Int. J. Nonlinear Anal. Appl. 3 (2012) No. 2, 49-58 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

Approximating Fixed Points for Nonexpansive Mappings and Generalized Mixed Equilibrium Problems in Banach Spaces

L. Cholamjiak, S. Suantai*

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

(Communicated by M. Eshaghi Gordji)

Abstract

We introduce a new iterative scheme for finding a common element of the solutions set of a generalized mixed equilibrium problem and the fixed points set of an infinitely countable family of nonexpansive mappings in a Banach space setting. Strong convergence theorems of the proposed iterative scheme are also established by the generalized projection method. Our results generalize the corresponding results in the literature.

Keywords: Generalized Mixed Equilibrium Problem, Nonexpansive Mappings, Common Fixed Point, Strong Convergence, Generalized Projection. 2010 MSC: 47H09, 47H10.

1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping $T : C \to C$ is said to be *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. We denote by F(T) the set of a fixed point of T.

Let $f: C \times C \to \mathbb{R}$ be a bifunction, $A: C \to E^*$ a mapping, and $\varphi: C \to \mathbb{R}$ a real-valued function. The generalized mixed equilibrium problem is to find $x \in C$ such that

$$f(x,y) + \langle Ax, y - x \rangle + \varphi(y) \ge \varphi(x), \ \forall y \in C.$$

$$(1.1)$$

The solutions set of (1.1) is denoted by $GMEP(f, A, \varphi)$.

*Corresponding author

Received: February 2011 Revised: May 2012

Email addresses: prasitch2008@yahoo.com (L. Cholamjiak), scmti005@chiangmai.ac.th (S. Suantai)

If $A \equiv 0$, then the generalized mixed equilibrium problem (1.1) reduces to the following mixed equilibrium problem: finding $x \in C$ such that

$$f(x,y) + \varphi(y) \ge \varphi(x), \ \forall y \in C.$$

$$(1.2)$$

Problem (1.2) was introduced by Ceng and Yao [7]. The solutions set of (1.2) is denoted by $MEP(f, \varphi)$.

If $f \equiv 0$, then the generalized mixed equilibrium problem (1.1) reduces to the following mixed variational inequality problem: finding $x \in C$ such that

$$\langle Ax, y - x \rangle + \varphi(y) \ge \varphi(x), \ \forall y \in C.$$
 (1.3)

The solutions set of (1.3) is denoted by $VI(C, A, \varphi)$.

If $\varphi \equiv 0$, then the mixed equilibrium problem (1.2) reduces to the following equilibrium problem: finding $x \in C$ such that

$$f(x,y) \ge 0, \ \forall y \in C.$$

$$(1.4)$$

The solutions set of (1.4) is denoted by EP(f).

If $f \equiv 0$, then the mixed equilibrium problem (1.2) reduces to the following convex minimization problem: finding $x \in C$ such that

$$\varphi(y) \ge \varphi(x), \ \forall y \in C.$$
(1.5)

The solutions set of (1.5) is denoted by $CMP(\varphi)$.

The problem (1.1) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems, Nash equilibrium problem in noncooperative games and others; see for instance, [5, 11, 13, 20].

For solving the equilibrium problem, let us assume that:

(A1) f(x, x) = 0 for all $x \in C$;

(A2) f is monotone, i.e. $f(x, y) + f(y, x) \le 0$ for all $x, y \in C$;

(A3) for all $x, y, z \in C$, $\limsup_{t \downarrow 0} f(tz + (1-t)x, y) \le f(x, y)$;

(A4) for all $x \in C$, f(x, .) is convex and lower semicontinuous.

In 1953, Mann [19] introduced the following iterative procedure to approximate a fixed point of a nonexpansive mapping T in a Hilbert space H:

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n, \quad n \ge 0,$$
(1.6)

where the initial point x_0 is taken in C arbitrarily and $\{\alpha_n\}$ is a sequence in (0,1).

However, we note that Mann's iteration process (1.6) has only weak convergence, in general; for instance, see [4, 14, 27].

