z1 − z3‖B,τ2

,

which is also valid. Now, regarding d and X̄, we must show that (X̄, d) is complete with respect
to the setting of the Banach algebra R2. For this, let (xn)n∈N ⊂ X̄ be a Cauchy sequence in the
sense of the Banach algebra R2. We shall show that this sequence is convergent. Now, since xn
can be written as xn = (yn, zn) for every n ∈ N, with yn ∈ C(I, ‖ · ‖B,τ1) and zn ∈ C(I, ‖ · ‖B,τ2)
and since the sequence (xn)n∈N is Cauchy, then (d(xn, xm))n∈N is a c-sequence. Consider c1, c2 > 0
arbitrary elements of R. Taking c = (c1, c2), there exists N ≥ 0 that depends on c, such that for
every n,m ≥ N , one has that (c1, c2) − d(xn, xm) ∈ int(P ). Now, this leads to ‖yn − ym‖B,τ1 < c1

and ‖zn− zm‖B,τ2 < c2, respectively. Also, since c1 and c2 are arbitrary elements of R, then it follows
that

lim
n,m→∞

‖yn − ym‖B,τ1 = 0 ,

lim
n,m→∞

‖zn − zm‖B,τ2 = 0 ,
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i.e. (yn)n∈N is Cauchy with respect to X1 and (zn)n∈N is Cauchy with respect to X2, where X1 :=
C(I, ‖ · ‖B,τ1) and X2 := C(I, ‖ · ‖B,τ2). Now, since X1 and X2 are both Banach spaces, it follows
that (yn)n∈N is convergent in X1 and (zn)n∈N is convergent in X2, respectively. This means that there
exists ȳ0 ∈ X1 and z̄0 ∈ X2, for which one has that yn → ȳ0 and zn → z̄0 as n→∞. By convergence,
for c1, c2 > 0, there exists N1 = N(c1) ≥ 0 and N2 = N2(c2) ≥ 0, such that for every n ≥ N1 and
n ≥ N2 simultaneously, one has that ‖yn − ȳ0‖B,τ1 < c1 and ‖zn − z̄0‖B,τ2 < c2. So, it follows that
(c1, c2)− d((yn, zn), (ȳ0, z̄0)) ∈ int(P ), which leads to our desired conclusion.
Now, since we have showed that (X̄, d) is a complete cone metric space over the Banach algebra R2,
then we have that T : X̄ → X̄, with T = (T1, T2), where T1 : X̄ → X1 and T2 : X̄ → X2.
Now, let ∆ := {(x, y, z) / |x − a| ≤ ā, |y − β| ≤ β̄, |z − γ| ≤ γ̄} ⊂ D. Since the mappings f and
g are continuous on the compact ∆, then there exists Mf ,Mg ≥ 0, such that |f(x, y, z)| ≤ Mf and
|g(x, y, z)| ≤Mg, for each (x, y, z) ∈ ∆. Furthermore, let

h1 := min
{
ā,

β̄

Mf

}
h2 := min

{
ā,

γ̄

Mg

}
.

Also, define :

S := {(y, z) ∈ C([a− h1, a+ h1], ‖ · ‖B,τ1)× C([a− h2, a+ h2], ‖ · ‖B,τ2) / ‖y − β‖B,τ1 ≤ β̄

and ‖z − γ‖B,τ2 ≤ γ̄}.

Now, we shall show that T : S → S, i.e. taking w ∈ S, we show that Tw ∈ S. For this, consider
w = (y, z) ∈ S and Tw = (T1w, T2w) ∈ S. This means that we need to show{

T1w ∈ C([a− h1, a+ h1], ‖ · ‖B,τ1)
T2w ∈ C([a− h2, a+ h2], ‖ · ‖B,τ2)

, with

{
‖T1w − β‖B,τ1 ≤ β̄

‖T2w − γ‖B,τ2 ≤ γ̄

The last chain of inequalities is equivalent to{
maxx∈[a−h1,a+h1] |T1(y, z)(x)− β|e−τ1(x−(a−ā)) ≤ β̄

maxx∈[a−h2,a+h2] |T2(y, z)(x)− γ|e−τ2(x−(a−ā)) ≤ γ̄

So, it follows that

|T1(y, z)(x)− β| =

∣∣∣∣∣β +

x∫
a

f(s, y(s), z(s)) ds− β

∣∣∣∣∣ ≤
x∫
a

|f(s, y(s), z(s))| ds ≤Mf |x− a| ≤Mfh1 ≤ β̄.

