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Abstract

The aim of this paper is to determine some coupled coincidence and coupled common fixed point
theorems for mixed g-monotone nonlinear contractive mappings in partially ordered modular spaces.
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1. Introduction

The study of modular spaces was initiated by Nakano [24] in 1950 and generalized by Musielak and
Orlicz [23], Koshi and Shimogaki [13] and Yamamuro [31] and their collaborators. The monographic
exposition of the theory of Orlicz spaces may be found in the book of Krasnosel’skii and Rutickii [12].
Fixed point theory is very useful in solving a variety of problems in control theory, economic theory,
nonlinear analysis and so on. The Banach contraction principle is the most famous fixed point theo-
rem. Many authors presented some new results for contractions in partially ordered metric spaces (cf.
[1, 2, 3, 5, 6, 7, 8, 19, 26]). The study of fixed points of mappings on complete partial ordered metric
spaces was first investigated by Ran and Reurings [27] in 2004, and then by Nieto and Rodrigues-
Lupez [25]. Lakshmikantham and Ćirić [18] introduced the notions of mixed g-monotone property
and proved coupled fixed point theorems for mixed g-monotone nonlinear contractive mappings in
partially ordered complete metric spaces. The theory of fixed points in the content of modular spaces
was initiated by Khamsi et al. [9] (see also [4, 10, 15, 20, 21, 22, 16, 17, 28, 30]).
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In this paper by using some ideas of [18], we prove some coupled coincidence and coupled common
fixed point theorems for mixed g-monotone nonlinear contractive mappings in partially ordered
complete modular spaces. Some basic facts and notations about modular spaces are recalled from
[14].

Definition 1.1. Let X be an arbitrary vector space over F(= R or C).
A functional ρ : X → [0,∞] is called modular if for all x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every α ∈ F with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0 and α + β = 1.

Definition 1.2. If (iii) in definition 1.1 is replaced by

ρ(αx+ βy) ≤ αsρ(x) + βsρ(y),

for α, β ≥ 0, α + β = 1 with an s ∈ (0, 1], then we say that ρ is a s-convex modular, and if s = 1, ρ
is called a convex modular.

A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx) → 0 as λ→ 0} .

Let ρ be a convex modular, the modular space Xρ can be equipped with a norm called the Luxemburg
norm, defined by

∥x∥ρ = inf
{
λ > 0 ; ρ

(x
λ

)
≤ 1

}
.

Definition 1.3. A modular ρ is said to satisfy the ∆2–condition if there exists κ > 0 such that for
any x ∈ Xρ, we have ρ(2x) ≤ κρ(x).

Definition 1.4. Let Xρ be a modular space and let {xn} and x be in Xρ. Then

(i) {xn} is said to be ρ–convergent to x and write xn
ρ−→ x if ρ(xn − x) → 0 as n→ ∞.

(ii) {xn} is called ρ–Cauchy if ρ(xn − xm) → 0 as n,m→ ∞.
(iii) A subset S of Xρ is called ρ–complete if any ρ–Cauchy sequence is ρ–convergent to an element
of S.
(v) We say the modular ρ has the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn) whenever xn

ρ−→ x.

Note that ρ-convergence does not imply ρ-cauchy since ρ does not satisfy the triangle inequality. In
fact, this will happen if and only if ρ satisfies the ∆2–condition.

Remark 1.5. Note that ρ(.x) is an increasing function, for any x ∈ X . Suppose 0 < a < b, then
the property (iii) of Definition 1.1 with y = 0 shows that ρ(ax) = ρ

(
a
b
bx
)
≤ ρ(bx) for all x ∈ X .

Moreover, if ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x) and also ρ(x) ≤ 1
2
ρ(2x)

for all x ∈ X .

Bhaskar and Lakshmikantham [5] introduced the following notions of a mixed monotone mapping
and a coupled fixed point.
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Definition 1.6. Let (X ,≤) be a partially ordered set. The mapping F : X ×X → X is said to has
the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone
non-increasing in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X , x1 ≤ x2 → F (x1, y) ≤ F (x2, y) (1.1)

and

y1, y2 ∈ X , y1 ≤ y2 → F (x, y1) ≥ F (x, y2). (1.2)

Definition 1.7. An element (x, y) ∈ X × X is called a coupled fixed point of the mapping F :
X × X → X if

F (x, y) = x, F (y, x) = y.

