Int. J. Nonlinear Anal. Appl. 10 (2019) Special Issue (Nonlinear Analysis in Engineering and Sciences), 75-82 ISSN: 2008-6822 (electronic) https://dx.doi.org/10.22075/IJNAA.2019.4398

Scalar Product Graphs of Modules

M. Nouri Jouybari^a, Y. Talebi^{a*}, S. Firouzian^b

^a Department of Mathematics, University of Mazandaran, Babolsar, Iran ^bDepartment of Mathematics, Payame Noor University (PNU), Tehran, Iran.

Abstract

Let R be a commutative ring with identity and M an R-module. The Scalar-Product Graph of M is defined as the graph $G_R(M)$ with the vertex set M and two distinct vertices x and y are adjacent if and only if there exist r or s belong to R such that x = ry or y = sx. In this paper, we discuss connectivity and planarity of these graphs and computing diameter and girth of $G_R(M)$. Also we show some of these graphs is weakly perfect.

Keywords: Scalar Product, Graph, Module.

1. Introduction

The concept of the zero-divisor graph of a commutative ring, denoted by $\Gamma(R)$, was introduced by Beck [1], where he was mainly interested in coloring. $\Gamma(R)$ is graph with vertices nonzero zero divisors of R and edges those pairs of distinct nonzero zero divisors $\{a, b\}$ such that ab = 0. We consider this investigation of coloring of the zero-divisor graph of a commutative ring was then continued by Anderson and Naseer [2].

Let G be an undirected graph with the vertex set V(G). If G contains n vertices then it is said to be an n-vertex graph and we write |V(G)| = n. Two graphs G and H are isomorphic if there exists a one-to-one correspondence between their vertex sets which preserves adjacency. A subgraph of G is a graph having all of its vertices and edges in G. The complete graph is a graph in which any two distinct vertices are adjacent.

Throughout this paper all rings are commutative with non-zero identity and all modules unitary. We associate a graph $G_R(M)$ to an *R*-module *M* whose vertices are elements of *M* in these way that two distinct vertices *x* and *y* are adjacent if and only if there exists *r* belong to *R* that x = ry or y = rx. We investigate the relationship between the algebraic properties of an *R*-module *M* and the properties of the associated graph $G_R(M)$ namely Scalar-product graph of *M*.

^{*}Corresponding author

Email address: mostafa.umz@gmail.com, talebi@umz.ac.ir, siamfirouzian@pnu.ac.ir (M. Nouri Jouybari^a, Y. Talebi^a*, S. Firouzian^b)

Let G = (V, E) be a graph. We say that G is connected if there is a path between any two distinct vertices of G. For vertices x and y of G, we define d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and $d(x, y) = \infty$ if there is no such path). The diameter of G is $diam(G) = sup\{d(x, y) : x, y \in V(G)\}$. The girth of a graph G, denoted by gr(G), is the length of the shortest cycle in G. A graph with no cycle has infinite girth. For a vertex $v \in G$, neighbours of v denotes N(v) is equal $\{u \in V(G) \setminus \{v\} : v \text{ is adjacent to } u\}$. In a graph G, a set $S \subseteq V(G)$ is an independent set if the subgraph induced by S contains no edge. The independence number $\alpha(G)$ is the maximum size of an independent set in G.

Afkhami and et al. in [3] introduced the cozero-divisor graph of a commutative ring R denoted by $\Gamma'(R)$ as a graph with vertices $W(R)^* = W(R) \setminus \{0\}$ where W(R) is the set of all non-unit elements of R and two distinct vertices x and y are adjacent if and only if $x \notin Ry$ and $y \notin Rx$ where Rc is a ideal generated by $c \in R$.

Let M be a R-module and $W_R(M) = \{x \in M | Rm \neq M\}$. By R as R-module $W_R(R)$ is set of all non-units elements of R. In [4] authors investigate cozero-divisor graphs on R-module M which vertices from $W_R(M)^* = W_R(M) \setminus \{0\}$ and two distinct vertices m and n are adjacent if and only if $m \notin Rn$ and $n \notin Rm$, and they studied girth, independent number, clique number and planarity of this graph.

