Int. J. Nonlinear Anal. Appl.
10 (2019) Special Issue (Nonlinear Analysis in Engineering and Sciences), 75-82 ISSN: 2008-6822 (electronic)
https://dx.doi.org/10.22075/IJNAA.2019.4398

Scalar Product Graphs of Modules

M. Nouri Jouybari ${ }^{a}$, Y. Talebi ${ }^{a *}$, S. Firouzian ${ }^{b}$
${ }^{a}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran
${ }^{b}$ Department of Mathematics, Payame Noor University (PNU), Tehran, Iran.

Abstract

Let R be a commutative ring with identity and M an R-module. The Scalar-Product Graph of M is defined as the graph $G_{R}(M)$ with the vertex set M and two distinct vertices x and y are adjacent if and only if there exist r or s belong to R such that $x=r y$ or $y=s x$. In this paper, we discuss connectivity and planarity of these graphs and computing diameter and girth of $G_{R}(M)$. Also we show some of these graphs is weakly perfect.

Keywords: Scalar Product, Graph, Module.

1. Introduction

The concept of the zero-divisor graph of a commutative ring, denoted by $\Gamma(R)$, was introduced by Beck [1], where he was mainly interested in coloring. $\Gamma(R)$ is graph with vertices nonzero zero divisors of R and edges those pairs of distinct nonzero zero divisors $\{a, b\}$ such that $a b=0$. We consider this investigation of coloring of the zero-divisor graph of a commutative ring was then continued by Anderson and Naseer [2].

Let G be an undirected graph with the vertex set $V(G)$. If G contains n vertices then it is said to be an n-vertex graph and we write $|V(G)|=n$. Two graphs G and H are isomorphic if there exists a one-to-one correspondence between their vertex sets which preserves adjacency. A subgraph of G is a graph having all of its vertices and edges in G. The complete graph is a graph in which any two distinct vertices are adjacent.

Throughout this paper all rings are commutative with non-zero identity and all modules unitary. We associate a graph $G_{R}(M)$ to an R-module M whose vertices are elements of M in these way that two distinct vertices x and y are adjacent if and only if there exists r belong to R that $x=r y$ or $y=r x$. We investigate the relationship between the algebraic properties of an R-module M and the properties of the associated graph $G_{R}(M)$ namely Scalar-product graph of M.

[^0]Let $G=(V, E)$ be a graph. We say that G is connected if there is a path between any two distinct vertices of G. For vertices x and y of G, we define $d(x, y)$ to be the length of a shortest path from x to $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no such path). The diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y): x, y \in V(G)\}$. The girth of a graph G, denoted by $\operatorname{gr}(G)$, is the length of the shortest cycle in G. A graph with no cycle has infinite girth. For a vertex $v \in G$, neighbours of v denotes $N(v)$ is equal $\{u \in V(G) \backslash\{v\}: v$ is adjacent to $u\}$. In a graph G, a set $S \subseteq V(G)$ is an independent set if the subgraph induced by S contains no edge. The independence number $\alpha(G)$ is the maximum size of an independent set in G.

Afkhami and et al. in [3] introduced the cozero-divisor graph of a commutative ring R denoted by $\Gamma^{\prime}(R)$ as a graph with vertices $W(R)^{*}=W(R) \backslash\{0\}$ where $W(R)$ is the set of all non-unit elements of R and two distinct vertices x and y are adjacent if and only if $x \notin R y$ and $y \notin R x$ where $R c$ is a ideal generated by $c \in R$.

Let M be a R-module and $W_{R}(M)=\{x \in M \mid R m \neq M\}$. By R as R-module $W_{R}(R)$ is set of all non-units elements of R. In [4] authors investigate cozero-divisor graphs on R-module M which vertices from $W_{R}(M)^{*}=W_{R}(M) \backslash\{0\}$ and two distinct vertices m and n are adjacent if and only if $m \notin R n$ and $n \notin R m$, and they studied girth, independent number, clique number and planarity of this graph.

