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Abstract
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of
the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial
basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of
equation is solved and the coefficients of basis polynomial are derived. The convergence of the
numerical solution is investigated. Some numerical examples are presented which illustrate the
theoretical results and the performance of the method.
Keywords: Fractional Optimal Control Problems, Caputo fractional derivative, Optimal Control

Problems, Polynomial basis functions.

1. Introduction

In the recent years, the dynamic behaviors of fractional order differential systems have received
increasing attention. FOCP refers to the minimization of an objective functional subject to dynamic
constraints, on state and control variables, which have fractional order models. Some numerical
methods for solving some types of FOCPs were recorded [1] and the references cited therein. The
general definition of an optimal control problem requires the minimization of a criterion function of
the states and control inputs of the system over a set of admissible control functions. The system
is subject to constrained dynamics and control variables. Additional constraints such as final time
constraints can be considered. This paper introduces an original formulation and a general numerical
scheme for a potentially almost unlimited class of FOCPs. An FOCP is an optimal control problem in
which the criterion and/or the differential equations governing the dynamics of the system contain at

∗Corresponding author
Email address: ramezanpour_abazar@yahoo.com, p_reihani@pnu.ac.ir, jvahidi@iust,ac.ir, vahidj@unisa.ac.za,

f_soltanian@pnu.ac.ir (A. Ramezanpoura, P. Reihania, J. Vahidi∗b,c, F. Soltaniana )

Received: MAY 2019 Revised: October 2019

https://dx.doi.org/10.22075/IJNAA.2019.4397


68 A. Ramezanpour, P. Reihani, J. Vahidi, F. Soltanian

least one fractional derivative operator. Integer order optimal controls (IOOCs) have been discussed
for a long time and a large collection of numerical techniques have been developed to solve IOOC
problems. However, the number of publications on FOCPs is limited. A general formulation and a
solution scheme for FOCPs were first introduced in [2] where fractional derivatives were introduced in
the Riemann–Liouville sense, and FOCP formulation was expressed using the fractional variational
principle and the Lagrange multiplier technique. The state and the control variables were given as a
linear combination of test functions, and a virtual work type approach was used to obtain solutions.
In [3, 4], the FOCPs are formulated using the definition of fractional derivatives in the sense of
Caputo, the FDEs are substituted into Volterra-type integral equations and a direct linear solver
helps calculating the solution of the obtained algebraic equations. In [5], the fractional dynamics
of the FOCPs are defined in terms of the Riemann–Liouville fractional derivatives. The Grunwald
and Letnikov formula is used as an approximation and the resulting equations are solved using a
direct scheme. Frederico and Torres [6, 7, 8] using similar definitions of the FOCPs, formulated a
Noether-type theorem in the general context of the fractional optimal control in the sense of Caputo
and studied fractional conservation laws in FOCPs. However, none of this work has taken advantage
of the colossal research achieved in the numerical solutions of IOOCs.

In this section, we briefly give some definitions regarding fractional derivatives allowing us to
formulate a general definition of an FOCP. There are many different types of definitions of fractional
calculus. For example, the Riemann–Liouville integral operator [9] of orderα is defined by

(Iαx f)(x) =

{
1

Γ(α)

∫ x

0
f(t)

(x−t)1−αdt α > 0,

f(x) α = 0,
(1.1)

and its fractional derivative of order α (α ≥ 0) is normally used:

(Dα
xf)(x) = (

d

dx
)m(Im−αf)(x), (α > 0, m− 1 < α < m), (1.2)

where m is an integer. For Riemann–Liouville’s definition, one has

Iαx x
v =

Γ(v + 1)

Γ(v + 1 + α)
xv+α. (1.3)

The Riemann–Liouville integral operator plays an important role in the development of the theory
of fractional derivatives and integrals. However, it has some disadvantages for fractional differential
equations with initial and boundary conditions. Therefore, we adopt here Caputo’s definition [10],
which is a modification of Riemann–Liouville definition:

(Dα
xf)(x) =

{
1

Γ(m−α)

∫ x

0
f (m)(s)

(x−s)α−m+1ds (α > 0, m− 1 < α < m),
∂mf(x)
∂xm α = m,

(1.4)

where m is an integer. Caputo’s integral operator has an useful property[10]:

(IαxDα
xf)(x) = f(x)−

m−1∑
k=0

f (k)(0+)

k!
xk, (x ≥ 0,m− 1 < α < m), (1.5)

wherem is an integer. For the Caputo derivative we have

Dα
xC = 0 (C is a constant), (1.6)

Dα
xx

β =

{
0 β ≤ α− 1,
Γ(β+1)

Γ(β−α+1)
xβ−α β > α− 1.

(1.7)
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For m to be the smallest integer that exceeds α, the Caputo space–fractional derivative operator of
order α > 0 is defined as:

(Dα
xf)(x, t) =

{
1

Γ(m−α)

∫ x

0
1

(x−s)α−m+1

∂mf(s,t)
∂xm ds (α > 0, m− 1 < α < m),

∂mf(x,t)
∂xm α = m.

(1.8)

2. Solution of Fractional Optimal Control Problems

In this work we focus on fractional optimal control problems. Let 0 < α < 1 and let L, f :
[a,+∞[×R2 → R be two differentiable functions. Consider the following FOCP [1]:

minimizeJ(x, u, T ) =

T∫
a

L(t, x(t), u(t))dt, (2.1)

subject to the dynamic system

M1ẋ(t) +M2D
α
t x(t) = f(t, x(t), u(t)), (2.2)

where the boundary conditions are as follows:

x(a) = xa, (2.3)

where M1,M2, T, xa are fixed real numbers. fractional derivatives are taken in the Caputo sense.
The method consists of conversion fractional optimal control problem to optimization problem and
expanding the solution by polynomial basis functions with unknown coefficients.

