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Abstract
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric uni-
verse filled with freely falling dust like matter without pressure. First, we have considered a Finslerian
anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have ob-
tained the R(t, r) and S(t, r) with considering establish a new solution of Rµν = 0. Moreover, we
attempt to use Finsler geometry as the geometry of spacetime which compute the Kretschmann scalar.
An important problem in General Relativity is singularities. The curvature singularities is a point
when the scalar curvature blows up diverges. Thus we have determined Ks singularity is at R = 0.
Our result is the same as Reimannian geometry. We have completed with a brief example of how
these solutions can be applied. Second, we have some notes about anstaz of the Schwarzschild and
Friedmann- Robertson- Walker (FRW ) metrics. We have supposed condition d log(F ) = d log(F̄ )
and we have obtained F̄ is constant along its geodesic and geodesic of F . Moreover we have com-
puted Weyl and Douglas tensors for F 2 and have concluded that Rijk = 0 and this conclude that
Wijk = 0, thus F 2 is the Ads Schwarzschild Finsler metric and therefore F 2 is conformally flat. We
have provided a Finslerian extention of Friedmann- Lemaitre- Robertson- Walker metric based on
solution of the geodesic equation. Since the vacuum field equation in Finsler spacetime is equivalent
to the vanishing of the Ricci scalar, we have obtained the energy- momentum tensor is zero.
Keywords: Einstein’s equations, Lemaître–Tolman–Bondi; Kretschmann scalar, Finsler Geometry,

Friedmann-Robertson-Walker, Schwarzschild.

1. Introduction
Cosmic structures today have entered the non-linear structure. They can not on all scales be described
by a linear perturbation theory on top of the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
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[1]. Lemaitre-Tolman-Bondi (LTB) solutions are used frequently to describe the collapse or expansion
of spherically symmetric inhomogeneous mass distributions in the Universe. The LTB solutions
contain as special cases both the Schwazchild and dust FLRW solutions. The LTB metric is the
simplest spherically symmetric solution of Einstein equations representing an inhomogeneous dust
distribution. It may be written in synchronous coordinates as [2]:

F 2 = −ytyt + (
R

′2

1 + E
)yryr +R2(r, t)(yθyθ + sinθyφyφ),

The Kretschmann scalar gives the amount of curvature of spacetime, as a function of position near
(and within) a black hole [3]. In many cases one of the most useful ways to check that is by checking
for the finiteness of the Kretschmann scalar. The alternative way to describe the black holes within
the cosmological surrounding is to use the Lemaitre-Tolman-Bondi (LTB) models for inhomogeneous
matter distribution that was fundamentally explored in [4].
There are very few exact solutions of the Einstein equations, but perhaps the most well-known so-
lution was first derived by Schwarzschild. Exact solutions of Einstein’s field equations have played
important roles in the discussion of physical problems. Obvious examples are the Schwarzschild and
Kerr solutions for studying black holes and the Friedman solutions for cosmology [5].
Gravitational field equations describing the geometry of space-time play a fundamental role in mod-
ern theoretical physics. There are many methods in mathematical physics for studying such systems
of equations. For example, one can use methods of additional symmetries of the system of equations,
the Hamiltonian formulation of the theory of dynamical systems, etc. Essentially, all physically
interesting cases (FRW cosmology, black hole) belong to Stackel and homogeneous spaces [6]
In contrast, the cosmic fluid in the FRW model is supposed to possess arbitrary high pressure apart
from arbitrary high density. But there is no pressure gradient to support the fluid against its self-
gravity [7].
The paper is organized as follows. We review some basic matterial of Finsler geometry and list of
tools that is needed in context. In section III we establish a new solution of Rµν = 0 which appears
curious and explains the source of curvature of the well-known Lemaître–Tolman–Bondi(LTB) solu-
tion. Moreover, we have analytic solution to the geodesic equations. In the section V we compute
Kretschmann scalar and show that the LTB singularity is at R = 0. In the section V I we obtain
Kretschmann scalar for a one example. The section V II presents opinion of Li and Chang [8] to
other words. We consider an ansatz of the Schwarzschild metric F 2 and we show results of vacuum
solution. In the section V III, we compute Weyl and Douglas tensors for F 2 and conclude that
Rijk = 0 and this conclude that Wijk = 0, thus F 2 is the Ads Schwarzschild Finsler metric and
therefore F 2 is conformally flat. Then we consider Douglas tensor if D = 0 we conclude that F 2 is
the Schwarzschild metric. In the section IX, we consider FLRW metric that it has the Finslerian
structure then if only we suppose that the radial motion of particles, and notice the velocity of a
particle dr

dt
is small, therefore the energy-momentum tensor is zero.

2. Preliminaries

We begin with a very brief discussion of Finsler geometry.
A Finsler metric is a continuous function F : TM → [0,∞] with the following properties.
(1) Regularity: F is smooth on TM \ 0 := {(x, y) ∈ TM |y ̸= 0}.
(2) Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0.
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(3) Strong convexity: the fundamental tensor gij :=
∂
∂yi

∂
∂yj

(1
2
F 2).

is positive definite at all (x, y) ∈ TM \ 0 [9].
A positive, zero and negative F correspond to time-like, null and space-like curves, respectively. For
a Finsler metric F = F (x, y) its geodesics are characterized by the system of differential equations

d2xµ

dτ 2
+ 2Gµ = 0, (2.1)

Where the local functions Gµ = Gµ(x, y) are called the spray coefficients and are given by

Gµ =
1

4
gµν(

∂2F 2

∂xλ∂yν
yλ − ∂F 2

∂xν
), (2.2)

Where y ∈ TxM and (gµν) := (gµν)
−1.