Let C be a nonempty, closed and convex subset of a Banach space E and let $\{T_n\}$ be sequence of mappings of C into itself such that $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Then $\{T_n\}$ is said to satisfy the NST-condition if for each bounded sequence $\{z_n\} \subset C$,

$$\lim_{n \to \infty} \|z_n - T_n z_n\| = 0$$

implies $\omega_w(z_n) \subset \bigcap_{n=1}^{\infty} F(T_n)$, where $\omega_w(z_n)$ is the set of all weak cluster points of $\{z_n\}$; see [3, 21, 22].

In 2008, Takahashi et al. [33] has adapted Nakajo and Takahashi [23]'s idea to modify the process (1.6) so that strong convergence is guaranteed. They proposed the following modification for nonexpansive mappings in a Hilbert space: $x_0 \in H$, $C_1 = C$, $u_1 = P_{C_1}x_0$ and

$$\begin{cases} y_n = \alpha_n u_n + (1 - \alpha_n) T_n u_n, \\ C_{n+1} = \{ z \in C_n : \| y_n - z \| \le \| u_n - z \| \}, \\ u_{n+1} = P_{C_{n+1}} x_0, \quad n \in \mathbb{N}, \end{cases}$$
(1.7)

where $0 \leq \alpha_n \leq a < 1$ for all $n \in \mathbb{N}$ and P_K is a metric projection from a Hilbert space H onto a nonempty, closed and convex subset K of H. They proved that if $\{T_n\}$ satisfies the NST-condition, then $\{u_n\}$ generated by (1.7) converges strongly to a common fixed point of $\{T_n\}_{n=1}^{\infty}$.

Xu [36] introduced the following iterative scheme for finding a fixed point of a nonexpansive mapping in a Banach space: $x_0 = x \in C$ and

$$\begin{cases} C_n = \overline{co} \{ z \in C : \| z - Tz \| \le t_n \| x_n - Tx_n \| \}, \\ D_n = \{ z \in C : \langle x_n - z, Jx - Jx_n \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{C_n \cap D_n} x, \quad n \ge 0, \end{cases}$$
(1.8)

where $\overline{co}D$ denotes the convex closure of the set D, $\{t_n\}$ is a sequence in (0,1) with $t_n \to 0$, and $\prod_{C_n \cap D_n}$ is a generalized projection from a Banach space E onto $C_n \cap D_n$. Then, he proved that the sequence $\{x_n\}$ generated by (1.8) converges strongly to a fixed point of T.

Very recently, Kimura and Nakajo [16], by using the Mosco convergence technique, obtained strong convergence theorems in a Banach space. They also proposed the following algorithm: $x_1 = x \in C$ and

$$\begin{cases} C_n = \overline{co} \{ z \in C : \| z - T_n z \| \le t_n \| x_n - T_n x_n \| \}, \\ D_n = \{ z \in C : \langle x_n - z, J x - J x_n \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{C_n \cap D_n} x, \quad n \ge 1, \end{cases}$$
(1.9)

where $\{t_n\}$ is a sequence in (0,1) with $t_n \to 0$ as $n \to \infty$. They proved that if $\{T_n\}$ satisfies the NST-condition, then the sequence $\{x_n\}$ generated by (1.9) converges strongly to a common fixed point of $\{T_n\}_{n=1}^{\infty}$.

The problem of finding a common element of the fixed points set and the solutions set of an equilibrium problem in the framework of Hilbert spaces and Banach spaces has been studied by many authors; for instance, see [8, 9, 24, 25, 26, 29, 30, 32, 35, 37] and the references therein.

Motivated and inspired by Xu [36], Kimura and Nakajo [16], we introduce a new hybrid projection algorithm for finding a common element of the solutions set of a generalized mixed equilibrium problem and the fixed points set of an infinitely countable family of nonexpansive mappings in the framework of Banach spaces.

2. Preliminaries and lemmas

Let E be a real Banach space and let $U = \{x \in E : ||x|| = 1\}$ be the unit sphere of E. A Banach space E is said to be *strictly convex* if for any $x, y \in U$,

$$x \neq y$$
 implies $\left\|\frac{x+y}{2}\right\| < 1.$

It is also said to be uniformly convex if for each $\varepsilon \in (0,2]$, there exists $\delta > 0$ such that for any $x, y \in U$,

$$||x - y|| \ge \varepsilon$$
 implies $\left\|\frac{x + y}{2}\right\| < 1 - \delta.$

