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Abstract

The aim of this paper is to investigate stable approximation of almost quartic Lie ∗-derivations asso-
ciated with approximate quartic homogeneous mappings by quartic Lie ∗-derivations on ρ-complete
convex modular algebras by using ∆2-condition via convex modular ρ.
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1. Introduction

Ulam [20] raised the question concerning the stability of group homomorphisms : Let G be a group
and let G′ be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0 such that
if a mapping f : G → G′ satisfies the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G, then there exists a homomorphism F : G → G′ with d(f(x), F (x)) < ε for all x ∈ G?
Hyers [6] had answered affirmatively the question of Ulam under the assumption that the groups are
Banach spaces. A generalized version of the theorem of Hyers for approximately additive mappings
was given by Aoki [1] and for approximately linear mappings was presented by Rassias [17]. Since
then, many interesting results of the stability problems to a number of functional equations have
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been investigated. The reader is referred to the references [2, 3, 4, 15, 19] for many information of
stability problem with a large variety of applications.

Now, we recall some basic definitions and remarks of modular spaces with modular functionals,
which are primitive notions corresponding to norms and metrics, as in the followings [10, 21]. The
concept of modular spaces was first introduced by Nakano [13], and then by Musielak and Orlicz [12].
As for the stability theory in modular spaces, Sadeghi [18] has established generalized stability via
the fixed point method of a generalized Jensen functional equation in convex modular spaces. The
authors [21] have presented the generalized stability of quadratic functional equations via the exten-
sive studies of fixed point theory in the framework of modular spaces whose modular is convex, lower
semicontinuous but does not satisfy any relatives of ∆2-condition (refer to [9, 25]). Lately, the sta-
bility problems of various functional equations in modular spaces have been intensively investigated
(see for example, [10, 21, 22]).

Definition 1.1. Let χ be a linear space.

(1) A function ρ : χ → [0,∞] is called a convex modular if for arbitrary x, y ∈ χ,

(m1) ρ(x) = 0 if and only if x = 0,

(m2) ρ(αx) = ρ(x) for every scalar α with |α| = 1,

(m3) ρ(αx+ βy) ≤ αρ(x) + βρ(y) for every scalars α, β, where α + β = 1 and α, β ≥ 0,

acting on real linear space χ. In this case, we say that ρ is a convex modular on real linear space χ.

(2) Alternatively, if (m3) is replaced by

(m3)’ ρ(αx+ βy) ≤ |α|ρ(x) + |β|ρ(y) for every scalars α, β ∈ C, where |α|+ |β| = 1,

acting on complex linear space χ, then it is said that ρ is a convex modular on complex linear space
χ. As a matter of fact, it is well known that a modular ρ defines a corresponding modular space, i.e.,
the linear space χρ given by

χρ = {x ∈ χ : ρ(λx) → 0 as λ → 0}.

Now let ρ be a modular on χρ. Then we observe that ρ(tx) is an increasing function in t ≥ 0
for each fixed x ∈ χ, that is, ρ(ax) ≤ ρ(bx) whenever 0 ≤ a < b. In particular, if ρ is a convex
modular on χ, then ρ(αx) ≤ αρ(x) for all x ∈ χ and for all α with 0 ≤ α ≤ 1. Moreover, we see that
ρ(αx) ≤ |α|ρ(x) for all x ∈ χ and all α with |α| ≤ 1.

Remark 1.2. (1) In general, we note that ρ
(∑n

i=1 αixi

)
≤
∑n

i=1 αiρ(xi) for all xi ∈ χ and αi ≥ 0
(i = 1, · · · , n) whenever 0 < α :=

∑n
i=1 αi ≤ 1 ( Cf. [10]). (2) Consequently, we lead to

ρ
(∑n

i=1 αixi

)
≤
∑n

i=1 |αi|ρ(xi) for all xi ∈ χ and all αi ∈ C whenever 0 < α :=
∑n

i=1 |αi| ≤ 1.