We use $T(M)$ to denote the set of torsion elements of M; that is, $T(M)=\{m \in M: r m=0$ for some $0 \neq r \in R\}$. If R is an integral domain, then $T(M)$ is a submodule of M. If $T(M)=0$, we say that M is torsion-free while if $T(M)=M$ we say that M is torsion. D. Anderson et al. in [5] showed when $T(M)$ is submodule of M and they showed if $T(M) \neq M$ then $T(M)$ is a union of prime sub-modules of M.

In section 2, we compute diameter and girth of $G_{R}(M)$ and in section 3, we discuss planarity of $G_{R}(M)$.

2. Diameter and Girth of $G_{R}(M)$

Remark 2.1. Let M be an R-module and $x \in M$, we denote set of vertices that is adjacent to x in $G_{R}(M)$ by $T_{x}(M)=\{m \in M: r m=x$ for some $r \in R\}$. The torsion element of M is $T_{0}(M)$. The $T_{x}(M)$ is set of neighbours of x or $N(x)$. Note that if $G_{R}(M)$ is a Scalar product graph of R-module M, then $x, y \in M$ is adjacent if and only if $x \in T_{y}(M)$ or $y \in T_{x}(M)$.

Remark 2.2. Let M be a finite R-module and $G_{R}(M)$ a scalar product graph of M. If M is torsion then for every $m \in M$, vertex m is adjacent to 0 and $\operatorname{deg}(0)=|M|-1$. Also, $\operatorname{diam}\left(G_{R}(M)\right) \leq 2$. Also, If M is torsion-free then 0 is isolated vertex.

Proposition 2.3. Let R be a division ring and M an R-module. If a is adjacent to b in $G_{R}(M)$, then $N(a)=N(b)$.

Proof. Assume that a and b are two adjacent vertices of $G_{R}(M)$. Then $a \in R b$ or $b \in R a$. Hence since R is a division ring, we have $R a=R b$. First suppose that $x \in N(a)$. Then $x \in R a$ or $a \in R x$ hence $x \in R b$ or $a \in R x$, Therefore $x \in N(b)$. So $N(a) \subseteq N(b)$. Next if $x \in N(b)$, then $x \in R b$ or $b \in R x$. Hence $x \in R a$ or $b \in R x$ therefore $x \in N(a)$ so $N(b) \subseteq N(a)$. Thus $N(a)=N(b)$.

Example 2.4. - Let M be a free R-module, then one can see that M is torsion-free, thus 0 is isolated vertex. Also, if V is vector space over field K then V is torsion-free, therefore 0 is isolated vertex.

- \mathbb{Q} is torsion-free \mathbb{Z}-module. Therefore 0 is isolated vertex.
- If R is a integral domain and Q its field of fractions, then $\frac{Q}{R}$ is a torsion R-module. Therefore $\operatorname{diam}\left(G_{R}\left(\frac{Q}{R}\right)\right) \leq 2$.
- Consider a linear operator L acting on a finite-dimensional vector space V. If we view V as an $F[L]$-module in the natural way, then, V is a torsion $F[L]$-module. Then $T(V)=V$ as a result by previous proposition we have $\operatorname{deg}(0)=|V|-1$ and $\operatorname{diam}\left(G_{F[L]}(V)\right) \leq 2$.

Remark 2.5. Let $G_{R}(M)$ be a Scalar product graph of R-module M. If $x, y \in M$ then x is adjacent to y if and only if $<x>\subseteq<y>$ or $<y>\subseteq<x>$ or $R x \subseteq R y$ or $R y \subseteq R x$.

Lemma 2.6. Let M be an R-module and $x, y \in M$. If $\langle x\rangle=\langle y\rangle$, then x is adjacent to y in $G_{R}(M)$ and for all $z \in M, x$ is adjacent to z if and only if y is adjacent to z.

