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Abstract

Blast hole drilling and blasting are from among cost effective and economic methods of crushing the
rock in civil projects, tunneling, as well as surface and underground mining. Ground vibration is the
most important undesirable effect of blasting and if not controlled, it can lead to many damages. The
paper is aimed at studying and prediction of effects of vibrations resulted from blasting on structure
of dam on Dareh-Baq River. For this purpose, four empirical equations along with Artificial Neural
Network (ANN) have been used to the aim of achieving a highly accurate model to predict vibrations
of ground. Also, level of vibrations created would be compared through existing standards. According
to the above goals, 73 blasting cases in Dareh-Baq River Dam area have been studied and required
parameters as for prediction have been measured. From 73% of information related to blasting
has been used to obtain empirical equation and also provide appropriate model in ANN; and, the
remaining 27% of information have been used to specify performance and evaluate accuracy level of
various models, in comparison to real values. After evaluation of the results, it became clear that
ANN is of highest accuracy for prediction of vibrations resulted from blast. Also, in consideration
of recorded vibrations and their comparison to existing standards, as well as distance of dam on
Dareh-Baq River from location of blasting, energy from vibrations created will be dissipated and no
undesirable effect would be imposed on dam structure.
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1. Introduction

Cycle of mining includes crushing rocks, loading, and transportation. Nowadays, one of economic
methods widely used to crush rocks is blast hole drilling and blasting [1]. Only about 20% of
energy released from explosives would be used for crushing rocks; and, the remaining would produce
undesirable effects such as ground vibrations, noise, and throwing rocks [2-4]. From among these
effects, ground vibration is the most important undesirable effect of blasting; because, about 40%
of energy released from explosives produces vibration. If ground vibration would not be controlled
and minimized, it would be resulted in many damages in surrounding structures. So it is important
to evaluate, predict, and control ground vibration [5, 6]. In this respect, many standards have been
formulated by different countries so that authorized level of ground vibration would be specified.
Considering vibrations created in structure of dam on Dareh-Baq River in present paper and also
previous studies, vibrations created would be studied and evaluated based on two standards (Tables
1 & 2) [7, 8]. Research background in the field of predicting vibrations resulted from blasting has
been extensive which is indicative of importance of the issue. These researches are divided into two
groupss, in general. First group is related to those researches in which ground vibration prediction
would be performed through methods and formulas. For example Ozer et al. and Kahriman, have
predicted and control these vibrations with consideration of importance of control and minimization
of destructive environmental effects of blasting. In their researches, prediction of ground vibration
has been done through usage of empirical formulas; and, finally a relationship has been formulated
to estimate vibration in the region [9, 10]. In second group, artificial intelligence methods including
ANN have been applied. The related results show that they are closer to reality and this is why;
they are more used. For example, Kazim et al. have predicted ground vibration in a mine located
in Turkey. Accordingly, the results from prediction made by ANN have been closer to real values
and indicative of high ability of the model [11]. Applying ANN method in prediction of vibrations
created in Sar-cheshmeh Copper Mine has been studied by Bakhshandeh et al. Their results showed
high accuracy of the model with least number of errors [12]. Vibrations produced from blasting
in Golgohar Sirjan Mine have been predicted by Saadat et al. They concluded that ANN is of
better performance, compared to other methods [13]. Other similar researches also in relation to
prediction of vibrations resulted from blasting in Sar-cheshmeh Copper Mine have been done by
Dehghani and Ataee-pour [14]; and, the results have been indicative of high accuracy of ANN. In a
research performed by Vasovic et al. regarding control of vibrations produced from mine blasting in
Serbia, and through comparison made between estimated vibrations and values obtained from various
standards; better performance of ANN method has been suggested, compared to other methods [15].
Vibrations created from Bor Mine blasting have been predicted by Radojica et al. The mine is one
of the biggest copper mines in Europe with about 5.6 million ton reserve. The results have shown
high performance of ANN method, compared to empirical equations [16]. Also, comparing empirical
methods and ANN by Monjezi et al. showed better performance of ANN in prediction of ground
vibrations [17]. In present paper, ground vibration caused by blasting in Dam area of Dareh-Baq
River would be predicted through empirical and also ANN methods. In continuation and based on
the results obtained, best model as the one with minimum error level would be specified.