The following definition is recalled from [18].

Definition 1.8. Let (X ,≤) be a partially ordered set and let F : X × X → X and g : X → X be
mappings. We say F has the mixed g-monotone property if F is monotone g-non-decreasing in its
first argument and is monotone g-non-increasing in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X , g(x1) ≤ g(x2) → F (x1, y) ≤ F (x2, y) (1.3)

and

y1, y2 ∈ X , g(y1) ≤ g(y2) → F (x, y1) ≥ F (x, y2). (1.4)

Note that if g is the identity mapping, then Definition 1.8 reduces to Definition 1.6.

Definition 1.9. An element (x, y) ∈ X × X is called a coupled coincidence point of mappings
F : X × X → X and g : X → X if

F (x, y) = g(x), F (y, x) = g(y).

Definition 1.10. Let X be a non-empty set and let F : X × X → X and g : X → X be mappings.
We say F and g are commutative if for each x, y ∈ X

g(F (x, y)) = F (g(x), g(y)).

2. Coupled fixed point theorems for mixed g-monotone contractions

Let X be a vector space. Then (X ,⪯, ρ) is called an ordered modular space if ρ is a modular on
X and ⪯ is a partial order on X . Throughout this section, we assume that the modular ρ satisfies the
∆2–condition with κ > 1. Also if α, β ∈ R+ with α > β, we consider α0 ∈ R+ such that β

α
+ 1

α0
= 1

and we assume that r is the smallest positive integer in which α0 ≤ 2r.
Denote by Ψ the family of non-decreasing functions ψ : [0,+∞) → [0,+∞) such that ψ(t) < t

and limr→t+ ψ(r) < t for all t > 0.

Lemma 2.1. (Singh and Meade [29]) ψ : [0,+∞] → [0,+∞] is non-decreasing and right continuous,
then limn→∞ ψn(t) = 0 for all t ≥ 0 if and only if ψ(t) < t for all t > 0.

Lakshmikantham and Ćirić in [18] proved coupled fixed point theorems for mixed g-monotone con-
tractive mappings in partially ordered complete metric spaces. In following we prove similar results
in partially ordered complete modular spaces.
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Theorem 2.2. Let (X ,⪯, ρ) be a complete ordered modular space and ψ ∈ Ψ. Also suppose F :
X ×X → X and g : X → X be mappings such that F has the mixed g-monotone property and there
exist α, β ∈ R+ with α > β such that

ρ
(
α(F (x, y)− F (z, w))

)
≤ ψ

[ρ(β(g(x)− g(z))
)
+ ρ

(
β(g(y)− g(w))

)
2κr

]
(2.1)

for all x, y, z, w ∈ X for which g(x) ≤ g(z) and g(y) ≥ g(w). Let F (X ×X ) ⊆ g(X ), g is continuous
and commutes with F . Also assume either
(i)F is continuous or
(ii)X has the following properties:

(a)if {xn}is a non-decreasing sequence such that xn → x, then xn ≤ x, for all n, (2.2)

(b)if {yn}is a non-decreasing sequence such that yn → y, then y ≤ yn, for all n. (2.3)

If there exist x0, y0 ∈ X such that

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0), (2.4)

then F and g have a coupled coincidence point.
Proof . Let x0, y0 ∈ X be such that g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0). Since F (X × X ) ⊆
g(X ), we can choose x1, y1 ∈ X such that g(x1) = F (x0, y0) and g(y1) = F (y0, x0). Continuing this
process we get sequences {xn} and {yn} in X such that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn), (n ≥ 0). (2.5)

By using induction, we show that

g(xn) ≤ g(xn+1) and g(yn) ≥ g(yn+1), (n ≥ 0). (2.6)

Let n = 0, from (2.4) we deduce g(x1) = F (x0, y0) and g(y1) = F (y0, x0), hence (2.6) holds. Now
suppose (2.6) holds for n ≥ 0, since F has the mixed g-monotone property, from (2.5) we get

g(xn+1) = F (xn, yn) ≤ F (xn+1, yn) and F (yn+1, xn) ≤ F (yn, xn) = g(yn+1), (2.7)

g(xn+2) = F (xn+1, yn+1) ≥ F (xn+1, yn) and F (yn+1, xn) ≥ F (yn+1, xn+1) = g(yn+2). (2.8)