We use T(M) to denote the set of torsion elements of M; that is, $T(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in R\}$. If R is an integral domain, then T(M) is a submodule of M. If T(M) = 0, we say that M is torsion-free while if T(M) = M we say that Mis torsion. D. Anderson et al. in [5] showed when T(M) is submodule of M and they showed if $T(M) \neq M$ then T(M) is a union of prime sub-modules of M.

In section 2, we compute diameter and girth of $G_R(M)$ and in section 3, we discuss planarity of $G_R(M)$.

2. Diameter and Girth of $G_R(M)$

Remark 2.1. Let M be an R-module and $x \in M$, we denote set of vertices that is adjacent to x in $G_R(M)$ by $T_x(M) = \{m \in M : rm = x \text{ for some } r \in R\}$. The torsion element of M is $T_0(M)$. The $T_x(M)$ is set of neighbours of x or N(x). Note that if $G_R(M)$ is a Scalar product graph of R-module M, then $x, y \in M$ is adjacent if and only if $x \in T_y(M)$ or $y \in T_x(M)$.

Remark 2.2. Let M be a finite R-module and $G_R(M)$ a scalar product graph of M. If M is torsion then for every $m \in M$, vertex m is adjacent to 0 and deg(0) = |M| - 1. Also, $diam(G_R(M)) \leq 2$. Also, If M is torsion-free then 0 is isolated vertex.

Proposition 2.3. Let R be a division ring and M an R-module. If a is adjacent to b in $G_R(M)$, then N(a) = N(b).

Proof. Assume that a and b are two adjacent vertices of $G_R(M)$. Then $a \in Rb$ or $b \in Ra$. Hence since R is a division ring, we have Ra = Rb. First suppose that $x \in N(a)$. Then $x \in Ra$ or $a \in Rx$ hence $x \in Rb$ or $a \in Rx$, Therefore $x \in N(b)$. So $N(a) \subseteq N(b)$. Next if $x \in N(b)$, then $x \in Rb$ or $b \in Rx$. Hence $x \in Ra$ or $b \in Rx$ therefore $x \in N(a)$ so $N(b) \subseteq N(a)$. Thus N(a) = N(b). \Box

Example 2.4. • Let M be a free R-module, then one can see that M is torsion-free, thus 0 is isolated vertex. Also, if V is vector space over field K then V is torsion-free, therefore 0 is isolated vertex.

- \mathbb{Q} is torsion-free \mathbb{Z} -module. Therefore 0 is isolated vertex.
- If R is a integral domain and Q its field of fractions, then $\frac{Q}{R}$ is a torsion R-module. Therefore $diam(G_R(\frac{Q}{R})) \leq 2$.
- Consider a linear operator L acting on a finite-dimensional vector space V. If we view V as an F[L]-module in the natural way, then, V is a torsion F[L]-module. Then T(V) = V as a result by previous proposition we have deg(0) = |V| - 1 and $diam(G_{F[L]}(V)) \leq 2$.

Remark 2.5. Let $G_R(M)$ be a Scalar product graph of R-module M. If $x, y \in M$ then x is adjacent to y if and only if $\langle x \rangle \subseteq \langle y \rangle$ or $\langle y \rangle \subseteq \langle x \rangle$ or $Rx \subseteq Ry$ or $Ry \subseteq Rx$.

Lemma 2.6. Let M be an R-module and $x, y \in M$. If $\langle x \rangle = \langle y \rangle$, then x is adjacent to y in $G_R(M)$ and for all $z \in M$, x is adjacent to z if and only if y is adjacent to z.

Proof. Suppose $\langle x \rangle = \langle y \rangle$ then $\langle x \rangle \subseteq \langle y \rangle$. So x is adjacent to y. If z is adjacent to x, then $\langle z \rangle \subseteq \langle x \rangle$ or $\langle x \rangle \subseteq \langle z \rangle$. Hence $\langle z \rangle \subseteq \langle y \rangle$ or $\langle y \rangle \subseteq \langle z \rangle$. So z is adjacent to y. Similarly, if y is adjacent to z then x is adjacent to z. \Box

This concludes that any two vertices that generate the same submodules will have exactly the same set of neighbours.

Corollary 2.7. Let M be an R-module and $x, y \in M$. If cyclic submodules Rx, Ry are maximal, Then x is not adjacent to y in $G_R(M)$.