2. Case study

The Dareh-Baq dam is a 42.5m high rockfill dam which is located approximately 20km southeast
of Kuhdasht in Lorestan Province, Iran. It has been constructed on the Haleh River. Figs1 and 2
show location and typical cross-sections of the dam body, respectively. To construct dam structure,
materials required have to become crushed in different sizes. So, these material have to be sent from
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requirements related to specification of rocks required, two mines have been selected around the
dam area. These mines have been called main and secondary mines, based on volume of materials
extracted from them; and, their distances from dam structure have been 1000 and 500 meters,
respectively. Crushing rocks in these mines takes place through blast hole drilling and blasting. One
of the most important undesirable effects of blasting in the area is ground vibration. Vibrations
created may have undesirable effect on dam structure. So, vibrations have to be predicted and
evaluated. For this purpose, 73 blasting events have been monitored and maximum amounts of
explosive charge used per delay (kg), distance between location of blast and installation place of
geophone (m), and created vibration level based on maximum particle velocity (mm/s) have been
measured. Ranges of values measured are shown in Table 3. To measure ground vibration level,
geophone MR2002 manufactured by SYSCOM Co1 has been used. These geophones are capable of
recording created ground vibrations in three X, Y, and Z directiones [18]. A sample of vibration
recorded by the tool and its output is observable in Figs 3 and 4.
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Figure 2: A typical cross-section of the dam body

called neural cells or neurons; and, using a group of input data, it can produce a group of arbitrary
output [20]. Each neural network has at least three layers including: input layer, middle layer known
as hidden layer, and output layer. Input layer is entrance point of data concerned by the network.
Selecting type and number of network inputs has high impact on quality of network performance.
Using high and unnecessary number of inputs and ineffective parameters as inputs causes much
complexity in network, and also its inappropriate performance [21]. Hidden layers play performance
arrangement role in an ANN. Numbers of hidden layers and neural cells existing in these layers are
highly effective on network performance. This number would be determined based on trial and error.
Final layer in each network is the output layer which presents result of ANN and performance of
concerned parameters. Modeling in ANN has three stages including training, validation, and test. In
fact, data would be used in three parts for training, validation, and test purposes. There are certain
patterns for ANN training, from among which back propagation algorithm is very strong; and, it is
widely functional in terms of learning method for multiple layers of neural network [22]. The network
includes an input layer, one or more hidden layer(s), and one output layer. To train this network,
usually back propagation algorithm is used. In Fig 5, a sample of multi-layer perceptron network is
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shown [23].
Each back propagation network includes one or more transfer function(s) and also training func-
tion. Number of transfer functions depends on number of hidden layers. These transfer functions
include Tansig and Logsig. For example, Tansig function produces between -1 and 1 output against
(−∞,+∞) input. This function and Purelin training function are specified in Fig 6 [24].

3.1. Predicting ground vibration through empirical equations

In this section, ground vibration component would be predicted through different empirical formulas.
These empirical relationships are presented in Table 4 [25-29]. In these equations, PPV is Peak Parti-
cle Velocity (mm/s), D is distance of blasting location to place of ground vibration recording (m), W
is maximum explosive charge used in each delay (kg), and K, B, A, α, and n are constant coefficients
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parameters of PPV component have been measured (mm/s). After review and evaluation of various
models and using trial and error method in relation to determination of number of hidden layers and
number of neurons in each of them, appropriate architecture as for better performance of ANN is as
provided in Table 6.
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Where, xi is real value, xp is predicted value, xmean is mean value, n is number, and var is data variance. Under 

ideal condition, of the value obtained from predictive models including empirical relationships and ANN would 

be completely consistent with real values, concerned statistical criteria would be such as those provided in Table 

7. 
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× 100 (4.2)

R2 =

[∑n
i=1 (xi − xmean )2

]
−
[∑n

i=1 (xi − xp)2
][∑n

i=1 (xi − xmean )2
] (4.3)
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where, xi is real value, xp is predicted value, xmean is mean value, n is number, and var is data
variance. Under ideal condition, of the value obtained from predictive models including empirical
relationships and ANN would be completely consistent with real values, concerned statistical criteria
would be such as those provided in Table 7.

