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Abstract
Let R be a commutative ring with identity and M an R-module. The Scalar-Product Graph of M
is defined as the graph GR(M) with the vertex set M and two distinct vertices x and y are adjacent
if and only if there exist r or s belong to R such that x = ry or y = sx. In this paper , we discuss
connectivity and planarity of these graphs and computing diameter and girth of GR(M). Also we
show some of these graphs is weakly perfect.
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1. Introduction

The concept of the zero-divisor graph of a commutative ring, denoted by Γ(R), was introduced by
Beck [1], where he was mainly interested in coloring.Γ(R) is graph with vertices nonzero zero divisors
of R and edges those pairs of distinct nonzero zero divisors {a, b} such that ab = 0. We consider
this investigation of coloring of the zero-divisor graph of a commutative ring was then continued by
Anderson and Naseer [2].

Let G be an undirected graph with the vertex set V (G). If G contains n vertices then it is said to
be an n-vertex graph and we write |V (G)| = n. Two graphs G and H are isomorphic if there exists
a one-to-one correspondence between their vertex sets which preserves adjacency. A subgraph of G
is a graph having all of its vertices and edges in G. The complete graph is a graph in which any two
distinct vertices are adjacent.

Throughout this paper all rings are commutative with non-zero identity and all modules unitary.
We associate a graph GR(M) to an R-module M whose vertices are elements of M in these way that
two distinct vertices x and y are adjacent if and only if there exists r belong to R that x = ry or
y = rx. We investigate the relationship between the algebraic properties of an R-module M and the
properties of the associated graph GR(M) namely Scalar-product graph of M .
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Let G = (V,E) be a graph. We say that G is connected if there is a path between any two
distinct vertices of G. For vertices x and y of G, we define d(x, y) to be the length of a shortest
path from x to y (d(x, x) = 0 and d(x, y) = ∞ if there is no such path). The diameter of G is
diam(G) = sup{d(x, y) : x, y ∈ V (G)}. The girth of a graph G, denoted by gr(G), is the length of
the shortest cycle in G. A graph with no cycle has infinite girth. For a vertex v ∈ G, neighbours of
v denotes N(v) is equal {u ∈ V (G)\{v} : v is adjacent to u}. In a graph G, a set S ⊆ V (G) is an
independent set if the subgraph induced by S contains no edge. The independence number α(G) is
the maximum size of an independent set in G.

Afkhami and et al. in [3] introduced the cozero-divisor graph of a commutative ring R denoted by
Γ′(R) as a graph with vertices W (R)∗ = W (R)\{0} where W (R) is the set of all non-unit elements
of R and two distinct vertices x and y are adjacent if and only if x /∈ Ry and y /∈ Rx where Rc is a
ideal generated by c ∈ R.

Let M be a R-module and WR(M) = {x ∈ M |Rm ̸= M}. By R as R-module WR(R) is set of
all non-units elements of R. In [4] authors investigate cozero-divisor graphs on R-module M which
vertices from WR(M)∗ = WR(M)\{0} and two distinct vertices m and n are adjacent if and only if
m /∈ Rn and n /∈ Rm, and they studied girth, independent number, clique number and planarity of
this graph.

We use T (M) to denote the set of torsion elements of M ; that is,
T (M) = {m ∈ M : rm = 0 for some 0 ̸= r ∈ R}. If R is an integral domain, then T (M) is a
submodule of M . If T (M) = 0, we say that M is torsion-free while if T (M) = M we say that M
is torsion. D. Anderson et al. in [5] showed when T (M) is submodule of M and they showed if
T (M) ̸= M then T (M) is a union of prime sub-modules of M .

In section 2, we compute diameter and girth of GR(M) and in section 3, we discuss planarity of
GR(M).

2. Diameter and Girth of GR(M)

Remark 2.1. Let M be an R-module and x ∈ M , we denote set of vertices that is adjacent to x in
GR(M) by Tx(M) = {m ∈ M : rm = x for some r ∈ R}. The torsion element of M is T0(M). The
Tx(M) is set of neighbours of x or N(x). Note that if GR(M) is a Scalar product graph of R-module
M , then x, y ∈ M is adjacent if and only if x ∈ Ty(M) or y ∈ Tx(M).