It is known that a uniformly convex Banach space is reflexive and strictly convex. Define a function $\delta : [0, 2] \rightarrow [0, 1]$ called the *modulus of convexity* of E as follows:

$$\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \ x, y \in E, \ \|x\| = \|y\| = 1, \ \|x-y\| \ge \varepsilon \right\}.$$

Then E is uniformly convex if and only if $\delta(\varepsilon) > 0$ for all $\varepsilon \in (0, 2]$. A Banach space E is said to be smooth if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.1}$$

exists for all $x, y \in U$. It is also said to be uniformly smooth if the limit (2.1) is attained uniformly for $x, y \in U$. The normalized duality mapping $J : E \to 2^{E^*}$ is defined by

$$J(x) = \{ x^* \in E^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2 \}$$

for all $x \in E$. It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E; see [31] for more details.

Let E be a smooth Banach space. The function $\phi: E \times E \to \mathbb{R}$ is defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for all $x, y \in E$. In a Hilbert space H, we have $\phi(x, y) = ||x - y||^2$ for all $x, y \in H$.

Lemma 2.1 (Kamimura and Takahashi [15]). Let E be a uniformly convex and smooth Banach space and let $\{x_n\}, \{y_n\}$ be two sequences of E. If $\phi(x_n, y_n) \to 0$ and either $\{x_n\}$ or $\{y_n\}$ is bounded, then $||x_n - y_n|| \to 0$ as $n \to \infty$.

Let E be a reflexive, strictly convex and smooth Banach space and let C be a nonempty, closed and convex subset of E. The generalized projection mapping, introduced by Alber [1], is a mapping $\Pi_C : E \to C$, that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(y, x)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem

$$\phi(\bar{x}, x) = \min\{\phi(y, x) : y \in C\}.$$

In fact, we have the following result.

Lemma 2.2 (Alber [1]). Let C be a nonempty, closed and convex subset of a real reflexive, strictly convex, and smooth Banach space E and let $x \in E$. Then, there exists a unique element $x_0 \in C$ such that $\phi(x_0, x) = \min{\{\phi(z, x) : z \in C\}}$.

The existence and uniqueness of the operator Π_C follows from the properties of the functional ϕ and strict monotonicity of the duality mapping J; for instance, see [1, 2, 10, 15, 31]. In a Hilbert space, Π_C is coincident with the metric projection.

Lemma 2.3 (Alber [1] and Kamimura and Takahashi [15]). Let C be a nonempty, closed and convex subset of a smooth Banach space E and $x \in E$. Then $x_0 = \prod_C x$ if and only if

 $\langle x_0 - y, Jx - Jx_0 \rangle \ge 0, \quad \forall y \in C.$

Lemma 2.4 (Alber [1] and Kamimura and Takahashi [15]). Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth Banach space E and let $x \in E$. Then

$$\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \le \phi(y, x) \quad \forall y \in C.$$

Lemma 2.5 (Bruck [6]). Let C be a bounded, closed and convex subset of a uniformly convex Banach space E. Then, there exists a strictly increasing convex continuous function $\gamma : [0, \infty) \to [0, \infty)$ such that $\gamma(0) = 0$ and

$$\gamma\Big(\Big\|T\Big(\sum_{i=1}^n \lambda_i x_i\Big) - \sum_{i=1}^n \lambda_i T x_i\Big\|\Big) \le \max_{1\le j\le k\le n} \left(\|x_j - x_k\| - \|T x_j - T x_k\|\right)$$

for all $n \in \mathbb{N}$, $\{x_1, x_2, ..., x_n\} \subset C$, $\{\lambda_1, \lambda_2, ..., \lambda_n\} \subset [0, 1]$ with $\sum_{i=1}^n \lambda_i = 1$ and nonexpansive mapping T of C into E.

Lemma 2.6 (Blum and Oettli [5]). Let C be a closed and convex subset of a smooth, strictly convex, and reflexive Banach space E, let f be a bifunction from $C \times C$ to \mathbb{R} which satisfies conditions (A1)-(A4), and let r > 0 and $x \in E$. Then there exists $z \in C$ such that

$$f(z,y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \quad \forall y \in C.$$

The following result can be found in [38].