The Cartan tensor quantifies, the deviation of F from being Riemannian, and is defined as

Aijk :=
∂

∂yi
∂

∂yj
∂

∂yk
(
1

4
F 2), (2.3)

Where the components Aijk are minus one-homogeneous symmetric (0, 3)-tensor field. In order to
calculate the Kretschmamm scalar, we need first to calculate the Christoffel symbols by differentiating
the metric of F .

Γµ
νσ =

1

2
gµl(

δglσ
δxν

+
δglν
δxσ

− δgσν
δxl

), (2.4)

where δ
δxµ = ∂

∂xµ − ∂Gρ

∂yµ
∂

∂yρ
. In Finsler geometry once the Christoffel symbols are calculated then we

calculate the Riemann curvature of Chern connection to be:

Rµ
νσλ =

δΓµ
νλ

δxσ
− δΓµ

νσ

δxλ
+ Γl

νλΓ
µ
lσ − Γl

νλΓ
µ
lλ, (2.5)

From the Riemann tensor Rλ
νρσ one can calculate the Riemann curvature tensor Rµνρσ as follows:

Rµνρσ = gµλR
λ
νρσ, (2.6)

The inverse of Rµνρσ can be compute by

Rµνρσ = gµigνjgρkgσlRijkl, (2.7)

The Kretschmann invariant is
Ks = RµνρσRµνρσ (2.8)

Because it is a sum of squares of tensor components, this is a quadratic invariant. For the use of a
computer algebra system a more detailed writing is meaningful:

Ks = gµigνjgρkgσlRijklRµνρσ, (2.9)

The Ricci tensor Rµν , it is the Riemann curvature tensor with the first and third indices contracted,

Rµν = gαβRαµβν = Rβ
µβν ,

Which is a symmetric tensor,
Rµν = Rνµ,
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It is straightforward to show that, because of the symmetry relations, the alternative contraction
leads to the same Ricci tensor

Rµν = −gαβRµαβν ,

The Ricci scalar R, it is the Riemann curvature tensor contracted twice.

R = gαβRαβ = Rβ
β ,

By definition, the Ricci scalar is a positively homogeneous function of degree two in y ∈ TM .
For a Finsler metric F , the S−curvature is given by following:

S = gµνRicµν , (2.10)

and, as a consequence, the modified Einstein tensor in Finsler space time can be obtained as

Gµν ≡ Ricµν −
1

2
gµνS, (2.11)

The covariant derivative of Gµ
ν in Finsler spacetime is given as

Gµ
ν|k =

δ

δxk
Gµ

ν + Γµ
kρG

ρ
ν − Γρ

kνG
µ
ρ , (2.12)

Γµ
kρ is the Chern connection and ′|′ to denote the covariant derivative. Here, we consider also the Rici

scalar which is expressed entirely in terms of x and y derivatives of spray coefficients Gµ as follows:

RicF 2 = 2
∂Gµ

∂xµ
− yλ

∂2Gµ

∂xλ∂yµ
+ 2Gλ ∂2Gµ

∂yλ∂yµ
− ∂Gµ

∂yλ
∂Gλ

∂yµ
, (2.13)

3. Vacuum solution of Finsler metric by using Ansatz of the LTB

The theory of relativity describes the relation between the curvature of spacetime to the energy
of an object. The vacuum field equations of General Relativity are Rµν = 0. Exact solutions of
Einstein’s field equations have played important roles in the discussion of physical problems. Ob-
vious examples are the Schwarzschild and Kerr solutions for studying black hole and the Friedman
solutions for cosmology. Since dust is believed to be an appropriate representation of the universe’s
matter content on the large scale at the present time, LTB solutions have been much used to provide
exact models of structures in the universe [10]. First of all we consider an Finslerian ansatz in the
form of bellow then we obtain the solutions are similar to the LTB solutions in general relativity.

F 2 = −ytyt + S2(r, t)yryr +R2(r, t)F̄ 2(θ, φ, yθ, yφ), (3.1)
We begin by calculating the connection symbols based on the spherically symmetric form of (3.1).
It will be convenient to introduce the notation and we obtain some results, where the Finsler metric
can be derived as

gµν = diag(−1, S2, R2ḡθθ, R
2ḡφφ), (3.2)

gµν = diag(−1,
1

S2
,
1

R2
ḡθθ,

1

R2
ḡφφ), (3.3)

The matrix gµν is invertible and its inverse is denoted by gµν = [gµν ]
−1 and ḡij and ḡij are components

of the metric derived from F̄ and the indices i,j run over the angular coordinates θ,φ .
plugging the Finsler structure (3.1) into (2.2), we obtain that

Gt =
SṠ

2
yryr +

RṘ

2
F̄ 2, (3.4)
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Gr =
S

′

2S
yryr +

Ṡ

S
yryt − RR

′

2S2
F̄ 2, (3.5)

Gθ =
Ṙ

R
ytyθ +

R
′

R
yryθ + Ḡθ, (3.6)