Therefore g(xn+1) ≤ g(xn+2) and g(yn+1) ≥ g(yn+2). Hence (2.6) holds for all n ≥ 0. Put

γn = ρ
(
β(g(xn)− g(xn+1))

)
+ ρ

(
β(g(yn)− g(yn+1))

)
,

we prove that

γn ≤ 2ψ
(γn−1

2κr

)
. (2.9)

Since g(xn−1) ≤ g(xn) and g(yn−1) ≥ g(yn), from (2.1) and (2.5) we have

ρ
(
β(g(xn)− g(xn+1))

)
≤ ρ

(
α(g(xn)− g(xn+1))

)
= ρ

(
α(F (xn−1, yn−1)− F (xn, yn))

)
≤ ψ

[ρ(β(g(xn−1)− g(xn))
)
+ ρ

(
β(g(yn−1)− g(yn))

)
2κr

]
= ψ

(γn−1

2κr

)
. (2.10)
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Similarly, we get

ρ
(
β(g(yn)− g(yn+1))

)
≤ ρ

(
α(g(yn)− g(yn+1))

)
= ρ

(
β(F (yn, xn)− F (yn−1, xn−1))

)
≤ ψ

[ρ(β(g(yn−1)− g(yn))
)
+ ρ

(
β(g(xn−1)− g(xn))

)
2κr

]
= ψ

(γn−1

2κr

)
. (2.11)

Adding (2.10) and (2.11) we obtain (2.9). Since ψ(t) < t for t > 0, hence (2.9) implies that the
sequence {γn} is monotone decreasing. Therefore there is γ ≥ 0 such that limn→∞ γn = γ. We show
that γ = 0. Suppose that γ > 0, then (2.9) implies that

γ = lim
n→∞

γn ≤ 2limn→∞ψ
(γn−1

2κr

)
< 2

γ

2κr
=

γ

κr
,

and this is a contradiction. Hence γ = 0, so

lim
n→∞

[
ρ
(
β(g(xn)− g(xn+1))

)
+ ρ

(
β(g(yn)− g(yn+1))

)]
= 0. (2.12)

Now we prove that {g(xn)} and {g(yn)} are cauchy sequences. Suppose, to the contrary, that at least
one of {g(xn)} or {g(yn)} is not a cauchy sequence. Then there exists an ε > 0 and two subsequences
{ml} and {nl} of integers such that ml > nl ≥ l and

δl = ρ
(
β(g(xnl

)− g(xml
))
)
+ ρ

(
β(g(ynl

)− g(yml
))
)
≥ ε

κr
(l ∈ N), (2.13)

and
ρ
(
β(g(xnl

)− g(xml−1))
)
+ ρ

(
β(g(ynl

)− g(yml−1))
)
<

ε

κr
. (2.14)

We choose ml in such a way that it is the smallest integer with ml > nl for which (2.13) holds. From
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(2.13), (2.14) and the condition (iii) of Definition 1.1 we have

ε

κr
≤ δl = ρ

(β
α

[
α(g(xnl

)− g(xml−1))
]
+

1

α0

[
α0β(g(xml−1)− g(xml

))
])

+ ρ
(β
α

[
α(g(ynl

)− g(yml−1))
]
+

1

α0

[
α0β(g(yml−1)− g(yml

))
])

≤ ρ
(
α(g(xnl

)− g(xml−1))
)
+ ρ

(
α0β(g(xml−1)− g(xml

))
)

+ ρ
(
α(g(ynl

)− g(yml−1))
)
+ ρ

(
α0β(g(yml−1)− g(yml

))
)

= ρ
(
α(F (xnl−1, ynl−1)− F (xml−2, yml−2))

)
+ ρ

(
α0β(g(xml−1)− g(xml

))
)

+ ρ
(
α(F (ynl−1, xnl−1)− F (yml−2, xml−2))

)
+ ρ

(
α0β(g(yml−1)− g(yml

))
)

≤ ψ
[ρ(β(g(xnl−1)− g(xml−2))

)
+ ρ

(
β(g(ynl−1)− g(yml−2))