Definition 1.3. Let χρ be a modular space and let {xn} be a sequence in χρ. Then,

(1) {xn} is ρ-convergent to x ∈ χρ and write xn
ρ−→ x if ρ(xn − x) → 0 as n → ∞;

(2) {xn} is called ρ-Cauchy in χρ if ρ(xn − xm) → 0 as n,m → ∞;

(3) A subset K of χρ is called ρ-complete if and only if any ρ-Cauchy sequence in K is ρ-convergent
to an element in K.
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It is said that χρ is called a convex modular ∗-algebra if the fundamental space χ is a ∗-algebra
with convex modular ρ subject to ρ(ab) ≤ ρ(a)ρ(b) and ρ(c∗) = ρ(c) for all a, b, c ∈ χ. We say that
a linear mapping d is a Lie ∗-derivation if d([x, y]) = [d(x), y] + [x, d(y)] and d(z∗) = d(z)∗ for all
x, y, z, where [a, b] = ab − ba. Similarly, a quartic mapping d is said to be quartic homogeneous if
d(λx) = λ4d(x) for all x and scalars λ, and a quartic homogeneous mapping d is called a quartic Lie
∗-derivation if d([x, y]) = [d(x), y4] + [x4, d(y)] and d(z∗) = d(z)∗ for all x, y, z.

From now on, χρ will denote a ρ-complete convex modular ∗-algebra. It is said that the modular
ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn) whenever the sequence {xn} is ρ-
convergent to x. A modular function ρ is said to satisfy the ∆2-condition if there exists κ > 0 such
that ρ(2x) ≤ κρ(x) for all x ∈ χρ.

In [16], Rassias has studied the stability problem of the quartic functional equation

f(x+ 2y) + f(x− 2y) + 6f(x) = 4f(x+ y) + 4f(x− y) + 24f(y), (1.1)

of which the general solution is called a quartic mapping. The stability theorems of ∗-derivations on
Banach ∗-algebras and C∗-algebras, respectively, can be found in the references [7, 11, 14, 23, 24].
Concerning the stability theory of approximate quartic Lie ∗-derivations in ρ-complete convex mod-
ular algebras, we first investigate stable approximation of almost quartic Lie ∗-derivations associated
with the following functional equation

f(3x− y) + f(3x− 2y) + f(y) = 9f(2x− y) + 9f(x− y) + 9f(x) (1.2)

in ρ-complete convex modular algebras without using both Fatou property and ∆2-condition, and
then alternatively present generalized stability result of the equation (1.2) associated with almost
quartic Lie ∗-derivations using necessarily ∆2-condition but not using the Fatou property in ρ-
complete convex modular algebras.

2. Approximate quartic Lie ∗-derivations

We first note that the equation (1.2) is equivalent to the original quartic functional equation
(1.1). In this case, every solution of equation (1.2) is a quartic mapping.

For convenience, we denote the difference operators for quartic equation (1.2) and quartic deriva-
tion, respectively, as follows:

QEλ
f (x, y) := f(3λx− λy) + f(3λx− 2λy) + f(λy)

−9λ4f(2x− y)− 9λ4f(x− y)− 9λ4f(x),

QDf (x, y) := f([x, y])− [f(x), y4]− [x4, f(y)]

for all x, y and λ ∈ T := {z ∈ C : |z| = 1}, which act as perturbing terms of quartic Lie ∗-derivations.
Now we present a generalized stability of the equation (1.2) via direct method associated with

approximate quartic Lie ∗-derivations in ρ-complete modular algebras without using both Fatou
property and ∆2-condition.

Theorem 2.1. Suppose that a mapping f : χρ → χρ with f(0) = 0 satisfies

ρ(QEλ
f (x, y) + f(z∗)− f(z)∗) ≤ ϕ1(x, y, z), (2.1)

ρ(QDf (x, y)) ≤ ϕ2(x, y) (2.2)
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and ϕ1 : χ
3
ρ → [0,∞) and ϕ2 : χ

2
ρ → [0,∞) are mappings such that

Φ(x, y, z) :=
∞∑
j=0

ϕ1(2
jx, 2jy, , 2jz)

24j
< ∞, lim

n→∞

ϕ2(2
nx, 2ny)

44n
= 0 (2.3)

for all x, y, z ∈ χρ and λ ∈ T. Furthermore, if for each x ∈ χρ the mapping r → f(rx) from R to χρ

is continuous, then we can find a unique quartic Lie ∗-derivation d1 : χρ → χρ near f which satisfies
the equation QEλ

d1
(x, y) = 0, QDd1(x, y) = 0 and

ρ(f(x)− d1(x)) ≤
1

16
Φ(x, x, 0) (2.4)

for all x, y ∈ χρ and all λ ∈ C.