Proof. Suppose x is adjacent to y in $G_R(M)$. Without loss of generality suppose that $Rx \subseteq Ry$ which is contradiction by maximality of Rx. \Box

Theorem 2.8. Let $M = M_1 \times M_2 \times \cdots \times M_n$ where M_i is a module $1 \leq i \leq n$. Let $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in M$, If x_i is not adjacent to y_i in $G_R(M_i)$ for some $i \in \{1, \ldots, n\}$, Then x is not adjacent to y in $G_R(M)$.

Proof. Suppose x is adjacent to y in $G_R(M)$. Then without loss of generality $x \in Ry$, There exist $z \in R$ such that zy = x or $(z_1y_1, z_2y_2, \ldots, z_ny_n) = (x_1, x_2, \ldots, x_n)$ and for all $i \in \{1, \ldots, n\}$ we have $x_i = z_i y_i$ and hence x_i is adjacent to y_i in $G_R(M_i)$. \Box

The converse of theorem 2.8 does not hold. Let $M = \mathbb{Z}_{16} \times \mathbb{Z}_{16}$, $R = \mathbb{Z}$. In $G_{\mathbb{Z}}(\mathbb{Z}_{16} \times \mathbb{Z}_{16})$ vertex (2, 4) is not adjacent to vertex (4, 2), but 2 is adjacent to 4 in $G(\mathbb{Z}_{16})$.

We know that any abelian group is a \mathbb{Z} -module. If G is a \mathbb{Z} -module and $x, y \in G$ then according to definition of scalar product on G, x is adjacent to y if there exist $n \in \mathbb{Z}$ which x = ny or y = nx.

Example 2.9. Let $M = \mathbb{Z}_6$ be \mathbb{Z} -module. Scalar product $G_{\mathbb{Z}}(\mathbb{Z}_6)$ have shown in Fig 1.

Fig 1. Scalar Product of \mathbb{Z} -module \mathbb{Z}_6

Proposition 2.10. Let \mathbb{Z}_n be \mathbb{Z} -module. If p, m are prime and positive integer number, then for $n = 1, p, p^m$, Scalar product graph $G_{\mathbb{Z}}(\mathbb{Z}_n)$ is complete.

Theorem 2.11. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_n$ be a \mathbb{Z} -module. Then the number of edges e of $G_R(M)$ is given by $2e = \sum_{d|n} \{2d - \phi(d) - 1\}\phi(d)$.

Proof. In the directed scalar product graph $\overrightarrow{G_R(M)}$, vertex *a* is adjacent to *b* if there exist $r \in R$ such that b = ra. Therefore, for any vertex $a \in M$, the out-degree of *a* is

 $|\{b \in M : b \in Ra, b \neq a\}| = |Ra| - 1$. Also, that the number of arcs in a directed graph is the sum of out-degrees of all the vertices of the graph. Thus the number of arcs of $\overline{G_R(M)}$ is $\sum_{a \in M} |Ra| - 1$. To counting number of edges in the undirected scalar product graph $G_R(M)$, we have to count the bi-directed arcs only once. The bi-directed arcs occur for some $b \in M$, $(b \neq a)$ such that, $a \in Rb$ and $b \in Ra$. \Box

Proposition 2.12. Let M be an R-module and N submodule of M. Then $G_R(N)$ is an induced subgraph of $G_R(M)$.

Proof. As $N \subseteq M$, $V(G_R(N)) = N \subseteq M = V(G_R(M))$. Also from the definition of the scalar product graph, it follows that for any $a, b \in N$, a and b are adjacent in $G_R(N)$ if and only if they are adjacent in $G_R(M)$. Thus $G_R(N)$ is an induced subgraph of $G_R(M)$. \Box

Lemma 2.13. Let $f: M_1 \longrightarrow M_2$ be a *R*-module homomorphism. We have:

- 1. If vertices x and y are adjacent in $G_R(M_1)$ then f(x) and f(y) are adjacent in $G_R(M_2)$.
- 2. If $G_R(M_1)$ is complete then $G_R(f(M_1))$ is complete.

Proof.