Gφ =
Ṙ

R
ytyφ +

R
′

R
yryφ + Ḡφ, (3.7)

Here dot and prime denote partial derivatives with respect to the parameters t and r respectively.
Ḡ are the geodic spray coefficient derives from F̄ . Plugging the geodesic coefficients(3.4)− (3.7) into
the formula for the Ricci scalar (2.13), we obtain that

RicF 2 = Rµ
µF

2 = (
−2R̈

R
− S̈

S
)ytyt + (

−2R
′′

R
+

2ṘṠS

R

+
2R

′
S

′

RS
+ SS̈)yryr + (−4Ṙ

′

R
+

4ṠR
′

RS
)yryt + (Ṙ2

−R
′2

S2
+RR̈ +

ṠṘR

S
+

R
′
S

′
R

S3
− R

′′
R

S2
+ R̄ic)F̄ 2,

(3.8)

where R̄ic denotes the Ricci scalar of the Finsler structure F̄ . Since the vacuum field equation in
Finsler spacetime is equivalent to the vanishing of the Ricci scalar and F̄ is independent of yt and
yr, the vanishing of Ricci scalar implies that the terms in each square bracket of (3.8) should vanish
as well. These equations are given as

−2R̈

R
− S̈

S
= 0, (3.9)

−2R
′′

R
+

2ṘṠS

R
+

2R
′
S

′

RS
+ SS̈ = 0, (3.10)

−4Ṙ
′

R
+

4ṠR
′

RS
= 0, (3.11)

Ṙ2 − R
′2

S2
+RR̈ +

ṠṘR

S
+

R
′
S

′
R

S3
− R

′′
R

S2
+ R̄ic = 0, (3.12)

From equation (3.11) we obtain that
−4Ṙ

′

R
=

−4ṠR
′

RS
, (3.13)

We remove the same variable from both sides of equation (3.13) at the same time, we obtain

Ṙ
′
S = ṠR

′
, (3.14)

Ṙ
′

R′ =
Ṡ

S
, (3.15)

Integrating this and using the formula
∫

dx
x
= ln x we get,∫
Ṙ

′

R′ dt =

∫
Ṡ

S
dt, (3.16)
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Upon evaluating each of these integrals we should get a constant of integration for each integral since
we really are doing two integrals. Since there is no reason to think that the constants of integration
will be the same from each integral we use different constants for each integral. Now, both c and
k are unknown constants and so the sum of two unknown constants is just an unknown constant
and we acknowledge that by simply writing the sum as a c. Moreover, c is arbitrary, we can choose
c = ln(

√
1 + E). So, the integral is then,

lnR
′
= lnS + ln(

√
1 + E), (3.17)

Apply the product rule for logarithms, we have

lnR
′
= lnS(

√
1 + E), (3.18)

After simplifying equation (3.18), we get

R
′

√
1 + E

= S, (3.19)

Equations (3.1) and (3.19) show that F 2 is similar to the LTB solution

F 2 = −ytyt + (
R

′2

1 + E
)yryr +R2(r, t)F̄ 2(θ, φ, yθ, yφ) (3.20)

Noticing that R̄ic is independent of r and t, thus equation (3.12) is satisfied if and only if R̄ic is
constant. This means that the two- dimensional Finsler space F̄ is constant flag curvature space.
Therefore R̄ic = λ. From equation (3.9), we obtain

−2R̈

R
=

S̈

S
, (3.21)

From simplifying equation (3.21), we obtain

R̈ =
−S̈R

2S
, (3.22)

With using equation (3.10) and multiplying the two sides of equation by R2

2S2 , we have

−RR
′′

S2
+

ṘṠR

S
+

RR
′
S

′

S3
=

−R2S̈

2S
, (3.23)

By substituting equation (3.22) into equation (3.23), we get

−RR
′′

S2
+

ṘṠR

S
+

RR
′
S

′

S3
= RR̈, (3.24)

Equations (3.12) and (3.24) conclude that

Ṙ2 − R
′2

S2
+ 2RR̈ + λ = 0, (3.25)

By plugging equation (3.19) into equation (3.25) we get following equations

Ṙ2 − R
′2
(1 + E)

R′2 + 2RR̈ + λ = 0, (3.26)



Solution of Vacuum Field Equation Based on Physics Metrics in Finsler ...
10 (2019) Special Issue (Nonlinear Analysis in Engineering and Sciences), 97-114 103

Ṙ2 − (1 + E) + 2RR̈ + λ = 0, (3.27)
Ṙ2 + 2RR̈ = E, (3.28)

Therefore Here angular distance R, depending on the value of t and E(r), is given by

R(t, r) =
√
E(r)t, (3.29)

By considering
λ = 1, (3.30)

Thus our LTB metric is,

F 2 = −ytyt +
E

′2
t2

4E(1 + E)
yryr + E(r)t2F̄ 2(θ, φ, yθ, yφ), (3.31)

4. Analytic solution to the geodesic equations of the finsler geometry

In this section, for studying the geodesics of the test particles in the finsler geometry, the equations
for the geodesic sprays coefficients (3.4)− (3.7) plug into the geodesic equation (2.1), we obtain the
geodesic equation of Finsler spacetime (3.1),

d2t

dτ 2
+

SṠ

2
yryr +

RṘ

2
F̄ 2 = 0, (4.1)

d2r

dτ 2
+

S
′

2S
yryr +

Ṡ

S
yryt − RR

′

2S2
F̄ 2 = 0, (4.2)

d2θ

dτ 2
+

Ṙ

R
ytyθ +

R
′

R
yryθ + Ḡθ = 0, (4.3)

d2φ

dτ 2
+

Ṙ

R
ytyφ +

R
′

R
yryφ + Ḡφ = 0, (4.4)

Noticing that F̄ is independent of r and t, thus equations (4.1) and (4.2) are satisfied if and only if
F̄ is constant along the geodesic.