)
2κr

]
+ ψ

[ρ(β(g(ynl−1)− g(yml−2))
)
+ ρ

(
β(g(xnl−1)− g(xml−2))

)
2κr

]
+ ρ

(
α0β(g(xml−1)− g(xml

))
)
+ ρ

(
α0β(g(yml−1)− g(yml

))
)

<
ρ
(
β(g(xnl−1)− g(xml−2))

)
+ ρ

(
β(g(ynl−1)− g(yml−2))

)
2κr

+
ρ
(
β(g(ynl−1)− g(yml−2))

)
+ ρ

(
β(g(xnl−1)− g(xml−2))

)
2κr

+ ρ
(
α0β(g(xml−1)− g(xml

))
)
+ ρ

(
α0β(g(yml−1)− g(yml

))
)

≤ ε

2κr
+

ε

2κr
+ ρ

(
α0β(g(xml−1)− g(xml

))
)
+ ρ

(
α0β(g(yml−1)− g(yml

))
)

<
ε

κr
+ κr

[
ρ
(
β(g(xml−1)− g(xml

))
)
+ ρ

(
β(g(yml−1)− g(yml

))
)]
,

taking the limit as k → ∞, by (2.12) and ∆2-condition we get

lim
l→∞

δl =
ε

κr
. (2.15)
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Similarly we have

δl = ρ
(
β(g(xnl

)− g(xml
))
)
+ ρ

(
β(g(ynl

)− g(yml
))
)

≤ ρ
(
α(g(xnl

)− g(xnl+1))
)
+ ρ

(
α0β(g(xnl+1)− g(xml

))
)

+ ρ
(
α(g(ynl

)− g(ynl+1))
)
+ ρ

(
α0β(g(ynl+1)− g(yml

))
)

< ρ
(
α(g(xnl

)− g(xnl+1))
)
+ ρ

(
α(g(ynl

)− g(ynl+1))
)

+ ρ
(
2rβ(g(xnl+1)− g(xml

))
)
+ ρ

(
2rβ(g(ynl+1)− g(yml

))
)

< ρ
(
α(g(xnl

)− g(xnl+1))
)
+ ρ

(
α(g(ynl

)− g(ynl+1))
)

+ κrρ
(
β(g(xnl+1)− g(xml

))
)
+ κrρ

(
β(g(ynl+1)− g(yml

))
)

≤ ρ
(
α(g(xnl

)− g(xnl+1))
)
+ ρ

(
α(g(ynl

)− g(ynl+1))
)

+ κrρ
(
α(g(xnl+1)− g(xml+1))

)
+ κrρ

(
α0β(g(xml+1)− g(xml

))
)

+ κrρ
(
α(g(ynl+1)− g(yml+1))

)
+ κrρ

(
α0β(g(yml+1)− g(yml

))
)
,

moreover

ρ
(
α0β(g(xml+1)− g(xml

))
)
+ ρ

(
α0β(g(yml+1)− g(yml

))
)

< ρ
(
2rβ(g(xml+1)− g(xml

))
)
+ ρ

(
2rβ(g(yml+1)− g(yml

))
)

< κrρ
(
β(g(xml+1)− g(xml

))
)
+ κrρ

(
β(g(yml+1)− g(yml

))
)
= κrγml

.

Consequently

δl ≤ κrγnl
+ κ2rγml

+ κr
[
ρ
(
α(g(xnl+1)− g(xml+1))

)
+ ρ

(
α(g(ynl+1)− g(yml+1))

)]
(2.16)

on the other hand g(xnl
) ≤ g(xml

) and g(ynl
) ≥ g(yml

), hence we have

ρ
(
α(g(xnl+1)− g(xml+1))

)
= ρ

(
α(F (xnl

, ynl
)− F (xml

, yml
))
)

≤ ψ
[ρ(β(g(xml

)− g(xml
))
)
+ ρ

(
β(g(yml

)− g(yml
))
)

2κr

]
= ψ

( δl
2κr

)
, (2.17)

and similarly

ρ
(
α(g(ynl+1)− g(yml+1))

)
= ρ

(
α(F (ynl

, xnl
)− F (yml

, xml
))
)

≤ ψ
[ρ(β(g(yml

)− g(yml
))
)
+ ρ

(
β(g(xml

)− g(xml
))
)