Remark 2.2. Let M be a finite R-module and GR(M) a scalar product graph of M . If M is torsion
then for every m ∈ M , vertex m is adjacent to 0 and deg(0) = |M | − 1. Also, diam(GR(M)) ≤ 2.
Also, If M is torsion-free then 0 is isolated vertex.

Proposition 2.3. Let R be a division ring and M an R-module. If a is adjacent to b in GR(M),
then N(a) = N(b).

Proof . Assume that a and b are two adjacent vertices of GR(M). Then a ∈ Rb or b ∈ Ra. Hence
since R is a division ring, we have Ra = Rb. First suppose that x ∈ N(a). Then x ∈ Ra or a ∈ Rx
hence x ∈ Rb or a ∈ Rx, Therefore x ∈ N(b). So N(a) ⊆ N(b). Next if x ∈ N(b), then x ∈ Rb or
b ∈ Rx. Hence x ∈ Ra or b ∈ Rx therefore x ∈ N(a) so N(b) ⊆ N(a). Thus N(a) = N(b). □

Example 2.4. • Let M be a free R-module, then one can see that M is torsion-free, thus 0 is
isolated vertex. Also, if V is vector space over field K then V is torsion-free, therefore 0 is
isolated vertex.
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• Q is torsion-free Z-module. Therefore 0 is isolated vertex.

• If R is a integral domain and Q its field of fractions, then Q
R

is a torsion R-module. Therefore
diam(GR(

Q
R
)) ≤ 2.

• Consider a linear operator L acting on a finite-dimensional vector space V . If we view V as
an F [L]-module in the natural way, then, V is a torsion F [L]-module. Then T (V ) = V as a
result by previous proposition we have deg(0) = |V | − 1 and diam(GF [L](V )) ≤ 2.

Remark 2.5. Let GR(M) be a Scalar product graph of R-module M . If x, y ∈ M then x is adjacent
to y if and only if < x >⊆< y > or < y >⊆< x > or Rx ⊆ Ry or Ry ⊆ Rx.

Lemma 2.6. Let M be an R-module and x, y ∈ M . If < x >=< y >, then x is adjacent to y in
GR(M) and for all z ∈ M , x is adjacent to z if and only if y is adjacent to z.

Proof . Suppose < x >=< y > then < x >⊆< y >. So x is adjacent to y. If z is adjacent to x,
then < z >⊆< x > or < x >⊆< z >. Hence < z >⊆< y > or < y >⊆< z >. So z is adjacent to y.
Similarly, if y is adjacent to z then x is adjacent to z. □

This concludes that any two vertices that generate the same submodules will have exactly the
same set of neighbours.

Corollary 2.7. Let M be an R-module and x, y ∈ M . If cyclic submodules Rx,Ry are maximal,
Then x is not adjacent to y in GR(M).

Proof . Suppose x is adjacent to y in GR(M). Without loss of generality suppose that Rx ⊆ Ry
which is contradiction by maximality of Rx. □

Theorem 2.8. Let M = M1 × M2 × · · · × Mn where Mi is a module 1 ≤ i ≤ n. Let x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ M , If xi is not adjacent to yi in GR(Mi) for some i ∈ {1, . . . , n},
Then x is not adjacent to y in GR(M).

Proof . Suppose x is adjacent to y in GR(M). Then without loss of generality x ∈ Ry, There exist
z ∈ R such that zy = x or (z1y1, z2y2, . . . , znyn) = (x1, x2 . . . , xn) and for all i ∈ {1, . . . , n} we have
xi = ziyi and hence xi is adjacent to yi in GR(Mi). □

The converse of theorem 2.8 does not hold. Let M = Z16 ×Z16, R = Z. In GZ(Z16 ×Z16) vertex
(2, 4) is not adjacent to vertex (4, 2), but 2 is adjacent to 4 in G(Z16).

We know that any abelian group is a Z-module. If G is a Z-module and x, y ∈ G then according
to definition of scalar product on G, x is adjacent to y if there exist n ∈ Z which x = ny or y = nx.