Proof. Suppose $\langle x\rangle=\langle y\rangle$ then $\langle x\rangle \subseteq<y\rangle$. So x is adjacent to y. If z is adjacent to x, then $\langle z\rangle \subseteq<x\rangle$ or $\langle x\rangle \subseteq<z\rangle$. Hence $\langle z\rangle \subseteq<y>$ or $\langle y\rangle \subseteq<z\rangle$. So z is adjacent to y. Similarly, if y is adjacent to z then x is adjacent to z.

This concludes that any two vertices that generate the same submodules will have exactly the same set of neighbours.

Corollary 2.7. Let M be an R-module and $x, y \in M$. If cyclic submodules $R x, R y$ are maximal, Then x is not adjacent to y in $G_{R}(M)$.

Proof . Suppose x is adjacent to y in $G_{R}(M)$. Without loss of generality suppose that $R x \subseteq R y$ which is contradiction by maximality of $R x$.

Theorem 2.8. Let $M=M_{1} \times M_{2} \times \cdots \times M_{n}$ where M_{i} is a module $1 \leq i \leq n$. Let $x=$ $\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in M$, If x_{i} is not adjacent to y_{i} in $G_{R}\left(M_{i}\right)$ for some $i \in\{1, \ldots, n\}$, Then x is not adjacent to y in $G_{R}(M)$.

Proof . Suppose x is adjacent to y in $G_{R}(M)$. Then without loss of generality $x \in R y$, There exist $z \in R$ such that $z y=x$ or $\left(z_{1} y_{1}, z_{2} y_{2}, \ldots, z_{n} y_{n}\right)=\left(x_{1}, x_{2} \ldots, x_{n}\right)$ and for all $i \in\{1, \ldots, n\}$ we have $x_{i}=z_{i} y_{i}$ and hence x_{i} is adjacent to y_{i} in $G_{R}\left(M_{i}\right)$.

The converse of theorem 2.8 does not hold. Let $M=\mathbb{Z}_{16} \times \mathbb{Z}_{16}, R=\mathbb{Z}$. In $G_{\mathbb{Z}}\left(\mathbb{Z}_{16} \times \mathbb{Z}_{16}\right)$ vertex $(2,4)$ is not adjacent to vertex $(4,2)$, but 2 is adjacent to 4 in $G\left(\mathbb{Z}_{16}\right)$.

We know that any abelian group is a \mathbb{Z}-module. If G is a \mathbb{Z}-module and $x, y \in G$ then according to definition of scalar product on G, x is adjacent to y if there exist $n \in \mathbb{Z}$ which $x=n y$ or $y=n x$.

Example 2.9. Let $M=\mathbb{Z}_{6}$ be \mathbb{Z}-module. Scalar product $G_{\mathbb{Z}}\left(\mathbb{Z}_{6}\right)$ have shown in Fig 1 .

Fig 1. Scalar Product of \mathbb{Z}-module \mathbb{Z}_{6}
Proposition 2.10. Let \mathbb{Z}_{n} be \mathbb{Z}-module. If p, m are prime and positive integer number, then for $n=1, p, p^{m}$, Scalar product graph $G_{\mathbb{Z}}\left(\mathbb{Z}_{n}\right)$ is complete.

Theorem 2.11. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{n}$ be a \mathbb{Z}-module. Then the number of edges e of $G_{R}(M)$ is given by $2 e=\sum_{d \mid n}\{2 d-\phi(d)-1\} \phi(d)$.

Proof. In the directed scalar product graph $\overrightarrow{G_{R}(M)}$, vertex a is adjacent to b if there exist $r \in R$ such that $b=r a$. Therefore, for any vertex $a \in M$, the out-degree of a is $|\{b \in M: b \in R a, b \neq a\}|=|R a|-1$. Also, that the number of arcs in a directed graph is the sum of out-degrees of all the vertices of the graph. Thus the number of arcs of $\overrightarrow{G_{R}(M)}$ is $\sum_{a \in M}|R a|-1$. To counting number of edges in the undirected scalar product graph $G_{R}(M)$, we have to count the bi-directed arcs only once. The bi-directed arcs occur for some $b \in M,(b \neq a)$ such that, $a \in R b$ and $b \in R a$.