2κr

]
= ψ

( δl
2κr

)
. (2.18)
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Inserting (2.17) and (2.18) in (2.16) we get

δl ≤ κrγnl
+ κ2rγml

+ 2κrψ
( δl
2κr

)
. (2.19)

Letting k → ∞ from (2.15) we obtain

ε

κr
≤ 2κr lim

k→∞
ψ
( δl
2κr

)
<

ε

κr
, (2.20)

and this is a contradiction. Therefore {g(xn)} and {g(yn)} are cauchy sequences. Since X is complete,
there exist x, y ∈ X such that

lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y. (2.21)

g is continuous hence

lim
n→∞

g(g(xn)) = g(x) and lim
n→∞

g(g(yn)) = g(y). (2.22)

From (2.5) and commutativity of F and g we have

g(g(xn+1)) = g(F (xn, yn)) = F (g(xn), g(yn)), (2.23)

g(g(yn+1)) = g(F (yn, xn)) = F (g(yn), g(xn)). (2.24)

Finally, we claim that g(x) = F (x, y) and g(y) = F (y, x). Suppose that the assumption (i) holds that
is F is continuous, then taking the limit as n→ ∞ in (2.23) and by (2.21) and (2.22) we obtain

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

F (g(xn), g(yn)) = F (x, y),

g(y) = lim
n→∞

g(g(yn+1)) = lim
n→∞

F (g(yn), g(xn)) = F (y, x).

Now suppose that (ii) holds. Since {g(xn)} and {g(yn)} are non-decreasing and limn→∞ g(xn) = x
and limn→∞ g(yn) = y, from (2.2) and (2.3) we have g(xn) ≤ x and g(yn) ≥ y, for all n. Therefore
by (2.23) and (2.1) we get

ρ
(
β(g(x)− F (x, y))

)
= ρ

(β
α

[
α(g(x)− g(g(xn+1))

]
+

1

α0

[
α0β(g(g(xn+1)− F (x, y))

])
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ ρ

(
α0β(g(g(xn+1)− F (x, y))

)
= ρ

(
α(g(x)− g(g(xn+1))

)
+ ρ

(
α0β(F (g(xn), g(yn))− F (x, y))

)
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ κrρ

(
α(F (g(xn), g(yn))− F (x, y))

)
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ κrψ

(ρ(β(g(g(xn))− g(x))
)
+ ρ

(
β(g(g(yn))− g(y))

)
κr

)
.

Letting n→ ∞ implies that ρ
(
β(g(x)− F (x, y))

)
= 0. Therefore g(x) = F (x, y). Similarly one can

prove that g(y) = F (y, x). That is F and g have a coupled coincidence point. □
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Now, we give an example in which satisfies in the hypothesis of Theorem 2.2.

Example 2.3. Let X = R and ρ(x) = |x| for each x ∈ R, then ρ is a modular which satisfies in
∆2-condition with κ = 2. Consider α = 2 and β = 1, then we get α0 = 2 and r = 1. Define mappings
F : X × X → X and g : X → X by F (x, y) = 1

8
ln (1 + |x|) − 1

8
ln (1 + |y|) and g(x) = x for all

x, y ∈ X . Then F and g satisfies in the requirement of Theorem 2.2 and we get

ρ
(
α(F (x, y)− F (z, w))

)
= 2

∣∣∣1
8
ln (1 + |x|)− 1

8
ln (1 + |y|)− 1

8
ln (1 + |z|) + 1

8
ln (1 + |w|)

∣∣∣
≤ 1

8

∣∣∣ ln 1 + |x|
1 + |z|

∣∣∣+ 1

8

∣∣∣ ln 1 + |y|
1 + |w|

∣∣∣
≤ 1

2

[1
4
ln (1 + |x− z|)

∣∣∣+ 1

2

[1
4
ln (1 + |y − w|)

∣∣∣]
≤ 1

2
ln
(4 + |x− z|+ |y − w|

4

)
≤ 1

2
ln
(
1 +

|x− z|+ |y − w|
4

)
=

1

2
ln
(
1 +

ρ(x− z) + ρ(y − w)

4

)
.