Lemma 2.7 (Zhang [38]). Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive Banach space E. Let $A : C \to E^*$ be a continuous and monotone mapping, let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let φ be a lower semicontinuous and convex function from C to \mathbb{R} . For all r > 0 and $x \in E$, there exists $z \in C$ such that

$$f(z,y) + \langle Az, y - z \rangle + \varphi(y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge \varphi(z), \quad \forall y \in C.$$

Define a mapping $S_r: E \to 2^C$ as follows:

$$S_r(x) = \{ z \in C : f(z, y) + \langle Az, y - z \rangle + \varphi(y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge \varphi(z), \quad \forall y \in C \}.$$

Then, the followings hold:

- (1) S_r is single-valued;
- (2) S_r is firmly nonexpansive-type mapping; [18], i.e., for all $x, y \in E$,

$$\langle S_r x - S_r y, J S_r x - J S_r y \rangle \leq \langle S_r x - S_r y, J x - J y \rangle;$$

(3) $F(S_r) = GMEP(f, A, \varphi);$

(4) $GMEP(f, A, \varphi)$ is closed and convex.

3. Main Results

In this section, we prove the strong convergence theorem for finding a common element of the fixed points set for nonexpansive mappings and the solutions set of a generalized mixed equilibrium problem in Banach spaces.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty, closed and convex subset of E. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4), A : $C \to E^*$ a continuous and monotone mapping, and φ a lower semicontinuous and convex function from C to \mathbb{R} . Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings of C into itself such that $F := \bigcap_{i=1}^{\infty} F(T_i) \cap GMEP(f, A, \varphi) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 \in C, \quad D_0 = C, \\ C_n = \bigcap_{i=1}^{\infty} \overline{co} \{ z \in C : \| z - T_i z \| \le t_n \| x_n - T_i x_n \| \}, & n \ge 0, \\ D_n = \{ z \in D_{n-1} : \langle S_{r_n} x_n - z, J x_n - J S_{r_n} x_n \rangle \ge 0 \}, & n \ge 1, \\ x_{n+1} = \prod_{C_n \cap D_n} x_0, & n \ge 0, \end{cases}$$

where $\{t_n\}$ and $\{r_n\}$ are sequences satisfying the conditions: (C1) $\{t_n\} \subset (0, 1)$ and $\lim_{n\to\infty} t_n = 0$; (C2) $\{r_n\} \subset (0, \infty)$ and $\liminf_{n\to\infty} r_n > 0$. Then, the sequence $\{x_n\}$ converges strongly to $\Pi_F x_0$.

Proof. First, we show that the sequence $\{x_n\}$ is well-defined. It is easy to verify that $C_n \cap D_n$ is closed and convex and $F \subset C_n$ for all $n \ge 0$. Since $D_0 = C$, we also have $F \subset C_0 \cap D_0$. Suppose that $F \subset C_{k-1} \cap D_{k-1}$ for $k \ge 2$. It follows from Lemma 2.7 (2) that

$$\langle S_{r_k} x_k - S_{r_k} u, J x_k - J S_{r_k} x_k - (J u - J S_{r_k} u) \rangle \ge 0,$$

for all $u \in F$. This implies that

$$\langle S_{r_k} x_k - u, J x_k - J S_{r_k} x_k \rangle \ge 0$$

for all $u \in F$. Hence $F \subset D_k$. By the mathematical induction, we get that $F \subset C_n \cap D_n$ for each $n \geq 0$. By Lemma 2.7 (4), we know that $F := \bigcap_{i=1}^{\infty} F(T_i) \cap GMEP(f, A, \varphi)$ is nonempty, closed and convex. Then there exists a unique element $w \in F$ such that $w = \prod_F x_0$. Since $F \subset C_{n-1} \cap D_{n-1}$ and $x_n = \prod_{C_{n-1} \cap D_{n-1}} x_0$, we have

$$\phi(x_n, x_0) \le \phi(w, x_0), \quad n \ge 1.$$
 (3.1)

Since $x_n = \prod_{C_{n-1} \cap D_{n-1}} x_0$ and $x_{n+1} \in D_n \subset D_{n-1}$, we have

$$\phi(x_n, x_0) \le \phi(x_{n+1}, x_0), \quad n \ge 1.$$
(3.2)

From (3.1) and (3.2) we can conclude that $\lim_{n\to\infty} \phi(x_n, x_0)$ exists.