1. Let x and y be adjacent in $G_R(M_1)$. By definition there exists $r \in R$ that x = ry or y = rxthen f(x) = f(ry) = rf(y) or f(y) = f(rx) = rf(x). Therefore f(x) is adjacent f(y). 2. Let $y_1, y_2 \in f(M_1)$ be two arbitrary vertices in scalar product graph $G_R(f(M_1))$. Then there exist $x_1, x_2 \in M_1$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since the $G_R(M_1)$ is complete x_1 is adjacent x_2 . From 1. y_1 is adjacent y_2 . Therefore scalar product graph $G_R(f(M_1))$ is complete.

Theorem 2.14. Let M be a R-module. Then scalar product graph $G_R(M)$ is complete if and only if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof. Let M be a R-module and $N_1 = \langle a \rangle, N_2 = \langle b \rangle$ be two cyclic submodules of M that $a \neq b$ in M. Since scalar product graph $G_R(M)$ is complete then a and b is adjacent. We have $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$ and $N_1 \subseteq N_2$ or $N_2 \subseteq N_1$. Conversely, Let M be R-module which linearly ordered cyclic submodules by inclusion relation. If $a \neq b$ is two vertices of $G_R(M)$ then $\langle a \rangle \subseteq \langle b \rangle$ or $\langle b \rangle \subseteq \langle a \rangle$. Therefore we have a and b are adjacent in $G_R(M)$. Hence $G_R(M)$ is complete. \Box

Corollary 2.15. Let R be a ring and M a finite R-module. If $G_R(M)$ is complete then M is a cyclic R-module.

Recall that an R-module M is called uniserial if its submodules are linearly ordered by inclusion. Evidently, a valuation ring R is uniserial as a module over itself, and its ring of quotients is likewise a uniserial R-module. It is obvious that submodule and quotients of uniserial modules are again uniserial. As an example, we see that \mathbb{Z}_4 is a uniserial \mathbb{Z} -module. A right R-module is called a serial module if it is a direct sum of uniserial modules. Note that every uniserial module is serial but serial modules need not be uniserial.

Lemma 2.16. If M is a R-module, then M is uniserial if and only if the cyclic submodules of M are linearly ordered.

Proof. According to the definition one side is obvious. Conversely, Let K, L be submodules of M with $K \not\subset L$ and $L \not\subset K$. Choosing $x \in K \setminus L$, $y \in L \setminus K$ we have, $Rx \subset Ry$ or $Ry \subset Rx$. In the first case we have $x \in Ry \subset L$, in the second case $y \in Rx \subset K$. Both are contradiction. \Box

Corollary 2.17. If M is an R-module, then the scalar product graph $G_R(M)$ is complete if and only if M is uniserial.

By this corollary, it's obvious that scalar product graph of uniserial module is complete . So we give some examples of uniserial module and their complete scalar product graph.

- **Example 2.18.** For any prime number p, any cyclic p-group or the quasi-cyclic p-group $C(p^{\infty})$ is a uniserial \mathbb{Z} -module. So $G_{\mathbb{Z}}(C(p^{\infty}))$ is complete graph.
 - Every Simple module is uniserial. So \mathbb{Z}_p is a uniserial \mathbb{Z} -module and its scalar product graph is complete.
 - Every function having finite length is uniserial. So $F[x, y] = \{x^3, x^2y, y^3\}$ is uniserial since its length is 3.
 - Every semisimple module is serial.
 - $\mathbb{Z}_{p^n} = \frac{1\mathbb{Z}}{p^n\mathbb{Z}} \supset \frac{p\mathbb{Z}}{p^n\mathbb{Z}} \supset \frac{p^2\mathbb{Z}}{p^n\mathbb{Z}} \supset \ldots \supset \frac{p^{n-1}\mathbb{Z}}{p^n\mathbb{Z}} \supset \frac{p^n\mathbb{Z}}{p^n\mathbb{Z}} = 0$, here \mathbb{Z}_{p^n} is uniserial. So its scalar product graph is complete.

• Also $\mathbb{Z}_{p^{\infty}}$, the \mathbb{Z} -injective hull of $\frac{\mathbb{Z}}{p\mathbb{Z}}$, p a prime number, is uniserial. So we have , $\mathbb{Z}_{p^{\infty}}$ is artinian and uniserial, but not noetherian (not finitely generated).