5. Kretschmann Scalar

What is the nature of the singularity ?

Definition 1. The point z is called a singular point or singularity of K if K is not analytic at z but
every neighborhood of z contains at least one point at which K is analytic.

The Kretschmann scalar gives the amount of curvature of spacetime, as a function of position near
(and within) a black hole. [1]. The derivation of the Kretschmann scalar is simple in principle, but
requires tedious algebraic computation in practice. From the specified metric, we compute, first, the
connection, which is not itself a tensor. Next, we compute the Riemann tensor and Kretschmann
scalar components. The non-vanishing Christoffel symbols for the metric (3.1) are given by

Γt
rr = SṠ, Γt

θθ = RṘḡθθ, Γt
φφ = RṘḡφφ, Γr

tr =
Ṡ

S
, Γr

rt =
Ṡ

S
, Γr

rr =
S

′

S
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Γr
θθ =

−R
′
R

S2
ḡθθ, Γr

φφ =
−R

′
R

S2
ḡφφ, Γθ

tθ =
Ṙ

R
, Γθ

rθ =
R

′

R
, Γθ

θr =
R

′

R
, Γθ

θt =
Ṙ

R
,

Γθ
θθ =

1

2
ḡθθ

∂ḡθθ
∂θ

Γθ
θφ =

1

2
ḡθθ

∂ḡθθ
∂φ

, Γθ
φθ =

1

2
ḡθθ

∂ḡθθ
∂φ

Γθ
φφ =

−1

2
ḡθθ

∂ḡφφ
∂θ

Γφ
tφ =

Ṙ

R
, Γφ

rφ =
R

′

R
, Γφ

φr =
R

′

R
, Γφ

φt =
Ṙ

R
, Γφ

θθ =
−1

2
ḡφφ

∂ḡθθ
∂φ

Γφ
θφ =

1

2
ḡφφ

∂ḡφφ
∂θ

Γφ
φθ =

1

2
ḡφφ

∂ḡφφ
∂θ

Γφ
φφ =

1

2
ḡφφ

∂ḡφφ
∂φ

, (5.1)

With the connection in hand, we are in a position to compute the Riemann tensor itself:

Rtνρσ = gttR
t
νρσ = (−1)Rt

νρσ, (5.2)

Rrνρσ = grrR
r
νρσ = S2Rr

νρσ, (5.3)
Rθνρσ = gθθR

θ
νρσ = (R2ḡθθ)R

θ
νρσ, (5.4)

Rφνρσ = gφφR
φ
νρσ = (R2ḡφφ)R

φ
νρσ, (5.5)

We use maple program and manual computing and obtain a second scalar i.e: Kretschmann scalar
as follows:

Ks =
20(E(r))2 − 9((E(r))

′
)2 + 20E(r)

2R4

+
1

2R4
ḡθθḡφφ(∂θḡ

θθ∂φḡθθ − ∂φḡ
θθ∂θḡθθ)

2

+
1

2R4
ḡθθḡφφ(∂θḡ

φφ∂φḡφφ − ∂φḡ
φφ∂θḡφφ)

2

+
2

R4
(ḡφφ)2(Rθ

φθφ)
2 +

2

R4
(ḡθθ)2(Rφ

θφθ)
2,

(5.6)

Therefore the LTB solution has singularity at R = 0.

6. example

For example, we make subspace F̄ to be a “Finslerian sphere” FFS. Then, the exterior metric of
vacuum field solution was given as We finished with a brief example of how these solutions can be
applied. Now, we consider the Finsler structure in the form

F 2 = −ytyt + S2(r, t)yryr

+R2(r, t)(
√

yθyθ + yφyφ − sin θyφ)2,

(6.1)

Where
F̄ 2 = yθyθ + yφyφ + sin2 θyφ − 2

√
yθyθ + yφyφ sin θyφ,

ḡθθ = R2(t, r)(
− sin θ(yφ)3

(yθyθ + yφyφ)
3
2

+ 1),
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ḡθθ =
(yθyθ + yφyφ)

3
2

R2(− sin θ(yφ)3 + (yθyθ + yφyφ)
3
2 )
,

ḡφφ =
R2((2− cos2 θ)((yθ)2 + (yφ)2)

3
2 − sin θyφ(2(yφ)3 + 3(yθ)2))

(yθyθ + yφyφ)
3
2

,

ḡφφ =
−(yθyθ + yφyφ)

3
2

R2((cos2 θ − 2)(yθyθ + yφyφ)
3
2 + sin θyφ(2(yφ)3 + 3(yθ)2))

,

F 2 is Finslerian metric, since the fundamental form ḡ is function of (θ, φ, yθ, yφ). Therefore, we can
compute the Kretschman scalar by using the equation (5.6). It is convenient to consider the orbit of
particle confined to the equatorial plane θ = π

2
.