Next, we show that $\lim_{m,n\to\infty} \phi(x_m, x_n) = 0$. From $x_n = \prod_{C_{n-1}\cap D_{n-1}} x_0$ and $x_m \in D_{m-1} \subset D_{n-1}$ for $m > n \ge 1$, we have by Lemma 2.4

$$\phi(x_m, x_n) + \phi(x_n, x_0) \le \phi(x_m, x_0)$$

This implies that

$$\phi(x_m, x_n) \le \phi(x_m, x_0) - \phi(x_n, x_0).$$

Hence $\lim_{m,n\to\infty} \phi(x_m, x_n) = 0$. By Lemma 2.1, we obtain

$$\lim_{m,n\to\infty} \|x_m - x_n\| = 0.$$

In particular, we also have

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.3)

Thus $\{x_n\}$ is a Cauchy sequence in C. By the completeness of E and the closedness of C, we have $x_n \to v \in C$.

Next, we show that $v \in \bigcap_{i=1}^{\infty} F(T_i)$. Since $x_{n+1} \in C_n$ and $t_n > 0$, there exists $m \in \mathbb{N}$, $\{\lambda_0, \lambda_1, ..., \lambda_m\} \subset [0, 1]$ and $\{y_0, y_1, ..., y_m\} \subset C$ such that

$$\sum_{j=0}^{m} \lambda_j = 1, \ \left\| x_{n+1} - \sum_{j=0}^{m} \lambda_j y_j \right\| < t_n, \text{ and } \|y_j - T_i y_j\| \le t_n \|x_n - T_i x_n\|$$

for each j = 0, 1, ..., m and $i \in \mathbb{N}$. Put $M = \sup_{n\geq 0} ||x_n - w||$. We note that $||y_j - T_i y_j|| \leq t_n ||x_n - T_i x_n|| \leq 2t_n ||x_n - w|| \leq 2t_n M$ for each j = 0, 1, ..., m and $i \in \mathbb{N}$. Since $\{x_n\}$ is bounded, by Lemma 2.5, we have

$$\begin{aligned} \|x_n - T_i x_n\| &\leq \|x_n - x_{n+1}\| + \left\|x_{n+1} - \sum_{j=0}^m \lambda_j y_j\right\| + \left\|\sum_{j=0}^m \lambda_j y_j - \sum_{j=0}^m \lambda_j T_i y_j\right\| \\ &+ \left\|\sum_{j=0}^m \lambda_j T_i y_j - T_i (\sum_{j=0}^m \lambda_j y_j)\right\| + \left\|T_i (\sum_{j=0}^m \lambda_j y_j) - T_i x_n\right\| \\ &\leq \|x_n - x_{n+1}\| + t_n + \sum_{j=0}^m \lambda_j \|y_j - T_i y_j\| \\ &+ \gamma^{-1} \Big(\max_{0 \leq j \leq k \leq m} (\|y_j - y_k\| - \|T_i y_j - T_i y_k\|) \Big) + \left\|\sum_{j=0}^m \lambda_j y_j - x_n\right\| \end{aligned}$$

$$\leq \|x_n - x_{n+1}\| + t_n + (2t_n M) \sum_{j=0}^m \lambda_j + \gamma^{-1} \Big(\max_{0 \le j \le k \le m} (\|y_j - T_i y_j\| + \|y_k - T_i y_k\|) \Big) + \Big(\|\sum_{j=0}^m \lambda_j y_j - x_{n+1}\| + \|x_n - x_{n+1}\| \Big) \leq 2\|x_n - x_{n+1}\| + t_n + 2t_n M + \gamma^{-1} (4Mt_n) + t_n = 2\|x_n - x_{n+1}\| + (2 + 2M)t_n + \gamma^{-1} (4Mt_n).$$

It follows from (3.3) and (C1) that

$$\lim_{n \to \infty} \|x_n - T_i x_n\| = 0,$$

for all $i \in \mathbb{N}$. Thus $v \in \bigcap_{i=1}^{\infty} F(T_i)$.