Proposition 2.12. Let M be an R-module and N submodule of M. Then $G_{R}(N)$ is an induced subgraph of $G_{R}(M)$.

Proof . As $N \subseteq M, V\left(G_{R}(N)\right)=N \subseteq M=V\left(G_{R}(M)\right)$. Also from the definition of the scalar product graph, it follows that for any $a, b \in N, a$ and b are adjacent in $G_{R}(N)$ if and only if they are adjacent in $G_{R}(M)$. Thus $G_{R}(N)$ is an induced subgraph of $G_{R}(M)$.

Lemma 2.13. Let $f: M_{1} \longrightarrow M_{2}$ be a R-module homomorphism. We have:

1. If vertices x and y are adjacent in $G_{R}\left(M_{1}\right)$ then $f(x)$ and $f(y)$ are adjacent in $G_{R}\left(M_{2}\right)$.
2. If $G_{R}\left(M_{1}\right)$ is complete then $G_{R}\left(f\left(M_{1}\right)\right)$ is complete.

Proof .

1. Let x and y be adjacent in $G_{R}\left(M_{1}\right)$. By definition there exists $r \in R$ that $x=r y$ or $y=r x$ then $f(x)=f(r y)=r f(y)$ or $f(y)=f(r x)=r f(x)$. Therefore $f(x)$ is adjacent $f(y)$.
2. Let $y_{1}, y_{2} \in f\left(M_{1}\right)$ be two arbitrary vertices in scalar product graph $G_{R}\left(f\left(M_{1}\right)\right)$. Then there exist $x_{1}, x_{2} \in M_{1}$ such that $y_{1}=f\left(x_{1}\right)$ and $y_{2}=f\left(x_{2}\right)$. Since the $G_{R}\left(M_{1}\right)$ is complete x_{1} is adjacent x_{2}. From 1. y_{1} is adjacent y_{2}. Therefore scalar product graph $G_{R}\left(f\left(M_{1}\right)\right)$ is complete.

Theorem 2.14. Let M be a R-module. Then scalar product graph $G_{R}(M)$ is complete if and only if the cyclic submodules of M are linearly ordered by inclusion relation.

Proof . Let M be a R-module and $\left.N_{1}=<a\right\rangle, N_{2}=$ be two cyclic submodules of M that $a \neq b$ in M. Since scalar product graph $G_{R}(M)$ is complete then a and b is adjacent. We have $<a\rangle \subseteq$ or $\langle b\rangle \subseteq<a\rangle$ and $N_{1} \subseteq N_{2}$ or $N_{2} \subseteq N_{1}$. Conversely, Let M be R-module which linearly ordered cyclic submodules by inclusion relation. If $a \neq b$ is two vertices of $G_{R}(M)$ then $<a\rangle \subseteq<b\rangle$ or $\langle b\rangle \subseteq<a\rangle$. Therefore we have a and b are adjacent in $G_{R}(M)$. Hence $G_{R}(M)$ is complete.

Corollary 2.15. Let R be a ring and M a finite R-module. If $G_{R}(M)$ is complete then M is a cyclic R-module.

Recall that an R-module M is called uniserial if its submodules are linearly ordered by inclusion. Evidently, a valuation ring R is uniserial as a module over itself, and its ring of quotients is likewise a uniserial R-module. It is obvious that submodule and quotients of uniserial modules are again uniserial. As an example, we see that \mathbb{Z}_{4} is a uniserial \mathbb{Z}-module. A right R-module is called a serial module if it is a direct sum of uniserial modules. Note that every uniserial module is serial but serial modules need not be uniserial.