|T2(y, z)(x)− γ| =

∣∣∣∣∣γ +

x∫
a

g(s, y(s), z(s)) ds− γ

∣∣∣∣∣ ≤
x∫
a

|g(s, y(s), z(s))| ds ≤Mg|x− a| ≤Mgh2 ≤ γ̄.

For T = (T1, T2) : S → S, we shall show that T is a contraction with respect to the cone metric d
over R2. First of all, we show that S ⊂ X̄ is complete in the setting of d, i.e. (S, d) is a complete cone
metric space over the same Banach algebra as before. For this, let’s consider the sequence (xn)n∈N,
with xn = (yn, zn) and xn ∈ S for each n ∈ N, such that (xn)n∈N is Cauchy. So, we shall show that
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(xn)n∈N is convergent with respect to d. As we have done with the proof of completeness of X̄, we
find that (yn)n∈N is convergent in S1 and (zn)n∈N is convergent in S2, where :

S1 :=

{
y ∈ C([a− h1, a+ h1], ‖ · ‖B,τ1) / ‖y − β‖B,τ1 ≤ β̄

}
,

S2 :=

{
y ∈ C([a− h2, a+ h2], ‖ · ‖B,τ2) / ‖z − γ‖B,τ2 ≤ γ̄

}
,

We have used the fact that S1 is a closed subset of X1 and X1 is complete, then S1 is also complete
with respect to ‖ · ‖B,τ1 . In a similar way, since S2 is closed and X2 is complete, then S2 is complete
with respect to ‖ · ‖B,τ2 . Then, it is easy to see that (S, d) is complete with respect to the Banach
algebra R2.
On the other hand, for T = (T1, T2) : S → S, we show that T is a cone contraction, i.e. there
exists α = (α1, α2), with α1, α2 ≥ 0, such that ρ(α) < 1 and for each w, w̄ ∈ S, one has that
d(Tw, T w̄) � α · d(w, w̄). For the simplicity of results, we can take α2 = 0, because we can work
with the definition of contraction with respect to the cone metric with the assumption that α � θ
and not α� θ. Then, it follows that

(α1, 0) · d((y1, z1), (y2, z2))− d((T1(y1, z1), T2(y1, z1)), (T1(y2, z2), T2(y2, z2))) � (0, 0).

This is equivalent to

‖T1(y1, z1)− T1(y2, z2)‖B,τ1 ≤ α1‖y1 − y2‖B,τ1
‖T2(y1, z1)− T2(y2, z2)‖B,τ2 ≤ α1‖z1 − z2‖B,τ2

For example we have that

‖T1(y1, z1)− T1(y2, z2)‖B,τ1 = max
x∈S1

|T1(y1, z1)(x)− T1(y2, z2)(x)|e−τ1(x−(a−ā)) .

Furthermore, we get that

|T1(y1, z1)(x)− T1(y2, z2)(x)| ≤
x∫
a

|f(s, y1(s), z1(s))− f(s, y2(s), z2(s))| ds

≤ L1

x∫
a

|y1(s)− y2(s)| ds

= L1

x∫
a

|y1(s)− y2(s)|e−τ1(s−(a−ā))eτ1(s−(a−ā)) ds

≤ L1‖y1 − y2‖B,τ1

x∫
a

eτ1(s−(a−ā)) ds

= L1‖y1 − y2‖B,τ1 ·
eτ1(x−(a−ā)) − 1

τ1

≤ L1

τ1

‖y1 − y2‖B,τ1eτ1(x−(a−ā)) .
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So, we obtain that

|T1(y1, z1)(x)− T1(y2, z2)(x)|e−τ1(x−(a−ā)) ≤ L1

τ1

‖y1 − y2‖B,τ1 .

Taking the maximum by x ∈ S1, it follows that α1 ≥
L1

τ1

.