Ks =
20(E(r))2 − 9((E(r))

′
)2 + 20E(r)

2R4

+
Q

(−((yθ)2 + (yφ)2)
3
2 + (yφ)3)2R8

,

(6.2)

Where

Q =(4(−((yθ)2 + (yφ)2)
3
2 (
−1

2
+R2(

R′2

S2
− Ṙ2)))

+R2(yφ)3(
R′2

S2
− Ṙ2))2(−R4(yφ)3((yθ)2 + (yφ)2)

3
2

+ (R4 +
1

2
)(yφ)6 +

(R4 + 1)(yφ)2

2
(3(yφ)4

+ 3(yφ)2(yθ)2 + (yθ)4),

(6.3)

Which represents that the curvature singularity is located at R = 0.

7. Vacuum solution of Finsler metric of the Schwarzschild metric

First of all we consider an ansatz of the Schwarzschild metric and we show results of vacuum
solution are different from of [8].
Then, we consider FRW metric and compute the geodesic equations.
We consider an ansatz of the Schwarzschild metric which was considered in [8] of the form

F 2 = B(r)ytyt − A(r)yryr − r2F̄ 2(θ, φ, yθ, yφ), (7.1)

and we obtain some results, where the Finsler metric can be derived as

gµν = diag(B,−A,−r2ḡij), (7.2)

gµν = diag(B−1,−A−1,−r−2ḡij), (7.3)
where ḡij and ḡij are components of the metric derived from F̄ .
Plugging the Finsler structure (7.1) into equation (2.2), we obtain

Gt =
B

′

2B
ytyr, (7.4)
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Gr =
A

′

4A
yryr +

B
′

4B
ytyt − r

2A
F̄ 2, (7.5)

Gθ = Ḡθ +
1

r
yθyr, (7.6)

and
Gφ = Ḡφ +

1

r
yφyr. (7.7)

We consider variations of F̄ along the geodesic, therefore we have

dF̄

dτ̄
=

δF̄

δxi

dxi

dτ̄
+ F̄

∂F̄

∂yi
δyi

F̄ dτ̄
, (7.8)

By simplifying equation (7.8) as following,

dF̄

dτ̄
=

∂F̄

∂xi

dxi

dτ̄
− 1

2

∂Ḡj

∂yi
∂F̄

∂yj
dxi

dτ̄
+ F̄

∂F̄

∂yi
(
dyi + 1

2
∂Gi

∂yj
dxj

F̄ dτ̄
)

=
∂F̄

∂xi

dxi

dτ̄
− 1

2

∂Ḡj

∂yi
∂F̄

∂yj
dxi

dτ̄
+

∂F̄

∂yi
dyi

dτ̄
+

1

2

∂F̄

∂yi
∂Ḡi

∂yj
dxj

dτ̄

=
∂F̄

∂xi

dxi

dτ̄
+

∂F̄

∂yi
dyi

dτ̄
, (7.9)

where
Ḡi =

1

4
(
∂2F̄ 2

∂xk∂yi
yk − ∂F̄ 2

∂xi
), (7.10)

by multiplying yi in the above equation, we obtain the following equations,

yiḠi =
1

2
F̄
∂F̄

∂xi
yi, (7.11)

and
2yiḠi

F̄
=

∂F̄

∂xi
yi, (7.12)

as we know,
dF̄

dτ̄
=

∂F̄

∂yi
dyi

dτ̄
, (7.13)

and
∂F̄

∂yi
d2xi

dτ̄ 2
=

∂F̄

∂yθ
(−2Ḡθ) +

∂F̄

∂yφ
(−2Ḡφ) = −2

∂F̄

∂yi
Ḡi

= −2
∂F̄

∂yi
ḡijḠj = −2

∂F̄

∂yi
yiyj

F̄ 2
Ḡj = −2yj

Ḡj

F̄
. (7.14)

By using the equations (7.12) and (7.14), one rewrite the equation (7.9) as,

dF̄

dτ̄
= 0. (7.15)

Therefore F̄ is constant along its geodesic. We know that

dF̄

dτ
=

dF̄

dτ̄

dτ̄

dτ
= 0, (7.16)
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hence F̄ is constant along the geodesic of F . According to

dτ = Fdt,

dτ̄ = F̄ dt, (7.17)

Then
d log(F ) = d log(F̄ ). (7.18)

Now,we consider F and F̄ satisfied in equation (7.18) and we apply this condition in the following
calculations. Plugging the geodesic spray coefficients Gr into the geodesic equation (2.1), we obtain

d2t

dτ 2
+

B
′

B

dr

dτ

dt

dτ
= 0, (7.19)

The solution of equation (7.19) is
B
dt

dτ
= 1. (7.20)

d2r

dτ 2
+

B
′

2A
(
dt

dτ
)2 +

A
′

2A
(
dr

dτ
)2 − r

A
F̄ 2 = 0, (7.21)

With simplifying as following

(
d2r

dτ 2
+

B
′

2A
(
dt

dτ
)2 +

A
′

2A
(
dr

dτ
)2 − r

A
F̄ 2 = 0)× 2A(

dr

dτ
), (7.22)