Table 7: Ideal mode for predicted values
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In Figs 7 to 12, the results from predictions have been shown through various models and real
values; and, their convergence coefficients have been specified. After evaluation of results obtained
from prediction of peak particle velocity (PPV) through various statistical methods, it became clear
that ANN model provides closest prediction to reality. The model also is of lowest number of errors
among existing methods. Results related to statistical criteria for evaluation of predictive models are
as shown in Table 8. Also, real and predicted values by aforementioned models are shown in Fig 13.
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Figure 7: Real and predicted values by Abbraseys-Hendron relationship

Table 8: Comparing performance of predictive models

10 
 

 

Fig 13. Real and predicted values by ANN relationship 

 

Table 8. Comparing performance of predictive models 

RMSE VAF 2R Model 

0.57 84.39 0.84 Ambraseys–Hendron 

0.46 88.49 0.92 USBM 

0.91 52.53 0.63 Indian Standard 

0.5 86.78 0.89 Roy 

0.47 87 0.86 Rai-Singh 

0.2 97.61 0.98 ANN 

 

 

Fig 14. Comparing Predicted and real values 

 

R² = 0.9764

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

P
re

d
ic

te
d

 P
P

V
 (

m
m

/s
)

Measured PPV (mm/s)

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
P

V
 (

m
m

/s
)

No. datasets

Ambraseys–Hendron USBM Indian Standard Roy Rai-Singh ANN recorded



Comparing Empirical Models with ANN in Estimation ... 11 (2020) No. 2, 175-186 183

8 
 

Ideal Value Statistical Variables 

0 RMSE 

100 VAF 

1 2R 

 

In Figs 8 to 13, the results from predictions have been shown through various models and real values; and, their 

convergence coefficients have been specified. After evaluation of results obtained from prediction of peak 

particle velocity (PPV) through various statistical methods, it became clear that ANN model provides closest 

prediction to reality. The model also is of lowest number of errors among existing methods. Results related to 

statistical criteria for evaluation of predictive models are as shown in Table 8. Also, real and predicted values by 

aforementioned models are shown in Fig 14. 

 

Fig 8. Real and predicted values by Abbraseys-Hendron relationship 

 

Fig 9. Real and predicted values by USBM relationship 

R² = 0.8408

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

P
re

d
ic

te
d

P
P

V
(m

m
/s
(

Measured PPV (mm/s)

R² = 0.9186

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

P
re

d
ic

te
d

 P
P

V
 (

m
m

/s
)

Measured PPV (mm/s)

Figure 8: Real and predicted values by USBM relationship
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Figure 9: Real and predicted values by Indian Standard relationship

5. Conclusion

Evaluation results based on standards presented show that, vibrations created are within the safe
range and no danger would be imposed on structure of dam on Dareh-Baq River. As far as Aus-
tralian standard is concerned and as presented in Table 2, maximum authorized velocity for sensitive
structures like dams is 5mm/s; whereas, according to Table 3, maximum ground vibration has been
recorded as 8mm/s. In this respect, it has to be noted that the vibration has been recorded with
461m distance from blasting location. Since dam structure at lowest has 1000m distance from blast-
ing location, 8mm/s vibration will never happen where dam is constructed. The reason is that, in
distances over 1000m, maximum recorded velocity has been 4.95mm/s and within safe range, based
on the dam structure’s standard. Moreover, in the paper, various statistical criteria have been used
to determine error of predictive models. After review of values of these criteria, it became clear that
ANN bears lowest level of error and highest level of convergence among predictive and real values.
For example, lowest RMSE and highest R2 values have been related to ANN model; and, this is
indicative of ANN being a strong tool for prediction of vibrations resulted from blasting.
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Figure 10: Real and predicted values by Roy relationship
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Figure 11: Real and predicted values by Rai-Singh relationship
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