Lemma 2.16. If M is a R-module, then M is uniserial if and only if the cyclic submodules of M are linearly ordered.

Proof . According to the definition one side is obvious. Conversely, Let K, L be submodules of M with $K \not \subset L$ and $L \not \subset K$. Choosing $x \in K \backslash L, y \in L \backslash K$ we have, $R x \subset R y$ or $R y \subset R x$. In the first case we have $x \in R y \subset L$, in the second case $y \in R x \subset K$. Both are contradiction.

Corollary 2.17. If M is an R-module, then the scalar product graph $G_{R}(M)$ is complete if and only if M is uniserial.

By this corollary, it's obvious that scalar product graph of uniserial module is complete. So we give some examples of uniserial module and their complete scalar product graph.

Example 2.18. - For any prime number p, any cyclic p-group or the quasi-cyclic p-group $C\left(p^{\infty}\right)$ is a uniserial \mathbb{Z}-module. So $G_{\mathbb{Z}}\left(C\left(p^{\infty}\right)\right)$ is complete graph.

- Every Simple module is uniserial. So \mathbb{Z}_{p} is a uniserial \mathbb{Z}-module and its scalar product graph is complete.
- Every function having finite length is uniserial. So $F[x, y]=\left\{x^{3}, x^{2} y, y^{3}\right\}$ is uniserial since its length is 3.
- Every semisimple module is serial.
- $\mathbb{Z}_{p^{n}}=\frac{1 \mathbb{Z}}{p^{\mathbb{Z}}} \supset \frac{p \mathbb{Z}}{p^{n} \mathbb{Z}} \supset \frac{p^{2} \mathbb{Z}}{p^{n} \mathbb{Z}} \supset \ldots \supset \frac{p^{n-1} \mathbb{Z}}{p^{n} \mathbb{Z}} \supset \frac{p^{n} \mathbb{Z}}{p^{n} \mathbb{Z}}=0$, here $\mathbb{Z}_{p^{n}}$ is uniserial. So its scalar product graph is complete.
- Also $\mathbb{Z}_{p^{\infty}}$, the \mathbb{Z}-injective hull of $\frac{\mathbb{Z}}{p \mathbb{Z}}, p$ a prime number, is uniserial. So we have, $\mathbb{Z}_{p^{\infty}}$ is artinian and uniserial, but not noetherian (not finitely generated).

Corollary 2.19. Let M be an R-module, Then $G_{R}(M)$ is complete, if each of the following condition holds:
(a) M is uniserial;
(b) the cyclic submodules of M are linearly ordered;
(c) any submodule of N has at most one maximal submodule;
(d) for any finitely generated submodule $0 \neq K \subset N, \frac{K}{\operatorname{Rad}(K)}$ is simple;
(e) for every factor module L of N, SocL is simple or zero.

Proof . According to previous corollary, if (a) is true, then $G_{R}(M)$ is complete. Equivalency of next expression to (a) will be discussed:
$(a) \Rightarrow(b)$ is obvious.
$(b) \Rightarrow(a)$ Let K, L be submodules of N with $K \not \subset L$ and $L \not \subset K$. Choosing $x \in K \backslash L, y \in L \backslash K$ we have, by (b), $R x \subset R y$ or $R y \subset R x$. In the first case we conclude $x \in R y \subset L$, in the second case $y \in R x \subset K$. Both are contradictions.
$(a) \Rightarrow(c)$ and $(a) \Rightarrow(b) \Rightarrow(e)$ are obvious.
$(d) \Rightarrow(b)$ Let us assume that we can find two cyclic submodules $K, L \subset N$ with $K \not \subset L$ and $L \not \subset K$. Then: $(K+L) /(K \cap L) \simeq K /(K \cap L) \bigoplus L /(K \cap L)$,
and the factor of $(K+L) /(K \cap L)$ by its radical contains at least two simple summands. Therefore the factor of $K+L$ by its radical also contains at least two simple summands. This contradicts (d). $(e) \Rightarrow(d)$ We show that every non-zero finitely generated submodule $K \subset N$ contains only one maximal submodule: If $V_{1}, V_{2} \subset K$ are different maximal submodules, then $K /\left(V_{1} \cap V_{2}\right) \simeq K / V_{1} \oplus K / V_{2}$ is contained in the socle of $N /\left(V_{1} \cap V_{2}\right)$. This is a contradiction to (e).