In a similar way, for the case when we are dealing with T2, it follows that

|T2(y1, z1)(x)− T2(y2, z2)(x)|e−τ2(x−(a−ā)) ≤ L2

τ2

‖z1 − z2‖B,τ2 .

So α1 ≥
L2

τ2

. This means that we can choose τ1, τ2 > 0, such that

α1 = max
{L1

τ1

,
L2

τ2

}
< 1 ,

because one can see that ρ((α1, 0)) = α1 < 1 and applying Theorem 2.9 of [4] with k2 = k3 = k4 =
k5 = 0, k1 = α1 and g the identity mapping, then the proof is over. �

Finally, we present our last result of this section regarding the convergence of a sequence of
solutions for a family of nonlinear differential systems. Furthermore, the following theorem is crucial,
in the sense that we extend the application of S.B. Nadler Jr. from [13].

Theorem 4.3. Let D, ∆ and I as in the previous theorem. Consider the following nonlinear systems
of differential equations :

y′(x) = fn(x, y(x), z(x))

z′(x) = gn(x, y(x), z(x))

y(a) = β

z(a) = γ

, for each n ≥ 1 and x ∈ I. (4.6)

Furthermore, consider another system of differential equations :
y′(x) = f(x, y(x), z(x))

z′(x) = g(x, y(x), z(x))

y(a) = β

z(a) = γ

, (4.7)

where the functions fn, gn, f and g are continuous on D. Moreover, suppose the following assumptions
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are satisfied :

(1) there exists M ∈ (0, 1), such that for all n ∈ N there exists kn, hn, k, h ≥ 0, for which one has :{
|fn(x, y, z)− fn(x, ȳ, z̄)| ≤ kn|y − ȳ|
|gn(x, y, z)− gn(x, ȳ, z̄)| ≤ hn|z − z̄|

, for every (x, y, z) and (x, ȳ, z̄) from D.

(2)

{
|f(x, y, z)− f(x, ȳ, z̄)| ≤ k|y − ȳ|
|g(x, y, z)− g(x, ȳ, z̄)| ≤ h|z − z̄|

, for every (x, y, z) and (x, ȳ, z̄) from D,

with kn, hn, k, h > 0, for each n ∈ N, satisfying max{kn, hn, k, h} ≤M < 1.

(3) The pointwise convergence of the families (fn) and (gn), i.e.{
fn

p−→ f

gn
p−→ g

, i.e.

 lim
n→∞

fn(x, y, z) = f(x, y, z)

lim
n→∞

gn(x, y, z) = g(x, y, z)
, for every (x, y, z) ∈ D.

(4) If the mappings fn and gn are bounded, for each n ∈ N by Mn and M̃n respectively,

then there exist Mf ,Mg ≥ 0, such that Mn ≤Mf and M̃n ≤Mg, for each n ∈ N.

If (yn, zn) is the unique solution of 4.6 and (y, z) is the unique solution of 4.7, then{
yn

u−→ y

zn
u−→ z

, i.e.

 lim
n→∞

‖yn − y‖B,τ1 = 0

lim
n→∞

‖zn − z‖B,τ2 = 0
.

Proof . The first order system of differential equations 4.6 can be written under an integral form,
as follows : 

y(x) = β +
x∫
a

fn(s, y(s), z(s)) ds

z(x) = γ +
x∫
a

gn(s, y(s), z(s)) ds
. (4.8)

Furthermore, the system 4.7 can be written also under an integral form, i.e.
y(x) = β +

x∫
a

f(s, y(s), z(s)) ds

z(x) = γ +
x∫
a

g(s, y(s), z(s)) ds
. (4.9)

Similar to the proof of Theorem 4.2, we define the operators Tn = (Tn,1, Tn,2) and T = (T1, T2), such
that