We approximatex(t) as

x(t) ∼= xk(t) =
m∑
i=0

citϕi(t) + w(t), (2.4)

and u(t) obtain of Eq. (3.2). where ϕi(t) are polynomial basis functions and ci are unknown coeffi-
cients. In following, we determine w(t) as w(a) = xa.

Now we have the following optimal problem

J [c0, c1, ..., cm] =

T∫
a

L(t, x̃(t), ũ(t))dt, (2.5)

If ckare decided by the optimizing function J , then by (2.4), we obtain functions which approximate
the optimum value of J in (2.5). To find unknowns ck, k = 0, 1, ...,m in x̃(t), according to the
necessary conditions of optimization for (2.5), we have

∂J

∂ck
= 0, k = 0, ...,m. (2.6)

Then by solving the above system of m algebraic equations (2.6), we obtain ck, k = 0, 1, ...,m.
The approached demonstrated here relies on the Ritz method. Then with solving this problem by
mathematica software, we obtain ci. The method presented here is based on the Ritz method. We
refer the interested reader to [11] for more information.
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3. Illustrative examples

To demonstrate the effectiveness of the method, here we consider some fractional optimal con-
trol problems. The following examples demonstrate that the desired approximate solution can be
determined by solving the resulting system of equations, which can be effectively computed using
symbolic computing codes on any personal computer. Illustrative examples show that this method
in comparison to other methods has high accuracy and is easily implemented.

Example 3.1. Consider fractional diffusion equation[1]

min J(x, u) =

1∫
0

(tu(t)− (α + 2)x(t))2dt, (3.1)

subject to the dynamical system
.
x(t) +Dα

t x(t) = u(t) + t2, (3.2)
with initial and boundary conditions: x(0) = 0, x(1) = 2

Γ(3+α)
. The exact solution is given by

(x(t), u(t)) = (
2tα+2

Γ(3 + α)
,

2tα+1

Γ(2 + α)
). (3.3)

We applied the method presented for different values of α and solved Equation(3.1). We determine

xm(t) =
m∑
i=0

cit
i+1(t− 1) +

2t

Γ(3 + α)
,

Fig. 1 shows the absolute error of this problem obtained by the present method with m = 5, α = 1
2
.

From Fig. 1, we can see that the present method provides accurate results.

Figure 1: The absolute error between exact and numerical solution for α = 1
2

The following table shows the values of minimum for different values of approximations and α = 1
2
.

m = 3 m = 5 m = 7
α = 0.5 4.4983× 10−8 1.10767× 10−9 6.78634× 10−11

α = 0.75 1.07508× 10−8 1.81465× 10−10 8.50994× 10−12
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Example 3.2. Consider fractional diffusion equation[1]

min J(x, u) =

1∫
0

(u(t)− x(t))2dt, (3.4)

subject to the dynamical system:

.
x(t) +Dα

t x(t) = u(t)− x(t) +
6tα+2

Γ(α + 3)
+ t3.

and the boundary conditions: x(0) = 0, x(1) = 6
Γ(4+α)

. The exact solution of the above problem is

(x(t), u(t)) = (
6tα+3

Γ(4 + α)
,

6tα+3

Γ(4 + α)
). (3.5)

We applied the method presented for different values of α and solved Equation(3.4). We determine

xm(t) =
m∑
i=0

cit
i+1(t− 1) +

6t

Γ(4 + α)
,

Fig. 2 shows the absolute error of this problem obtained by the present method with m = 7, α = 1
2
.

From Fig. 2, we can see that the present method provides accurate results. The following table shows
the values of minimum ηm for different values of approximations.

m = 3 m = 5 m = 7
α = 0.5 8.17323× 10−8 9.07389× 10−10 3.67001× 10−11

α = 0.75 2.58653× 10−8 1.78558× 10−10 5.31303× 10−12

Figure 2: The absolute error between exact and numerical solution for α = 1
2 .

Example 3.3. Consider the following time invariant problem[1]:

min J(x, u) =
1

2

1∫
0

(u2(t) + x2(t))dt, (3.6)



72 A. Ramezanpour, P. Reihani, J. Vahidi, F. Soltanian

subject to the dynamical system:

1

2

.
x(t) +Dα

t x(t) = u(t)− x(t).

and the boundary conditions: x(0) = 1, x(1) = cosh(
√
2) + sinh(

√
2). For this problem, we have the

exact solution in the case of α = 1 as follows [1]

x(t) = cosh(
√
2t) + sinh(

√
2t),

u(t) = (1 +
√
2β)cosh(

√
2t) + (

√
2 + β)sinh(

√
2t),

We applied the method presented for different values of α and solved Equation(3.6). We determine

xm(t) =
m∑
i=0

cit
i+1(t− 1) + t(cosh(

√
2) + sinh(

√
2)) + 1− t,

Figs. 3 display approximate solutions of x(t) for m = 5 and α = 0.8, 0.9, 0.99 and exact solution for
α = 1.

Figure 3: Exact (—) and approximate solution for α = 0.8, 0.9, 0.99, 1, and m = 5.

4. Conclusion

This paper presents a simple and effective approach to solve a wide class of fractional optimal
control problems. The desired approximate solution can be determined by solving the resulting
system of equations, which can be effectively computed using symbolic computing codes on any
personal computer. Illustrative examples show that this method has high accuracy and is easily
implemented. The method will be expected to deal with other fractional problems such as fractional
inverse problems, fractional optimal problems and other problems, which will be discussed in a future
papers.
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