Observation. According to definition of cozero-divisor graph over modules we have the followings:
(1) If M is an R-module, the subgraph of $G_{R}(M)$ which vertices are $W_{R}(M)^{*}$ is complement of cozero-divisors graph of M.
(2) We denote $G_{R}(M)=\Gamma_{1} \vee \Gamma_{2}$ where Γ_{1} is a complete graph with $\left|W_{R}(M)^{*}\right|$ vertices and Γ_{2} is complement of cozero-divisor graph of M.

3. Planarity

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints $\{u, v\}$ yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, $\{u, w\}$ and $\{w, v\}$. Kuratowski's theorem is a forbidden graph characterization of planar graphs given by Kazimierz Kuratowski in 1930.

Theorem 3.1. If G is a finite graph, then G is is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$, where K_{n} is a complete graph with n vertices and $K_{m, n}$ is a complete bipartite graph, for positive integers m, n.

In this section we discuss planarity of scalar product graph of a module.

Proposition 3.2. Let M a finite R-module. If $\left|W_{R}(M)^{*}\right| \geq 5$, then $G_{R}(M)$ is not planar.
Proof . If $\left|W_{R}(M)^{*}\right| \geq 5$ then subgraph of $G_{R}(M)$ which vertices are $W_{R}(M)^{*}$ is complete. By Kuratowski's Theorem, we have $G_{R}(M)$ is not planar.

Proposition 3.3. Let M be a Noetherian R-module. If $G_{R}(M)$ has an clique, then M has a cyclic submodule which contains all vertices of the clique.

Proof . Let K be an clique in $G_{R}(M)$ and x_{1} be a vertex of K. Assume to the contrary that there is no cyclic submodule in M that contains all vertices of K. Since the cyclic submodule $x_{1} R$ doesn't contain all vertices of K, there exists a vertex x_{2} in K such that $x_{2} \notin x_{1} R$. As x_{1} and x_{2} are in one clique and are adjacent and $x_{2} \notin x_{1} R$, we have $x_{1} \in x_{2} R$. Therefore, $x_{1} R \varsubsetneqq x_{2} R$. Again since the cyclic submodule $x_{2} R$ doesn't contain all vertices of K, there exists a vertex x_{3} in K such that $x_{3} \notin x_{2} R$. Also, x_{2} and x_{3} are adjacent. This implies that $x_{2} \in x_{3} R$ and so $x_{2} R \varsubsetneqq x_{3} R$. By continuing this method, we find an increasing sequence of cyclic submodule of M which doesn't stop and this is a contradiction.

Lemma 3.4. Let M be a R-module. Assume $x_{1}-x_{2}-\ldots-x_{n}$ is a cycle in $G_{R}(M)$ such that the subgraph induced by vertices $x_{1}, x_{2}, \ldots, x_{n}$ contains no cycle with smaller length. If $R x_{1} \subseteq R x_{n}$ then we have $R x_{2 k-1} \subseteq R x_{2 k}$ and $R x_{2 k+1} \subseteq R x_{2 k}$ for $k=1, \ldots, n$