Next, we show that $v \in GMEP(f, A, \varphi)$. By the construction of D_n , we see from Lemma 2.3 that $S_{r_n}x_n = \prod_{D_{n-1}}x_n$. Since $x_{n+1} \in D_n \subset D_{n-1}$, we obtain

$$\phi(S_{r_n}x_n, x_n) \le \phi(x_{n+1}, x_n) \to 0,$$

as $n \to \infty$. From Lemma 2.1, we have

$$\lim_{n \to \infty} \|S_{r_n} x_n - x_n\| = 0.$$

Since $x_n \to v$, we have $S_{r_n} x_n \to v$ as $n \to \infty$. Since J is uniformly norm-to-norm continuous on the bounded set, we have

$$\lim_{n \to \infty} \|JS_{r_n} x_n - Jx_n\| = 0.$$

By (C2) we also have

$$\lim_{n \to \infty} \frac{\|JS_{r_n} x_n - Jx_n\|}{r_n} = 0.$$
(3.4)

For each $y \in C$, we see that

$$f(S_{r_n}x_n, y) + \langle AS_{r_n}x_n, y - S_{r_n}x_n \rangle + \varphi(y) + \frac{1}{r_n} \langle y - S_{r_n}x_n, JS_{r_n}x_n - Jx_n \rangle \ge \varphi(S_{r_n}x_n).$$

By using the same argument as in the proof of [28], we can verify that

 $f(v,y) + \langle Av, y - v \rangle + \varphi(y) \ge \varphi(v), \quad \forall y \in C.$

This shows that $v \in GMEP(f, A, \varphi)$ and hence $v \in F := \bigcap_{i=1}^{\infty} F(T_i) \cap GMEP(f, A, \varphi)$. Finally, we show that $v = w = \prod_F x_0$. Since $x_{n+1} = \prod_{C_n \cap D_n} x_0$, we have

 $\langle Jx_0 - Jx_{n+1}, x_{n+1} - z \rangle \ge 0 \quad \forall z \in C_n \cap D_n.$

Since $F \subset C_n \cap D_n$, we also have

$$\langle Jx_0 - Jx_{n+1}, x_{n+1} - z \rangle \ge 0 \quad \forall z \in F.$$

$$(3.5)$$

By taking limit in (3.5), we obtain that

 $\langle Jx_0 - Jv, v - z \rangle \ge 0 \quad \forall z \in F.$

By Lemma 2.3, we can conclude that $v = \prod_F x_0 = w$. This completes the proof. \Box If we take $T_i = I$ for all $i \in \mathbb{N}$ in Theorem 3.1, then we obtain the following result.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space and C be a nonempty, closed and convex subset of E. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4), $A : C \to E^*$ a continuous and monotone mapping, and φ a lower semicontinuous and convex function from C to \mathbb{R} such that $GMEP(f, A, \varphi) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

 $\begin{cases} x_0 \in C, \quad D_0 = C, \\ D_n = \{ z \in D_{n-1} : \langle S_{r_n} x_n - z, J x_n - J S_{r_n} x_n \rangle \ge 0 \}, \quad n \ge 1, \\ x_{n+1} = \prod_{D_n} x_0, \quad n \ge 0. \end{cases}$

If $\{r_n\} \subset (0,\infty)$ and $\liminf_{n\to\infty} r_n > 0$, then the sequence $\{x_n\}$ converges strongly to $\prod_{GMEP(f,A,\varphi)} x_0$.

If we take $f \equiv 0, A \equiv 0$ and $\varphi \equiv 0$ in Theorem 3.1, we obtain the following result.

Theorem 3.3. Let *E* be a uniformly convex and uniformly smooth Banach space and *C* be a nonempty, closed and convex subset of *E*. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings of *C* into itself such that $F := \bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 \in C, \\ C_n = \bigcap_{i=1}^{\infty} \overline{co} \{ z \in C : \| z - T_i z \| \le t_n \| x_n - T_i x_n \| \}, \\ x_{n+1} = \prod_{C_n} x_0, \quad n \ge 0. \end{cases}$$

If $\{t_n\} \subset (0,1)$ and $\lim_{n\to\infty} t_n = 0$, then the sequence $\{x_n\}$ converges strongly to $\Pi_F x_0$.

Remark 3.4. Theorem 3.1 also can be applied to find solutions of mixed equilibrium problems, mixed variational inequality problems, convex minimization problems and so on.

4. Acknowledgement

The authors would like to thank the referees for the valuable suggestions on the manuscript. The first author is supported by the Royal Golden Jubilee Grant PHD/0261/2551 and the Graduate School of Chiang Mai University, Thailand.