Tn,1(y, z)(x) = β +
x∫
a

fn(s, y(s), z(s)) ds

Tn,2(y, z)(x) = γ +
x∫
a

gn(s, y(s), z(s)) ds
and


T1(y, z)(x) = β +

x∫
a

f(s, y(s), z(s)) ds

T2(y, z)(x) = γ +
x∫
a

g(s, y(s), z(s)) ds

With the same notations as in the proof of Theorem 4.2, we define X1 := C(I, ‖ · ‖B,τ1), X2 :=
C(I, ‖ · ‖B,τ2) and X := X1 ×X2, respectively. Furthermore, one can consider the compact set ∆ as
in the proof of the previous theorem and then there exists Mn and M̃n for each n ∈ N and so, by
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property (4) we find Mf and Mg, such that |fn(x, y, z)| ≤ Mn ≤ Mf and |gn(x, y, z)| ≤ M̃n ≤ Mg,

for every (x, y, z) ∈ ∆ ⊂ D. Then, we can define h1 := min
{
ā,

β̄

Mf

}
and h2 := min

{
ā,

γ̄

Mg

}
.

Furthermore, based on h1 and h2, one can define S1, S2 and S as in the proof of the previous
theorem. Then, by assumptions (1) and (2), applying Theorem 4.2, we get that:

there exists and is unique (yn, zn) solution for the system 4.6

there exists and is unique (y, z) solution for the system 4.7 ,

where yn and y are from S1 and zn, z are from S2. Also, we observe that Tn, T : S → S, Tn,1 : S → S1

and Tn,2 : S → S2. So, taking (y, z) ∈ S an arbitrary element (we use the same notation as the
unique solution of the system 4.7 since it lies no confusion) and x ∈ [a− h1, a+ h1], for each n ≥ 1,
it follows that

[Tn,1(y, z)(x)− T1(y, z)(x)] =

x∫
a

[fn(t, y(t), z(t))− f(t, y(t), z(t))] dt

Now, since fn
p−→ f and |fn| ≤Mf , by Lebesgue dominated convergence theorem, it follows that

lim
n→∞

|Tn,1(y, z)(x)− T1(y, z)(x)| = 0 .

This is equivalent to : for every ε1 > 0 and for every x ∈ [a− h1, a + h1], there exists N1 ≥ 0, such
that for all n ≥ N1, one has |Tn,1(y, z)(x)− T1(y, z)(x)| < ε1.
In a similar way, for Tn,2, we get

[Tn,2(y, z)(x)− T2(y, z)(x)] =

x∫
a

[gn(t, y(t), z(t))− g(t, y(t), z(t))] dt

Now, since gn
p−→ g and |gn| ≤Mg, by Lebesgue dominated convergence theorem, it follows that

lim
n→∞

|Tn,2(y, z)(x)− T2(y, z)(x)| = 0 .

This is equivalent to : for every ε2 > 0 and for every x ∈ [a− h2, a + h2], there exists N2 ≥ 0, such
that for all n ≥ N2, one has |Tn,2(y, z)(x)− T2(y, z)(x)| < ε2.

This means that Tn,1(y, z)
p−→ T1(y, z) and Tn,2(y, z)

p−→ T2(y, z), where we have the usual pointwise
convergence. Furthermore, we show that the family (Tn,1(y, z)) is uniformly equicontinuous in the
classical sense, i.e. for every ε1 > 0, there exists δ1 = δ1(ε1) > 0, such that for each n ∈ N and for
every x, x̄ ∈ [a−h1, a+h1] satisfying d(x, x̄) < δ1, we must have that |Tn,1(y, z)(x)−Tn,1(y, z)(x̄)| < ε1.

Moreover, since |Tn,1(y, z)(x)− Tn,1(y, z)(x̄)| ≤Mf |x− x̄| < δ1Mf , we can easily choose δ1 :=
ε1

Mf

.

In a similar manner, we show that the family (Tn,2(y, z)) is also uniformly equicontinuous in the
classical sense, i.e. for every ε2 > 0, there exists δ2 = δ2(ε2) > 0, such that for each n ∈ N and for
every x, x̄ ∈ [a−h2, a+h2] satisfying d(x, x̄) < δ2, we must have that |Tn,2(y, z)(x)−Tn,2(y, z)(x̄)| < ε2.

Moreover, since |Tn,2(y, z)(x) − Tn,2(y, z)(x̄)| ≤ Mg|x − x̄| < δ2Mg, we can easily choose δ2 :=
ε2

Mg

.