Proof . By our assumption, x_{2} is not adjacent to x_{n} thus we have $R x_{2} \nsubseteq R x_{n}$ and $R x_{n} \nsubseteq R x_{2}$. Since x_{1} is adjacent to x_{2} hence $R x_{1} \subseteq R x_{2}$ or $R x_{2} \subseteq R x_{1}$. If $R x_{2} \subseteq R x_{1}$, by assumption since $R x_{1} \subseteq R x_{n}$ then $R x_{2} \subseteq R x_{n}$ which is contradiction. Therefore $R x_{1} \subseteq R x_{2}$.
Also, x_{3} is not adjacent to x_{n} thus we have $R x_{3} \nsubseteq R x_{n}$ and $R x_{n} \nsubseteq R x_{3}$. Since x_{2} is adjacent to x_{3} hence $R x_{2} \subseteq R x_{3}$ or $R x_{3} \subseteq R x_{2}$. If $R x_{2} \subseteq R x_{3}$, since $R x_{1} \subseteq R x_{2}$ then $R x_{1} \subseteq R x_{3}$ which is contradiction. Therefore $R x_{3} \subseteq R x_{2}$.
Also, x_{4} is not adjacent to x_{n} thus we have $R x_{4} \nsubseteq R x_{n}$ and $R x_{n} \nsubseteq R x_{4}$. Since x_{3} is adjacent to x_{4} hence $R x_{3} \subseteq R x_{4}$ or $R x_{4} \subseteq R x_{3}$. If $R x_{4} \subseteq R x_{3}$, since $R x_{3} \subseteq R x_{2}$ then $R x_{4} \subseteq R x_{2}$ which is contradiction. Therefore $R x_{3} \subseteq R x_{4}$.
by similar method we have $R x_{1} \subseteq R x_{2}, R x_{3} \subseteq R x_{2}, R x_{3} \subseteq R x_{4}, R x_{5} \subseteq R x_{4}, R x_{5} \subseteq R x_{6}, R x_{7} \subseteq$ $R x_{6}, \ldots$ which complete the proof.

4. Weakly Perfect

For a graph G, a k-colouring of the vertices of G is an assignment of k colors to the vertices of G in such a way that no two adjacent vertices receive the same color. The chromatic number of G, denoted by $\chi(G)$, is the smallest number k such that G admits a k-coloring. A clique of G is a complete sub-graph of G and the number of vertices in a largest clique of G, denoted by $\omega(G)$, is called the clique number of G. It is easy to see that $\chi(G) \geq \omega(G)$, because every vertex of a clique should get a different color. A graph G is called weakly perfect if $\chi(G)=\omega(G)$. If $M=\mathbb{Z}_{n}$ be an finite \mathbb{Z}-module, then $G_{\mathbb{Z}}(M)$ is weakly perfect.

Example 4.1. Chromatic number and clique number of $G_{\mathbb{Z}}\left(\mathbb{Z}_{n}\right)$ for some n is listed in below (p is prime number):

n	$\chi\left(G_{\mathbb{Z}}\left(\mathbb{Z}_{n}\right)\right)$	$\omega\left(G_{\mathbb{Z}}\left(\mathbb{Z}_{n}\right)\right)$
$n=1$	1	1
$n=p$	p	p
$n=p^{n}$	p^{n}	p^{n}
$n=2 p$	$2 p-1$	$2 p-1$
$n=3 p$	$3 p-2$	$3 p-2$

Table 1: Clique number, Chromatic of $G_{\mathbb{Z}}\left(\mathbb{Z}_{n}\right)$

References

[1] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1998) 208-226.
[2] D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993) 500-514.
[3] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011) 753-762A.
[4] A. Alibemani, E. Hashemi and A. Alhevaz, The cozero-divisor graph of a module, Asian-European Journal of Mathematics, 11(2018) DOI: 10.1142/S1793557118500924.
[5] D. Anderson and S. Chun, The Set of Torsion Elements of a Module, Communications in Algebra, 48(2014) 1835-1843.

[^0]: *Corresponding author
 Email address: mostafa.umz@gmail.com, talebi@umz.ac.ir, siamfirouzian@pnu.ac.ir (M. Nouri Jouybari ${ }^{a}$, Y. Talebi ${ }^{a *}$, S. Firouzian ${ }^{b}$)

 Received: June 2019 Revised: September 2019