Proof . Putting y := x and z := 0 in (2.1) with λ = 1, we obtain

ρ(QE1
f (x, x)) = ρ(f(2x)− 16f(x)) ≤ ϕ1(x, x, 0), (2.5)

which yields

ρ
(
f(x)− f(2x)

16

)
≤ 1

16
ρ(f(2x)− 16f(x)) ≤ 1

16
ϕ1(x, x, 0)

for all x ∈ χρ. Since
∑n−1

j=0
1

24(j+1) ≤ 1, we prove the following functional inequality

ρ
(
f(x)− f(2nx)

24n

)
= ρ

[ n−1∑
j=0

(f(2jx)
24j

− f(2j+1x)

24(j+1)

)]
(2.6)

= ρ
[ n−1∑

j=0

1

24(j+1)

(
24f(2jx)− f(2j+1x)

)]
≤

n−1∑
j=0

1

24(j+1)
ρ
(
24f(2jx)− f(2j+1x)

)
≤ 1

24

n−1∑
j=0

ϕ1(2
jx, 2jx, 0)

24j

for all x ∈ χρ by using the property of convex modular ρ.
Now, replacing x by 2mx in (2.6), we have

ρ
(f(2mx)

24m
− f(2m+nx)

24(m+n)

)
≤ 1

16

m+n−1∑
j=m

ϕ1(2
jx, 2jx, 0)

24j
(2.7)

which converges to zero as m → ∞ by the assumption (2.3). Thus the above inequality implies that

the sequence {f(2nx)
24n

} is a ρ-Cauchy for all x ∈ χρ and so it is convergent in χρ since the space χρ is
ρ-complete. Thus, we may define a mapping d1 : χρ → χρ as

d1(x) := ρ− lim
n→∞

f(2nx)

24n
⇐⇒ lim

n→∞
ρ
(f(2nx)

24n
− d1(x)

)
= 0,

for all x ∈ χρ.
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Now, we proclaim d1 is a quartic mapping satisfying the equation (1.2) and the approximation
(2.4). In fact, if we put (x, y, z) := (2nx, 2ny, 0) in (2.1), and then divide the resulting inequality by
24n, one obtains

ρ
(QEλ

f (2
nx, 2ny)

24n

)
≤

ρ(QEλ
f (2

nx, 2ny))

24n
≤ ϕ1(2

nx, 2ny, 0)

24n
,

which implies

ρ
(QEλ

f (2
nx, 2ny)

24n

)
≤

ρ(QEλ
f (2

nx, 2ny))

24n

≤ ϕ1(2
nx, 2ny, 0)

24n

→ 0

for all x, y ∈ χρ and all λ ∈ T. Thus, noting 27|λ4|+4
31

≤ 1, we figure out by use of Remark 1.2

ρ(
1

31
QEλ

d1
(x, y))

= ρ
( 1

31
QEλ

d1
(x, y)−

QEλ
f (2

nx, 2ny)

31 · 24n
+

QEλ
f (2

nx, 2ny)

31 · 24n
)

≤ 1

31
ρ
(
d1
(
3λx− λy

)
−

f
(
2n(3λx− λy)

)
24n

)
+

1

31
ρ
(
d1(3λx− 2λy)−

f
(
2n(3λx− 2λy)

)
24n

)
+
9λ4

31
ρ
(f(2n(2x− y)

)
22n

− d1
(
2x− y

))
+

9λ4

31
ρ
(f(2n(x− y))

24n
− d1(x− y)

)
+

1

31
ρ
(
d1(λy)−

f(2nλy)

24n

)
+

9λ4

31
ρ
(f(2nx)

24n
− d1(x)

)
+

1

31
ρ
(QEλ

f

(
2nx, 2ny

)
24n

)
for all x, y ∈ χρ and all positive integers n. Taking the limit as n → ∞, one obtains ρ(1

9
QEλ

d1
(x, y)) =

0, and so

QEλ
d1
(x, y) = 0 (2.8)

for all x, y ∈ χρ and all λ ∈ T. Hence d1 satisfies the equation (1.2) for the case of λ = 1, and so it
is quartic. Next, since

∑n
i=0

1
24(i+1) +

1
24

≤ 1 for all n ∈ N, it follows from (2.5) and Remark 1.2 that

ρ(f(x)− d1(x))

= ρ

(
n∑

i=0

1

24(i+1)

(
24f(2ix)− f(2i+1x)

)
+

f(2n+1x)

24(n+1)
− d1(2x)

24

)

≤
n∑

i=0

1

24(i+1)
ρ
(
QEλ

f (2
ix, 2ix)

)
+

1

24
ρ
(f(2n+1x)

24n
− d1(2x)

)
≤

n∑
i=0

1

24(i+1)
ϕ1(2

ix, 2ix, 0) +
1

24
ρ
(f(2n · 2x)

24n
− d1(2x)

)
,

without applying Fatou property of the modular ρ for all x ∈ χρ and all n ∈ N, from which we obtain
the approximation (2.4) of f by the quartic mapping d1 by taking n → ∞ in the last inequality.