Example 2.9. Let M = Z6 be Z-module. Scalar product GZ(Z6) have shown in Fig 1.
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Fig 1. Scalar Product of Z-module Z6

Proposition 2.10. Let Zn be Z-module. If p,m are prime and positive integer number, then for
n = 1, p, pm, Scalar product graph GZ(Zn) is complete.

Theorem 2.11. Let R = Z and M = Zn be a Z-module. Then the number of edges e of GR(M) is
given by 2e =

∑
d|n{2d− ϕ(d)− 1}ϕ(d).

Proof . In the directed scalar product graph
−−−−→
GR(M), vertex a is adjacent to b if there exist r ∈ R

such that b = ra. Therefore, for any vertex a ∈ M , the out-degree of a is
|{b ∈ M : b ∈ Ra, b ̸= a}| = |Ra| − 1. Also, that the number of arcs in a directed graph is the sum
of out-degrees of all the vertices of the graph. Thus the number of arcs of

−−−−→
GR(M) is

∑
a∈M |Ra| − 1.

To counting number of edges in the undirected scalar product graph GR(M), we have to count the
bi-directed arcs only once. The bi-directed arcs occur for some b ∈ M, (b ̸= a) such that, a ∈ Rb and
b ∈ Ra. □

Proposition 2.12. Let M be an R-module and N submodule of M . Then GR(N) is an induced
subgraph of GR(M).

Proof . As N ⊆ M , V (GR(N)) = N ⊆ M = V (GR(M)). Also from the definition of the scalar
product graph, it follows that for any a, b ∈ N , a and b are adjacent in GR(N) if and only if they
are adjacent in GR(M). Thus GR(N) is an induced subgraph of GR(M). □

Lemma 2.13. Let f : M1 −→ M2 be a R-module homomorphism. We have:

1. If vertices x and y are adjacent in GR(M1) then f(x) and f(y) are adjacent in GR(M2).
2. If GR(M1) is complete then GR(f(M1)) is complete.

Proof .

1. Let x and y be adjacent in GR(M1). By definition there exists r ∈ R that x = ry or y = rx
then f(x) = f(ry) = rf(y) or f(y) = f(rx) = rf(x). Therefore f(x) is adjacent f(y).
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2. Let y1, y2 ∈ f(M1) be two arbitrary vertices in scalar product graph GR(f(M1)). Then there
exist x1, x2 ∈ M1 such that y1 = f(x1) and y2 = f(x2). Since the GR(M1) is complete x1 is
adjacent x2. From 1. y1 is adjacent y2. Therefore scalar product graph GR(f(M1)) is complete.

□

Theorem 2.14. Let M be a R-module. Then scalar product graph GR(M) is complete if and only
if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof . Let M be a R-module and N1 =< a >,N2 =< b > be two cyclic submodules of M that
a ̸= b in M . Since scalar product graph GR(M) is complete then a and b is adjacent. We have
< a >⊆< b > or < b >⊆< a > and N1 ⊆ N2 or N2 ⊆ N1. Conversely, Let M be R-module which
linearly ordered cyclic submodules by inclusion relation. If a ̸= b is two vertices of GR(M) then
< a >⊆< b > or < b >⊆< a >. Therefore we have a and b are adjacent in GR(M). Hence GR(M)
is complete. □

Corollary 2.15. Let R be a ring and M a finite R-module. If GR(M) is complete then M is a cyclic
R-module.

Recall that an R-module M is called uniserial if its submodules are linearly ordered by inclusion.
Evidently, a valuation ring R is uniserial as a module over itself, and its ring of quotients is likewise
a uniserial R-module. It is obvious that submodule and quotients of uniserial modules are again
uniserial. As an example, we see that Z4 is a uniserial Z-module. A right R-module is called a serial
module if it is a direct sum of uniserial modules. Note that every uniserial module is serial but serial
modules need not be uniserial.

Lemma 2.16. If M is a R-module, then M is uniserial if and only if the cyclic submodules of M
are linearly ordered.

Proof . According to the definition one side is obvious. Conversely, Let K, L be submodules of M
with K ̸⊂ L and L ̸⊂ K. Choosing x ∈ K \ L , y ∈ L \K we have, Rx ⊂ Ry or Ry ⊂ Rx. In the
first case we have x ∈ Ry ⊂ L, in the second case y ∈ Rx ⊂ K. Both are contradiction. □

Corollary 2.17. If M is an R-module, then the scalar product graph GR(M) is complete if and only
if M is uniserial.