Therefore (2.25) holds for ψ(t) = 1
2
ln (1 + t) for all t > 0, and also the hypothesis of Theorem 2.2 is

fulfilled. Hence F and g have a coupled coincidence point that, where (0, 0) is a coupled coincidence
point of F and g.

In the following theorem we will prove the existence and uniquness of the coupled fixed point for mixed
g-monotone contractive mappings in partially ordered modular spaces. Let (X ,≤) be a partially
ordered set. We endow the product X × X with the following partial order relation:

(x, y) ≤ (z, w) ↔ x ≤ z, y ≥ w

for all (x, y), (z, w) ∈ X × X .

Theorem 2.4. In addition to the hypothesis of Theorem 2.2, suppose that for each (x, y), (z, w) ∈
X×X there exists an element (s, t) ∈ X×X such that (F (s, t), F (t, s)) is comparable to (F (x, y), F (y, x))
and (F (z, w), F (w, z)). Then F and g have a unique coupled fixed point.
Proof . From Theorem 2.2, F and g have a coupled fixed point. Suppose (x, y) and (z, w) are
coupled fixed points of the mappings F and g, that is, g(x) = F (x, y), g(y) = F (y, x) and g(z) =
F (z, w), g(w) = F (w, z). By assumption there exists (s, t) ∈ X × X such that (F (s, t), F (t, s)) is
comparable to (F (x, y), F (y, x)) and (F (z, w), F (w, z)). Put s0 = s, t0 = t and choose s1, t1 ∈ X so
that g(s1) = F (s0, t0), g(t1) = F (t0, s0). As in the proof of Theorem 2.2, we can define sequences
{g(sn)} and {g(tn)} as

g(sn+1) = F (sn, tn), g(tn+1) = F (tn, sn), g(sn) ≤ g(sn+1) and g(tn) ≥ g(tn+1).

Also, put x0 = x, y0 = y, z0 = z, w0 = w and on the same way, define the sequences {g(xn)}, {g(yn)}
and {g(zn)} {g(wn)}. Then g(x) = g(x0) = F (x0, y0) = g(x1) and g(y) = g(y0) = F (y0, x0) = g(y1).



142 tayebe Lal Shateri

Furthermore we have

ρ
(
β(g(x)− g(x2))

)
= ρ

(
β(g(x)− F (x1, y1))

)
= ρ

(β
α

[
α(g(x)− g(g(xn+1))

]
+

1

α0

[
α0β(g(g(xn+1)− F (x1, y1))

])
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ ρ

(
α0β(g(g(xn+1)− F (x1, y1))

)
= ρ

(
α(g(x)− g(g(xn+1))

)
+ ρ

(
α0β(F (g(xn), g(yn))− F (x1, y1))

)
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ κrρ

(
α(F (g(xn), g(yn))− F (x1, y1))

)
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ κrψ

(ρ(β(g(g(xn))− g(x1))
)
+ ρ

(
β(g(g(yn))− g(y1))

)
2κr

)
≤ ρ

(
α(g(x)− g(g(xn+1))

)
+ κrψ

(ρ(β(g(g(xn))− g(x))
)
+ ρ

(
β(g(g(yn))− g(y))

)
2κr

)
.

Letting n → ∞ implies that ρ
(
β(g(x) − g(x2))

)
= 0. Hence F (x, y) = g(x) = g(x2). Similarly we

can prove that F (y, x) = g(y) = g(y2) and continuing this process we have

g(xn) = F (x, y), g(yn) = F (y, x), g(zn) = F (z, w), g(wn) = F (w, z) (n ≥ 1). (2.25)

Moreover (F (x, y), F (y, x)) = (g(x1), g(y1)) = (g(x), g(y)) and (F (s, t), F (t, s)) = (g(s1), g(t1)) are
comparable, so g(x) ≤ g(s1) and g(y) ≥ g(t1). Since g(sn) ≤ g(sn+1) and g(tn) ≥ g(tn+1), hence
(g(x), g(y)) and (g(sn), g(tn)) are comparable, that is g(x) ≤ g(sn) and g(y) ≥ g(tn) for all n ≥ 1.
Therefore from (2.1) we get

ρ
(
α(g(x)− g(sn+1))

)
= ρ

(
β(F (x, y)− F (sn, tn))

)
≤ ψ

(ρ(β(g(x)− g(sn))
)
+ ρ

(
β(g(y)− g(tn))