References

- Ya. I. Alber, Matric and generalized projection operators in Banach spaces: Properties and applications, in: A.G.Kartsatos (Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York, (1996) 15–50.
- Ya.I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J., 4 (1994) 39–54.
- [3] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejer-monotone methods in Hilbert spaces, Math. Oper. Res., 26 (2001) 248–264.
- [4] H. H. Bauschke, E. Matouskova and S. Reich, Projection and proximal point methods: convergence results and counterexamples, Nonlinear Anal., 56 (2004) 715–738.
- [5] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994) 123–145.
- [6] R. E. Bruck, On the convex approximation property and the asymptotic behaviour of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981) 304–314.
- [7] L. -C. Ceng and J. -C. Yao, hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math., 214 (2008) 186–201.
- [8] P. Cholamjiak, A hybrid iterative scheme for equilibrium problems, variational inequality problems and fixed point problems in Banach spaces, Fixed Point Theory Appl., (2009) doi:10.1155/2009/719360.
- [9] P. Cholamjiak and S. Suantai, A new hybrid algorithm for variational inclusions, generalized equilibrium problems and a finite family of quasi-nonexpansive mappings, Fixed Point Theory Appl., (2009) doi:10.1155/2009/350979.
- [10] I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Plublishers, Dordrecht, 1990.
- [11] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005) 117–136.
- [12] K. Fan, A generalization of Tychonoff's fixed point theorem, Mathematische Annalen, 142 (1961) 305–310.
- [13] S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78 (1997) 29–41.
- [14] A. Genal and J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22 (1975) 81–86.
- [15] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13 (2002) 938–945.
- [16] Y. Kimura and K. Nakajo, Some characterizations for a family of nonexpansive mappings and convergence of a generated sequence to their common fixed point, Fixed Point Theory Appl., (2010) doi:10.1155/2010/732872.
- [17] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, The American mathematical monthly, 72 (1965) 1004–1006.
- [18] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive type mappings in Banach spaces, SIAM J. Optim., 19 (2008) 824–835.
- [19] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953) 506–510.
- [20] A. Moudafi, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. Appl., 9 (2008) 37–43.
- [21] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings in Banach spaces, J. Nonlinear Convex Anal., 8 (2007) 11–34.
- [22] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math., 10 (2006) 339–360.
- [23] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003) 372–379.
- [24] J. -W. Peng and J. -C. Yao, A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems, Taiwanese J. Math., 12 (2008) 1401–1432.

- [25] J. -W. Peng and J. -C. Yao, Two extragradient methods for generalized mixed equilibrium problems, nonexpansive mappings and monotone mappings, Computer and Mathematics with Applications, (2009) doi:10.1016/j.camwa.2009.07.040.
- [26] X. Qin, Y. J. Cho and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 225 (2009) 20–30.
- [27] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979) 274–276.
- [28] S. Saewan and P. Kumam, A hybrid iterative scheme for a maximal monotone operator and two countable families of relatively quasi-nonexpansive mappings for generalized mixed equilibrium and variational inequality problems, Abstract and Applied Analysis, vol. 2010, Article ID 123027, 31 pages.
- [29] S. Saewan and P. Kumam, Modified hybrid block iterative algorithm for convex feasibility problems and generalized equilibrium problems for uniformly quasi-φ-asymptotically nonexpansive mappings, Abstract and Applied Analysis, vol. 2010, Article ID 357120, 22 pages.
- [30] A. Tada and W. Takahashi, Weak and strong convergence theorems for nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl., 133 (2007) 359–370.
- [31] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2000.
- [32] S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mappings in a Hilbert space, J. Nonlinear Anal., 69 (2008) 1025–1033.
- [33] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 341 (2008) 276–286.
- [34] W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, J. Nonlinear Anal., 70 (2009) 45–57.
- [35] W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl., (2008) doi:10.1155/2008/528476.
- [36] H. -K. Xu, Strong convergence of approximating fixed point sequences for nonexpansive mappings, Bull. Austral. Math. Soc., 74 (2006) 143–151.
- [37] Y. Yao, M. A. Noor and Y. C. Liou, On iterative methods for equilibrium problems, J. Nonlinear Anal., 70 (2009) 497–509.
- [38] S. Zhang, Generalized mixed equilibrium problem in Banach spaces, Appl. Math. Mech., 30 (2009) 1105–1112.