Corollary 2.19. Let M be an R-module, Then $G_R(M)$ is complete, if each of the following condition holds:

(a) M is uniserial;

- (b) the cyclic submodules of M are linearly ordered;
- (c) any submodule of N has at most one maximal submodule;
- (d) for any finitely generated submodule $0 \neq K \subset N$, $\frac{K}{Rad(K)}$ is simple;
- (e) for every factor module L of N, SocL is simple or zero.

Proof. According to previous corollary, if (a) is true, then $G_R(M)$ is complete. Equivalency of next expression to (a) will be discussed:

 $(a) \Rightarrow (b)$ is obvious.

 $(b) \Rightarrow (a)$ Let K, L be submodules of N with $K \not\subset L$ and $L \not\subset K$. Choosing $x \in K \setminus L, y \in L \setminus K$ we have, by (b), $Rx \subset Ry$ or $Ry \subset Rx$. In the first case we conclude $x \in Ry \subset L$, in the second case $y \in Rx \subset K$. Both are contradictions.

 $(a) \Rightarrow (c)$ and $(a) \Rightarrow (b) \Rightarrow (e)$ are obvious.

 $(d) \Rightarrow (b)$ Let us assume that we can find two cyclic submodules $K, L \subset N$ with $K \not\subset L$ and $L \not\subset K$. Then: $(K+L)/(K \cap L) \simeq K/(K \cap L) \bigoplus L/(K \cap L)$,

and the factor of $(K + L)/(K \cap L)$ by its radical contains at least two simple summands. Therefore the factor of K + L by its radical also contains at least two simple summands. This contradicts (d). $(e) \Rightarrow (d)$ We show that every non-zero finitely generated submodule $K \subset N$ contains only one maximal submodule: If $V_1, V_2 \subset K$ are different maximal submodules, then $K/(V_1 \cap V_2) \simeq K/V_1 \bigoplus K/V_2$ is contained in the socle of $N/(V_1 \cap V_2)$. This is a contradiction to (e). \Box

Observation. According to definition of cozero-divisor graph over modules we have the followings:

(1) If M is an R-module, the subgraph of $G_R(M)$ which vertices are $W_R(M)^*$ is complement of cozero-divisors graph of M.

(2) We denote $G_R(M) = \Gamma_1 \vee \Gamma_2$ where Γ_1 is a complete graph with $|W_R(M)^*|$ vertices and Γ_2 is complement of cozero-divisor graph of M.

3. Planarity

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints $\{u, v\}$ yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, $\{u, w\}$ and $\{w, v\}$. Kuratowski's theorem is a forbidden graph characterization of planar graphs given by Kazimierz Kuratowski in 1930.

Theorem 3.1. If G is a finite graph, then G is is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$, where K_n is a complete graph with n vertices and $K_{m,n}$ is a complete bipartite graph, for positive integers m, n.

In this section we discuss planarity of scalar product graph of a module.

Proposition 3.2. Let M a finite R-module. If $|W_R(M)^*| \ge 5$, then $G_R(M)$ is not planar.

Proof. If $|W_R(M)^*| \ge 5$ then subgraph of $G_R(M)$ which vertices are $W_R(M)^*$ is complete. By Kuratowski's Theorem, we have $G_R(M)$ is not planar. \Box

Proposition 3.3. Let M be a Noetherian R-module. If $G_R(M)$ has an clique, then M has a cyclic submodule which contains all vertices of the clique.

Proof. Let K be an clique in $G_R(M)$ and x_1 be a vertex of K. Assume to the contrary that there is no cyclic submodule in M that contains all vertices of K. Since the cyclic submodule x_1R doesn't contain all vertices of K, there exists a vertex x_2 in K such that $x_2 \notin x_1R$. As x_1 and x_2 are in one clique and are adjacent and $x_2 \notin x_1R$, we have $x_1 \in x_2R$. Therefore, $x_1R \subsetneq x_2R$. Again since the cyclic submodule x_2R doesn't contain all vertices of K, there exists a vertex x_3 in K such that $x_3 \notin x_2R$. Also, x_2 and x_3 are adjacent. This implies that $x_2 \in x_3R$ and so $x_2R \gneqq x_3R$. By continuing this method, we find an increasing sequence of cyclic submodule of M which doesn't stop and this is a contradiction. \Box