)
2κr

, (2.26)

and

ρ
(
α(g(y)− g(tn+1))

)
= ρ

(
β(F (y, x)− F (tn, sn))

)
≤ ψ

(ρ(β(g(y)− g(tn))
)
+ ρ

(
β(g(x)− g(sn))

)
2κr

. (2.27)

Adding (2.26) and (2.27) we get

ρ
(
α(g(x)− g(sn+1))

)
+ ρ

(
α(g(y)− g(tn+1))

)
2

≤ ψ
(ρ(β(g(x)− g(sn))

)
+ ρ

(
β(g(y)− g(tn))

)
2κr

≤ ψ
(ρ(β(g(x)− g(sn))

)
+ ρ

(
β(g(y)− g(tn))

)
2

.
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Repeating the above process, for n ≥ 1 we get

ρ
(
α(g(x)− g(sn+1))

)
+ ρ

(
α(g(y)− g(tn+1))

)
2

≤ ψn
(ρ(β(g(x)− g(s1))

)
+ ρ

(
β(g(y)− g(t1))

)
2κr

.

This implies that

lim
n→∞

ρ
(
α(g(x)− g(sn+1))

)
= 0 and lim

n→∞
ρ
(
α(g(y)− g(tn+1))

)
= 0, (2.28)

and similarly we can prove that

lim
n→∞

ρ
(
α(g(z)− g(sn+1))

)
= 0 and lim

n→∞
ρ
(
α(g(w)− g(tn+1))

)
= 0. (2.29)

Now, using the ∆2-condition, (2.28) and (2.29) leads to

ρ
(
β(g(x)− g(z))

)
≤ ρ

(
α(g(x)− g(sn+1))

)
+ ρ

(
α0β(g(z)− g(sn+1))

)
→ 0 as n→ ∞,

ρ
(
β(g(x)− g(z))

)
≤ ρ

(
α(g(x)− g(sn+1))

)
+ ρ

(
α0β(g(z)− g(sn+1))

)
→ 0 as n→ ∞.

Consequently
g(x) = g(z) and g(y) = g(w). (2.30)

Since g(x) = F (x, y) and g(y) = F (y, x), by commutativity of F and g we have

g(g(x)) = g(F (x, y)) = F (g(x), g(y)) and g(g(y)) = g(F (y, x)) = F (g(y), g(x)).

Set u = g(x), v = g(y). Then

g(u) = F (u, v) and g(v) = F (v, u). (2.31)

Hence (u, v) is a coupled coincidence point. Then from (2.30) with z = u and w = v it follows that
g(u) = g(x) and g(v) = g(y), thus

g(u) = u and g(v) = v. (2.32)

From (2.31) and (2.32), we get

u = g(u) = F (u, v) and v = g(v) = F (v, u).

Therefore (u, v) is a coupled common fixed point of F and g. Now, if (u′, v′) is another coupled
common fixed point, then (2.30) implies that u′ = g(u′) = g(u) = u and v′ = g(v′) = g(v) = v. □

If we put ψ(t) = mt for m ∈ [0, 1) in Theorem 2.2, we obtain the following corollary.

Corollary 2.5. Let (X ,⪯, ρ) be a complete ordered modular function space. Suppose that F : X ×
X → X and g : X → X be mappings such that F has the mixed g-monotone property and there exist
α, β ∈ R+ with α > β such that

ρ
(
α(F (x, y)− F (z, w))

)
≤ m

2κr

[
ρ
(
β(g(x)− g(z))

)
+ ρ

(
β(g(y)− g(w))

)]
(2.33)
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for all x, y, z, w ∈ X for which g(x) ≤ g(z) and g(y) ≥ g(w). Let F (X ×X ) ⊆ g(X ), g is continuous
and commutes with F . Also assume either
(i)F is continuous or
(ii)X has the following properties:

(a)if {xn}is a non-decreasing sequence such that xn → x, then xn ≤ x, for all n, (2.34)

(b)if {yn}is a non-decreasing sequence such that yn → y, then y ≤ yn, for all n. (2.35)

If there exist x0, y0 ∈ X such that

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0), (2.36)

then F and g have a coupled coincidence point.

Taking g = I(the identity mapping) in Theorem 2.2 we have the folloing result.