By this corollary, it’s obvious that scalar product graph of uniserial module is complete . So we give
some examples of uniserial module and their complete scalar product graph.

Example 2.18. • For any prime number p, any cyclic p-group or the quasi-cyclic p-group C(p∞)
is a uniserial Z-module. So GZ(C(p∞)) is complete graph.

• Every Simple module is uniserial. So Zp is a uniserial Z-module and its scalar product graph
is complete.

• Every function having finite length is uniserial. So F [x, y] = {x3, x2y, y3} is uniserial since its
length is 3.

• Every semisimple module is serial.

• Zpn = 1Z
pnZ ⊃ pZ

pnZ ⊃ p2Z
pnZ ⊃ . . . ⊃ pn−1Z

pnZ ⊃ pnZ
pnZ = 0, here Zpn is uniserial. So its scalar product

graph is complete.
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• Also Zp∞, the Z-injective hull of Z
pZ , p a prime number, is uniserial. So we have , Zp∞ is

artinian and uniserial, but not noetherian (not finitely generated).

Corollary 2.19. Let M be an R-module, Then GR(M) is complete, if each of the following condition
holds:

(a) M is uniserial;

(b) the cyclic submodules of M are linearly ordered;

(c) any submodule of N has at most one maximal submodule;

(d) for any finitely generated submodule 0 ̸= K ⊂ N , K
Rad(K)

is simple;

(e) for every factor module L of N , SocL is simple or zero.

Proof . According to previous corollary, if (a) is true, then GR(M) is complete. Equivalency of
next expression to (a) will be discussed:
(a) ⇒ (b) is obvious.
(b) ⇒ (a) Let K,L be submodules of N with K ̸⊂ L and L ̸⊂ K. Choosing x ∈ K \L, y ∈ L \K we
have, by (b), Rx ⊂ Ry or Ry ⊂ Rx. In the first case we conclude x ∈ Ry ⊂ L , in the second case
y ∈ Rx ⊂ K. Both are contradictions.
(a) ⇒ (c) and (a) ⇒ (b) ⇒ (e) are obvious.
(d) ⇒ (b) Let us assume that we can find two cyclic submodules K, L ⊂ N with K ̸⊂ L and L ̸⊂ K.
Then: (K + L)/(K ∩ L) ≃ K/(K ∩ L)

⊕
L/(K ∩ L),

and the factor of (K + L)/(K ∩ L) by its radical contains at least two simple summands. Therefore
the factor of K +L by its radical also contains at least two simple summands. This contradicts (d).
(e) ⇒ (d) We show that every non-zero finitely generated submodule K ⊂ N contains only one max-
imal submodule: If V1, V2 ⊂ K are different maximal submodules, then K/(V1∩V2) ≃ K/V1

⊕
K/V2

is contained in the socle of N/(V1 ∩ V2). This is a contradiction to (e). □
Observation. According to definition of cozero-divisor graph over modules we have the follow-

ings:
(1) If M is an R-module, the subgraph of GR(M) which vertices are WR(M)∗ is complement of
cozero-divisors graph of M .
(2) We denote GR(M) = Γ1 ∨ Γ2 where Γ1 is a complete graph with | WR(M)∗ | vertices and Γ2 is
complement of cozero-divisor graph of M .

3. Planarity

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at
their ends. A subdivision of a graph G is a graph resulting from the subdivision of edges in G.
The subdivision of some edge e with endpoints {u, v} yields a graph containing one new vertex w,
and with an edge set replacing e by two new edges, {u,w} and {w, v}. Kuratowski’s theorem is a
forbidden graph characterization of planar graphs given by Kazimierz Kuratowski in 1930.

Theorem 3.1. If G is a finite graph, then G is is planar if and only if it contains no subdivision of
K5 or K3,3, where Kn is a complete graph with n vertices and Km,n is a complete bipartite graph, for
positive integers m,n.
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In this section we discuss planarity of scalar product graph of a module.

Proposition 3.2. Let M a finite R-module. If | WR(M)∗ |≥ 5, then GR(M) is not planar.