Lemma 3.4. Let M be a R-module. Assume $x_1 - x_2 - \ldots - x_n$ is a cycle in $G_R(M)$ such that the subgraph induced by vertices x_1, x_2, \ldots, x_n contains no cycle with smaller length. If $Rx_1 \subseteq Rx_n$ then we have $Rx_{2k-1} \subseteq Rx_{2k}$ and $Rx_{2k+1} \subseteq Rx_{2k}$ for $k = 1, \ldots, n$

Proof. By our assumption, x_2 is not adjacent to x_n thus we have $Rx_2 \nsubseteq Rx_n$ and $Rx_n \nsubseteq Rx_2$. Since x_1 is adjacent to x_2 hence $Rx_1 \subseteq Rx_2$ or $Rx_2 \subseteq Rx_1$. If $Rx_2 \subseteq Rx_1$, by assumption since $Rx_1 \subseteq Rx_n$ then $Rx_2 \subseteq Rx_n$ which is contradiction. Therefore $Rx_1 \subseteq Rx_2$.

Also, x_3 is not adjacent to x_n thus we have $Rx_3 \nsubseteq Rx_n$ and $Rx_n \nsubseteq Rx_3$. Since x_2 is adjacent to x_3 hence $Rx_2 \subseteq Rx_3$ or $Rx_3 \subseteq Rx_2$. If $Rx_2 \subseteq Rx_3$, since $Rx_1 \subseteq Rx_2$ then $Rx_1 \subseteq Rx_3$ which is contradiction. Therefore $Rx_3 \subseteq Rx_2$.

Also, x_4 is not adjacent to x_n thus we have $Rx_4 \nsubseteq Rx_n$ and $Rx_n \nsubseteq Rx_4$. Since x_3 is adjacent to x_4 hence $Rx_3 \subseteq Rx_4$ or $Rx_4 \subseteq Rx_3$. If $Rx_4 \subseteq Rx_3$, since $Rx_3 \subseteq Rx_2$ then $Rx_4 \subseteq Rx_2$ which is contradiction. Therefore $Rx_3 \subseteq Rx_4$.

by similar method we have: $Rx_1 \subseteq Rx_2$, $Rx_3 \subseteq Rx_2$, $Rx_3 \subseteq Rx_4$, $Rx_5 \subseteq Rx_4$, $Rx_5 \subseteq Rx_6$, $Rx_7 \subseteq Rx_6$,... which complete the proof. \Box

4. Weakly Perfect

For a graph G, a k-colouring of the vertices of G is an assignment of k colors to the vertices of G in such a way that no two adjacent vertices receive the same color. The chromatic number of G, denoted by $\chi(G)$, is the smallest number k such that G admits a k-coloring. A clique of G is a complete sub-graph of G and the number of vertices in a largest clique of G, denoted by $\omega(G)$, is called the clique number of G. It is easy to see that $\chi(G) \geq \omega(G)$, because every vertex of a clique should get a different color. A graph G is called weakly perfect if $\chi(G) = \omega(G)$. If $M = \mathbb{Z}_n$ be an finite \mathbb{Z} -module, then $G_{\mathbb{Z}}(M)$ is weakly perfect.

Example 4.1. Chromatic number and clique number of $G_{\mathbb{Z}}(\mathbb{Z}_n)$ for some n is listed in below (p is prime number):

n	$\chi(G_{\mathbb{Z}}(\mathbb{Z}_n))$	$\omega(G_{\mathbb{Z}}(\mathbb{Z}_n))$
n = 1	1	1
n = p	p	p
$n = p^n$	p^n	p^n
n = 2p	2p - 1	2p - 1
n = 3p	3p - 2	3p - 2

Table 1: Clique number, Chromatic of $G_{\mathbb{Z}}(\mathbb{Z}_n)$

References

- [1] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998) 208–226.
- [2] D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993) 500-514.
- M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011) 753–762A.
- [4] A. Alibemani, E. Hashemi and A. Alhevaz, The cozero-divisor graph of a module, Asian-European Journal of Mathematics, 11(2018) DOI: 10.1142/S1793557118500924.
- [5] D. Anderson and S. Chun, The Set of Torsion Elements of a Module, Communications in Algebra, 48(2014) 1835-1843.