A
′
(
dr

dτ
)3 + 2A

dr

dτ

d2r

dτ 2
− 2r

dr

2A
dτF̄ 2 − B

′

B2

dr

dτ
= 0, (7.23)

dA

dr

dr

dτ
(
dr

dτ
)2 + A(2

dr

dτ

d2r

dτ 2
)− F̄ 2 d

dr
(r2)

dr

dτ
− d

dr
(B−1)

dr

dτ
= 0 (7.24)

dA

dτ
(
dr

dτ
)2 + A

d

dτ
(
dr

dτ
)2 − F̄ 2 d

dτ
(r2)− d

dτ
(B−1) = 0 (7.25)

d

dτ
[A(

dr

dτ
)2 − F̄ 2r2 − 1

B
] = 0, (7.26)

By replacing equation (7.20) in equation (7.26), we have the following equation

d

dτ
[A(

dr

dτ
)2 − F̄ 2r2 −B(

dt

dτ
)2] = 0, (7.27)

By regarding the equation (2.1), we have

d

dτ
(−2r2F̄ 2 − F 2) = 0, (7.28)

− 4r
dr

dτ
F̄ 2 − dF 2

dτ
= 0, (7.29)

dF 2

dτ
= −4r

dr

dτ
F̄ 2, (7.30)

And
dF 2

dτ
= −4r

dr

dt

dt

dτ
F̄ 2, (7.31)
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Because dF
dτ

= 0 thus dr
dt

is small.
Plugging the geodesic spray coefficients Gt into the geodesic equation (2.1), we gain

d2t

dt2
+

B
′

B

dr

dτ

dt

dτ
= 0, (7.32)

d2t
dτ2

dt
dτ

dτ = −B
′

B
dr, (7.33)

And
ln

dt

dτ
= − lnB, (7.34)

We consider
F 2 = Bytyt − Ayryr − r2F 2

FS, (7.35)
Where B = (1− 2GM

λr
) and A = (λ− 2GM

r
)
−1, and the ”Finslerian sphere” FFS is of the form of

FFS =

√
(1− ε2 sin2 θ)yθyθ + sin2 θyφyφ

1− ε2 sin2 θ
− ε sin2 θyφ

1− ε2 sin2 θ
, (7.36)

Where 0 ≤ ε < 1. If we consider the orbit of a particle confined to the equatorial plane θ = π
2
,

Finslerian sphere simplifies as,

FFS =
dφ
dτ

1− ε2
−

εdφ
dτ

1− ε2
=

dφ
dτ

1 + ε
, (7.37)

By using dFFS

dτ
= 0, we obtain

dφ

dτ
= J±, (7.38)

Where J± = J(1 ± ε). Plugging equation (7.38) into the equation (7.35) and consider F = 0 for
massless particles we obtain

(1− 2GM

r
)(
dt

dτ
)2 − (1− 2GM

r
)−1(

dr

dτ
)2 − r2

(1± ε)2
(
dφ

dτ
)2 = 0, (7.39)

By using equations (7.39) and (7.38) we have

(
dr

dτ
)2 − 1 = − r2

(1± ε)2
(1− 2GM

r
)(
dφ

dτ
)2, (7.40)

(
dr

dφ
)2 − 1

(dφ
dτ
)2

= − r2

(1± ε)2
(1− 2GM

r
), (7.41)

Plugging equation (7.38) into the equation (7.41) we obtain

(
dr

dφ
)2 − 1

J2(1± ε)2
= − r2

(1± ε)2
(1− 2GM

r
), (7.42)

After simplifying equation (7.42), we gain
dr√

(
√
G2M2J2+1

J
)2 − (r −GM)2

=
1

(1± ε)
dφ, (7.43)

We consider r −GM =
√
G2M2J2+1

J
sinα and solve the equation (7.43) we obtain

r =

√
G2M2J2 + 1

J
sin((

1

(1± ε)
)φ+ c) +GM, (7.44)
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8. Weyl and Douglas tensor

Let F be a Finsler metric on an n-dimensional manifold M and Gi be the geodesic coefficient
of F , x ∈ M and y ∈ TxM − {0}, the Riemannian curvature tensor is defined by Ri

jk =
δGi

j

δxk − δGi
k

δxj .

We know Hh
ijk =

∂Rh
jk

∂yi
, Hij = Hk

ijk and Hi =
(nHki+Hik)y

k

n−1
provided n ̸= 1. The Weyl tensor can be

expressed, in four dimensions, as [11]

W i
jk = Ri

jk +
(Hjk −Hkj)y

i + δijHk − δikHj

n+ 1
, (8.1)

we know from the
Gt

t =
A

′

rA2
− 1

rA2
+

λ

r2
, (8.2)

Gr
r =

−B
′

rAB
− 1

rA2
+

λ

r2
, (8.3)

Gθ
θ = Gφ

φ =
B

2AB
− B

′

2rAB
+

A
′

2rA2
+

B
′

4AB
(
A

′

A
+

B
′

B
), (8.4)

According to definition of Hh
ijk since Hh

ijk is independent of y therefore Hh
ijk = 0, Hij = 0 and Hi = 0.