At the same time, we have the following :{
Tn,1(y, z)

p−→ T1(y, z)

(Tn,1(y, z)) uniformly equicontinuous, so it is also equicontinuous.
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and by Arzela-Ascoli theorem, we find that Tn,1(y, z)
u−→ T1(y, z), for each (y, z) ∈ S where the

uniform convergence is on I1 := [a− h1, a+ h1].
In a similar way, we find that {

Tn,2(y, z)
p−→ T2(y, z)

(Tn,2(y, z)) equicontinuous

and by Arzela-Ascoli theorem, we find that Tn,2(y, z)
u−→ T2(y, z), for each (y, z) ∈ S where the

uniform convergence is on I2 := [a− h2, a+ h2].
This equivalent to the fact that for each (y, z) ∈ S and for ε1 > 0, there exists N1 = N1(ε1, y, z) ≥ 0,
such that for every n ≥ N1, we have that |Tn,1(y, z)(x) − T1(y, z)(x)| < ε1. At the same time
|Tn,1(y, z)(x)−T1(y, z)(x)| < ε1 implies that |Tn,1(y, z)(x)−T1(y, z)(x)|e−τ1(x−(a−ā)) < ε1. So, taking
the maximum when x ∈ [a− h1, a+ h1], we find that

‖Tn,1(y, z)− T1(y, z)‖B,τ1 ≤ ε1 .

So, this implies that

Tn,1
p−→ T1, where the pointwise convergence is on S .

In an analogous way, we have that for each (y, z) ∈ S and for ε2 > 0, there exists N2 = N2(ε2, y, z) ≥
0, such that for every n ≥ N2, we have that |Tn,2(y, z)(x) − T2(y, z)(x)| < ε2. At the same time
|Tn,2(y, z)(x)−T2(y, z)(x)| < ε2 implies that |Tn,2(y, z)(x)−T2(y, z)(x)|e−τ2(x−(a−ā)) < ε2. So, taking
the maximum when x ∈ [a− h2, a+ h2], we find that

‖Tn,2(y, z)− T2(y, z)‖B,τ2 ≤ ε2 .

So, this implies that

Tn,2
p−→ T2, where the pointwise convergence is on S .

Now, it is time to show that Tn
p−→ T with respect to the Banach algebra R2. For example, taking

c = (ε1, ε2) ∈ R2 arbitrary, with ε1, ε2 > 0 and taking (y, z) ∈ S also arbitrary, then there exists
N = max{N1, N2} that depends on c, y and z, with N ≥ 0, such that for all n ≥ N , we have that{

‖Tn,1(y, z)− T1(y, z)‖B,τ1 ≤ ε1

‖Tn,2(y, z)− T2(y, z)‖B,τ2 ≤ ε2

.

This means that{
(‖Tn,1(y, z)− T1(y, z)‖B,τ1 , ‖Tn,2(y, z)− T2(y, z)‖B,τ2) � (ε1, ε2)⇔
d(Tn(y, z), T (y, z)) = d((Tn,1(y, z), Tn,2(y, z)), (T1(y, z), T2(y, z))) � c

.

This means that Tn
p−→ T , where the pointwise convergence is on S and is in the setting of the

given Banach algebra. On the other hand, applying Theorem 4.2, since Tn and T are cone self-
contractions on S and also applying Theorem 2.10, we get the desired conclusion. Finally, we make
the crucial remark regarding the method used in order to apply the already mentioned theorems.
The idea behind it is very similar to the one used in the proof of Theorem 4.1. For the integral
operators from our theorem, we have the contraction cone elements are αn = (α1

n, 0) and α = (α1
0, 0).
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Furthermore, following the proof of the previous theorem, they must satisfy α1
n = max{kn

τ1

,
hn
τ2

} < 1

and α1
0 = max{ k

τ1

,
h

τ2

} < 1, respectively. For simplicity, taking τ1 < τ2, we observe that we get

max{kn, hn} < τ1 and max{k, h} < τ1. From our assumptions, we know that max{kn, hn, k, h} ≤M ,
so we can take τ1 to be greater than the fixed positive constant M < 1 and now the proof is complete.
�
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