Corollary 2.6. Let (X ,⪯, ρ) be a complete ordered modular function space and ψ ∈ Ψ. Also suppose
F : X × X → X be a mapping having the mixed monotone property and there exist α, β ∈ R+ with
α > β such that and there exists a k ∈ [0, 1) such that

ρ
(
α(F (x, y)− F (z, w))

)
≤ ψ

[ρ(β(x− z)
)
+ ρ

(
β(y − w)

)
2κr

]
(2.37)

for all x, y, z, w ∈ X for which x ≤ z and y ≥ w. Also suppose either
(i)F is continuous or
(ii)X has the following properties:

(a) if {xn}is a non-decreasing sequence such that xn → x, then xn ≤ x, for all n, (2.38)

(b) if {yn}is a non-decreasing sequence such that yn → y, then y ≤ yn, for all n. (2.39)

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), (2.40)

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x).

Moreover, if x0, y0 are comparable, then x = y, so x = F (x, x).
Proof . It is enough to show that x = F (x, x). Suppose that x0 ≤ y0. We show that

xn ≤ yn for all n ≥ 0, (2.41)

where xn = F (xn−1, yn−1), yn = F (yn−1, xn−1). Assume that (2.41) holds for some fixed n ≥ 0. Then
the mixed monotone property of F implies that

xn+1 = F (xn, yn) ≤ F (yn, xn) = yn+1.

Now from (2.41) and (2.37) we get

ρ
(
α(F (xn, yn)− F (yn, xn))

)
≤ ψ

[ρ(β(xn − yn))

κr

]
.



Coupled fixed points theorems in partially ordered modular spaces11 (2020) No. 2,133-147 145

Hence we have

ρ(β(x− y)) = ρ
(β
α
(α(x− xn+1)) +

1

α0

(α0β(xn+1 − y))
)

≤ ρ
(
α(x− xn+1)

)
+ ρ

(
α0β(xn+1 − y)

)
≤ ρ

(
α(x− xn+1)

)
+ ρ

(
2rβ(xn+1 − y)

)
≤ ρ

(
α(x− xn+1)

)
+ κrρ

(
β(xn+1 − y)

)
≤ ρ

(
α(x− xn+1)

)
+ κrρ

(
α(xn+1 − yn+1)

)
+ κrρ

(
α0β(yn+1 − y)

)
≤ ρ

(
α(x− xn+1)

)
+ κrρ

(
α(xn+1 − yn+1)

)
+ κ2rρ

(
β(yn+1 − y)

)
= κrρ

(
α(F (xn, yn)− F (yn, xn))

)
+ ρ

(
α(x− xn+1)

)
+ κ2rρ

(
β(yn+1 − y)

)
≤ κrψ

[ρ(β(xn − yn))

κr

]
+ ρ

(
α(x− xn+1)

)
+ κ2rρ

(
β(yn+1 − y)

)
.

Since ψ(t) < t taking the limit as n→ ∞ we get

ρ(β(x− y)) ≤ κrψ
[ρ(β(x− y))

κr

]
< ρ(β(x− y)).

Therefore ρ(β(x− y)) = 0, hence x = y and so x = F (x, x). □

Taking ψ(t) = mt with m ∈ [0, 1) in Corollary 2.6 we obtain the following result.

Corollary 2.7. Let (X ,⪯, ρ) be a complete ordered modular function space. Suppose that F : X ×
X → X be a mapping having the mixed monotone property and there exist α, β ∈ R+ with α > β
and there exists a k ∈ [0, 1) such that

ρ
(
α(F (x, y)− F (z, w))

)
≤ m

2κr

[
ρ
(
β(x− z)

)
+ ρ

(
β(y − w)

)]
for all x, y, z, w ∈ X for which x ≤ z and y ≥ w. Also assume either
(i)F is continuous or
(ii)X has the following properties:

(a)if {xn}is a non-decreasing sequence such that xn → x, then xn ≤ x, for all n,

(b)if {yn}is a non-decreasing sequence such that yn → y, then y ≤ yn, for all n.

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0),

then there exist x, y ∈ X such that

x = F (x, y) and y = F (y, x).

Moreover, if x0, y0 are comparable, then x = y, so x = F (x, x).
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