Thus W i
jk = Ri

jk. By using the equation (8.1), we obtain

Rt
rt = −∂Gt

t

∂r
= 0, Rr

rt = −∂Gr
r

∂t
= 0,

Rθ
θr = −∂Gθ

θ

∂r
= 0, Rφ

φr = −
∂Gφ

φ

∂r
= 0,

Thus Gt
t =constant, Gr

r =constant, Gθ
θ =constant and Gφ

φ =constant.
And other Ri

jk are equal zero. Since Gt
t = α that α is constant therefore we have

A
′

rA2
− 1

rA2
+

λ

r2
= α, (8.5)

If we solve the equation (8.5) as follows

A
′
A−2 − 1

r
A−1 = (αr − λ

r
),

Therefore we have
A = (λ− 1

3
αr2 +

c

r
)−1, (8.6)

Since Gθ
θ = γ that γ is constant therefore we have

B

2AB
− B

′

2rAB
+

A
′

2rA2
+

B
′

4AB
(
A

′

A
+

B
′

B
) = γ, (8.7)

From the equation (8.5) and equation (8.7) we conclude that

−B
′

rAB
− 1

rA2
+

λ

r2
= β = constant, (8.8)
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We solved equation (8.8) as follows

B
′

B
= −βrA+

λ

r
A− 1

r
,

We use the equation (8.6) and we suppose that α = β therefore we obtain

B = (λ− 1

3
αr2 +

c

r
), (8.9)

From equation (8.6) and equation (8.9) we conclude

B = A−1, (8.10)

Therefore, if W = 0 and α = β =constant we conclude that

F 2 = (λ− 1

3
αr2 +

c

r
)ytyt − (λ− 1

3
αr2 +

c

r
)−1yryr − r2F̄ 2, (8.11)

Thus F 2 is the Ads Schwarzschild Finsler metric [12]. If F 2 express as follows

F 2 = (λ− 2M

r
+

r2

b2
)ytyt − (λ− 2M

r
+

r2

b2
)−1yryr − r2F̄ 2, (8.12)

We conclude that Ri
jk = 0 and this conclude that W i

jk = 0, thus F 2 is the Ads Schwarzschild Finsler
metric and F 2 is conformally flat. Now we consider Douglas tensor as follows

Dh
ijk = Gh

ijk −
yhGijk + σ(i, j, k){δhi Gjk}

n+ 1
, (8.13)

Where
Gi =

1

2
Γi
jky

iyj, Gh
ijk =

∂Gh
jk

∂yi
, Gij = Gr

ijr, Gijk =
∂Gij

∂yk
, (8.14)

If tensor Douglas D = 0 thus Dh
ijk = 0 ⇒ Gh

ijk = 0 ⇒ Gi
i = 0. Therefore Gt

t = 0 and we can conclude
that

A
′

rA2
− 1

r2A
+

λ

r2
= 0,

Therefore we have
A = (λ+

c

r
)−1, (8.15)

Also we know that Gr
r = 0 therefore

−B́

rAB
− 1

r2A
+

λ

r2
= 0,

B
′

B
=

λA

r
− 1

r
,

we use the equation (8.15) and we obtain

B = (λ+
c

r
), (8.16)

From the equations (8.15) and (8.16) we conclude

B = A−1, (8.17)

Therefore if D = 0 we conclude that F 2 is the Schwarzschild metric.
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9. The Friedmann-Lemaître-Robertson-Walker (FLRW ) solution

By using an ansatz of the FLRW metric that it has the Finslerian structure

F 2 =
dt

dτ

dt

dτ
− a2(t)

1− kr2
dr

dτ

dr

dτ
− r2a2(t)F̄ 2(θ, φ,

dθ

dτ

dφ

dτ
), (9.1)

We have found an exact solution of the vacuum field equation, where geodesic spray coefficients can
be derived as

Gt =
1

4
(

2aa
′

1− kr2
dr

dτ

dr

dτ
+ 2aa

′
r2F̄ 2), (9.2)

Gr =
a

′

a

dr

dτ

dt

dτ
+

1

2

kr

1− kr2
dr

dτ

dr

dτ
− 1

2
r(1− kr2)F̄ 2, (9.3)

Gθ = Ḡθ +
a

′

a

dθ

dτ

dt

dτ
+

1

r

dθ

dτ

dr

dτ
, (9.4)

Gφ = Ḡφ +
a

′

a

dφ

dτ

dt

dτ
+

1

r

dφ

dτ

dr

dτ
, (9.5)

Now, we compute Ricci scalar of equation (9.1).

RicF 2 = 2
∂Gµ

∂xµ
− yλ

∂2Gµ

∂xλ∂yµ
+ 2Gλ ∂2Gµ

∂yλ∂yµ
− ∂Gµ

∂yλ
∂Gλ

∂yµ
, (9.6)

Where R̄ic denotes the Ricci scalar of the Finsler structure F̄ . Since the vacuum field equation in
Finsler spacetime is equivalent to the vanishing of the Ricci scalar thus

2
∂Gt

∂t
− yλ

∂

∂xλ

∂Gt

∂yt
+ 2Gλ ∂

∂yλ
∂Gt

∂yt
− ∂Gt

∂yλ
∂Gλ

∂yt

=
aa

′′

1− kr2
yryr + aa

′′
r2F̄ 2, (9.7)