Proof . If | WR(M)∗ |≥ 5 then subgraph of GR(M) which vertices are WR(M)∗ is complete. By
Kuratowski’s Theorem, we have GR(M) is not planar. □

Proposition 3.3. Let M be a Noetherian R-module. If GR(M) has an clique, then M has a cyclic
submodule which contains all vertices of the clique.

Proof . Let K be an clique in GR(M) and x1 be a vertex of K. Assume to the contrary that
there is no cyclic submodule in M that contains all vertices of K. Since the cyclic submodule x1R
doesn’t contain all vertices of K, there exists a vertex x2 in K such that x2 /∈ x1R. As x1 and x2

are in one clique and are adjacent and x2 /∈ x1R, we have x1 ∈ x2R. Therefore, x1R ⫋ x2R. Again
since the cyclic submodule x2R doesn’t contain all vertices of K, there exists a vertex x3 in K such
that x3 /∈ x2R. Also, x2 and x3 are adjacent. This implies that x2 ∈ x3R and so x2R ⫋ x3R. By
continuing this method, we find an increasing sequence of cyclic submodule of M which doesn’t stop
and this is a contradiction. □

Lemma 3.4. Let M be a R-module. Assume x1 − x2 − . . .− xn is a cycle in GR(M) such that the
subgraph induced by vertices x1, x2, . . . , xn contains no cycle with smaller length. If Rx1 ⊆ Rxn then
we have Rx2k−1 ⊆ Rx2k and Rx2k+1 ⊆ Rx2k for k = 1, . . . , n

Proof . By our assumption, x2 is not adjacent to xn thus we have Rx2 ⊈ Rxn and Rxn ⊈ Rx2.
Since x1 is adjacent to x2 hence Rx1 ⊆ Rx2 or Rx2 ⊆ Rx1. If Rx2 ⊆ Rx1, by assumption since
Rx1 ⊆ Rxn then Rx2 ⊆ Rxn which is contradiction. Therefore Rx1 ⊆ Rx2.
Also, x3 is not adjacent to xn thus we have Rx3 ⊈ Rxn and Rxn ⊈ Rx3. Since x2 is adjacent to
x3 hence Rx2 ⊆ Rx3 or Rx3 ⊆ Rx2. If Rx2 ⊆ Rx3, since Rx1 ⊆ Rx2 then Rx1 ⊆ Rx3 which is
contradiction. Therefore Rx3 ⊆ Rx2.
Also, x4 is not adjacent to xn thus we have Rx4 ⊈ Rxn and Rxn ⊈ Rx4. Since x3 is adjacent to
x4 hence Rx3 ⊆ Rx4 or Rx4 ⊆ Rx3. If Rx4 ⊆ Rx3, since Rx3 ⊆ Rx2 then Rx4 ⊆ Rx2 which is
contradiction. Therefore Rx3 ⊆ Rx4.
by similar method we have:Rx1 ⊆ Rx2, Rx3 ⊆ Rx2, Rx3 ⊆ Rx4, Rx5 ⊆ Rx4, Rx5 ⊆ Rx6, Rx7 ⊆
Rx6,... which complete the proof. □

4. Weakly Perfect

For a graph G, a k-colouring of the vertices of G is an assignment of k colors to the vertices of
G in such a way that no two adjacent vertices receive the same color. The chromatic number of
G, denoted by χ(G), is the smallest number k such that G admits a k-coloring. A clique of G is a
complete sub-graph of G and the number of vertices in a largest clique of G, denoted by ω(G), is
called the clique number of G. It is easy to see that χ(G) ≥ ω(G), because every vertex of a clique
should get a different color. A graph G is called weakly perfect if χ(G) = ω(G). If M = Zn be an
finite Z-module, then GZ(M) is weakly perfect.

Example 4.1. Chromatic number and clique number of GZ(Zn) for some n is listed in below (p is
prime number):



82 M. Nouri Jouybari, Y. Talebi, S. Firouzian

n χ(GZ(Zn)) ω(GZ(Zn))
n = 1 1 1
n = p p p
n = pn pn pn

n = 2p 2p− 1 2p− 1
n = 3p 3p− 2 3p− 2

Table 1: Clique number, Chromatic of GZ(Zn)
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