2
∂Gr

∂r
− yλ

∂

∂xλ

∂Gr

∂yr
+ 2Gλ ∂

∂yλ
∂Gr

∂yr
− ∂Gr

∂yλ
∂Gλ

∂yr

= −a
′′

a
ytyt + r2(a

′2
+ k)F̄ 2, (9.8)

and

2
∂Gθ

∂θ
− yλ

∂

∂xλ

∂Gθ

∂yθ
+ 2Gλ ∂

∂yλ
∂Gθ

∂yθ
− ∂Gθ

∂yλ
∂Gλ

∂yθ

+2
∂Gφ

∂φ
− yλ

∂

∂xλ

∂Gφ

∂yφ
+ 2Gλ ∂

∂yλ
∂Gφ

∂yφ
− ∂Gφ

∂yλ
∂Gλ

∂yφ

= R̄icF̄ 2 − 2
a

′′

a
ytyt + 2

a
′2
+ k

1− kr2
yryr, (9.9)

Then we rewrite equation (2.13) as

RicF 2 = −3
a

′′

a
ytyt +

aa
′′
+ 2a

′2
+ 2k

1− kr2
yryr+

(R̄ic+ r2(aa
′′
+ a

′2
+ k))F̄ 2, (9.10)
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Because of vanishing of the Ricci scalar, we have R̄ic = λ

a
′′

a
= 0,

aa
′′
+ 2a

′2
+ 2k

1− kr2
= 0,

λ+ r2(aa
′′
+ a

′2
+ k) = 0, (9.11)

a
′′
= 0 ⇒ a(t) = αt+ β, (9.12)

aa
′′
+ 2a

′2
+ 2k

1− kr2
= 0 ⇒ k = −α2, (9.13)

r2(α2 + k) + λ = 0,

α2 + k = 0,

⇒ λ = 0, (9.14)
Thus we obtain,

F 2 =
dt

dτ

dt

dτ
− (αt+ β)2

1 + α2r2
dr

dτ

dr

dτ
− r2(αt+ β)2F̄ 2, (9.15)

Where F̄ is Ricci flat and R̄ic = λ. Now, we consider geodesic equation

d2xµ

dτ 2
+ 2Gµ = 0, (9.16)

d2t

dτ 2
+ 2Gt = 0,

d2t

dτ 2
+ (

2aa
′

1− kr2
(
dr

dt
)2(

dt

dτ
)2 + 2aa

′
r2F̄ 2) = 0, (9.17)

If, we only consider the radial motion of particles, and notice the velocity of a particle dr
dt

is small,
we obtain

d2t

dτ 2
=

d

dτ
(
dt

dτ
) = 0, (9.18)

dt

dτ
= constant = A, (9.19)

From the another geodesic equation, we gain

d2r

dτ 2
+ 2Gr = 0,

d2r

dt2
(
dt

dτ
)2 − r(1− kr2)F̄ 2 = 0, (9.20)

Therefore
d2r

dt2
A = 0 ⇒ d2r

dt2
= 0, (9.21)

On the other hand from the equation of motion of a test particle we obtain

d2r

dt2
= −∂φ

∂r
=

2GM

r2
, (9.22)
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From the equations (9.21) and (9.22) we obtain

2GM

r2
= 0, (9.23)

Therefore r → ∞ or M = 0.
We consider the gravitational field equation in the given Finsler spacetime [9] should be of the form

Gµ
ν = 8πFGT µ

ν , (9.24)

We use the modified Einstein tensor [8] as follows

Gµν ≡ Ricµν −
1

2
gµνS, (9.25)

And consider Gk
k = gklGkl we obtain

Gt
t = 2

a
′2

a2
+

2k

a2
+

λ

r2a2
, (9.26)

Gr
r = 2

a
′′

a
+

λ

r2a2
, (9.27)

and

Gθ
θ = Gφ

φ = 2
a

′′

a
+

a
′2
+ k

a2
, (9.28)

as we know that the energy-momentum tensor to be of the form

T µ
ν = diag(ρ,−p,−p,−p) (9.29)

we use equations (9.24) and(9.26), obtain

Gt
t = 8πFGT t

t

2
a

′2

a2
+

2k

a2
+

λ

r2a2
= 8πFGρ, (9.30)

According to the equations (9.12)-(9.14) we have

ρ = 0, (9.31)

Moreover

Gθ
θ = 8πFGT θ

θ

2
a

′′

a
+

a
′2
+ k

a2
= 8πFG(−p), (9.32)

If we notice to the equations (9.12)-(9.14) we obtain

p = 0, (9.33)

Thus ρ and p are p = 0, ρ = 0 therefore the energy-momentum tensor is zero.



114 M. Farahmandy Motlagh, A. Behzadi

10. conclusions

In this paper, we investigated the LTB solutions for (3.1) containing dust with p = 0. We
have obtained the R(t, r) and S(t, r) with considering establish a new solution of Rµν = 0. Our
solutions show that two dimensional subspace F̄ has constant Ricci curvature.Then, we compute
the covariant derivative Einstein tensor and show that it is not conserved in the Finsler spacetime.
Moreover, we obtained the Kretschman scalar for the considering anstaz. Finally, we determined Ks

singularity is at R = 0 and we showed one example. Singularity theorems have been one of the most
important developments in the theory of classical general relativity . Also, we consider an ansatz of
the Schwarzschild metric and we show results of vacuum solution are different from of [8].We consider
Weyl tensor and we conclude that the Finsler metric is the Ads Schwarzschild and conformally flat.
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