On the other hand, we claim that d1 is a quartic Lie ∗-derivation. By (2.8), we haveQEλ
d1
(x, x) = 0

which yields d1(λx) = λ4d1(x) for all x ∈ χρ and λ ∈ T. By the assumption that the mapping r →
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f(rx) is continuous, it follows from the same argument as in the paper [8, 17] that d1(rx) = r4d1(x)
for all x ∈ χρ and r ∈ R. Thus, for any nonzero λ ∈ C,

d1(λx) = d1

(
2
λ

|λ|
|λ|
2
x

)
= 24

(
λ

|λ|

)4

d1

(
|λ|
2
x

)
= 24

(
λ

|λ|

)4( |λ|
2

)4

d1(x) = λ4d1(x)

for all x ∈ χρ, which concludes that d1 is quartic homogeneous over C. In addition, in view of the
inequality in (2.2) and the second condition in (2.3), we arrive at

ρ(
1

4
QDd1(x, y))

= ρ
(1
4
QDd1(x, y)−

QDf (2
nx, 2ny)

4 · 44n
+

QDf (2
nx, 2ny)

4 · 44n
)

≤ 1

4
ρ
(
d1
(
[x, y]

)
−

f
(
22n[x, y]

)
44n

)
+

1

4
ρ
( [x4, f(2ny)]

42n
− [x4, d1(y)]

)
+
1

4
ρ
( [f(2nx), y4]

42n
− [d1(x), y

4]
)
+

1

4 · 44n
ρ
(
QDf

(
2nx, 2ny

))
for all x, y ∈ χρ, which tends to zero as n tends to ∞. Therefore, one obtains ρ(1

4
QDd1(x, y)) = 0,

and so d1 is a quartic Lie derivation. In addition, we get the following inequality

ρ
(1
3

(
d1(z

∗)− d1(z)
∗
))

≤ 1

3
ρ
(
d1(z

∗)− f(2nz∗)

24n

)
+
1

3
ρ
(f(2nz)

24n

∗

− d1(z)
∗
)
+

1

3
ρ
(f(2nz∗)

24n
− f(2nz)

24n

∗)
≤ 1

3
ρ
(
d1(z

∗)− f(2nz∗)

24n

)
+
1

3
ρ
(f(2nz)

24n

∗

− d1(z)
∗
)
+

ϕ1(0, 0, 2
nz)

3 · 24n
for all vector z. Taking n → ∞, one concludes d1 is a quartic Lie ∗-derivation.

Finally, applying the same argument as in the proof of Theorem [10], we prove the uniqueness of
d1 satisfying the approximation (2.4) near f .

Therefore, one concludes that the mapping d1 is a unique quartic Lie ∗-derivation near f satisfying
the approximation (2.4) in the modular algebra χρ. □

As a result, we obtain a stability theorem of quartic Lie ∗-derivations by quartically contractive
conditions of control functions ϕi for perturbing terms QEλ

f and QDf .

Theorem 2.2. Suppose there exist two functions ϕ1 : χ3
ρ → [0,∞) and ϕ2 : χ2

ρ → [0,∞) and two
constants li with 0 < li < 1 (i = 1, 2) for which a mapping f : χρ → χρ with f(0) = 0 satisfies

ρ(QEλ
f (x, y) + f(z∗)− f(z)∗) ≤ ϕ1(x, y, z), ϕ1(2x, 2y, 2z) ≤ 24l1ϕ1(x, y, z),

ρ(QDf (x, y)) ≤ ϕ2(x, y), ϕ2(2x, 2y) ≤ 44l2ϕ2(x, y)

for all x, y, z ∈ χρ and all λ ∈ T. Moreover, if for each x ∈ χρ the mapping r → f(rx) from R to χρ

is continuous, then we can find a unique quartic Lie ∗-derivation d1 : χρ → χρ near f which satisfies
the equation QEλ

d1
(x, y) = 0, QDd1(x, y) = 0 and

ρ(f(x)− d1(x)) ≤
1

24(1− l1)
ϕ1(x, x, 0) (2.9)

for all x, y ∈ χρ and all λ ∈ C.
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Proof . In view of quartically contractive conditions for control functions ϕ1 and ϕ2, one leads to
ϕ1(2

nx, 2ny, 2nz) ≤ (24l1)
nϕ1(x, y, z) and ϕ2(2

nx, 2ny) ≤ (44l2)
nϕ2(x, y) for all x, y, z ∈ χρ and all

λ ∈ T. Hence, applying Theorem 2.1 to the theorem, we obtain the desired estimation. □
We recall that if the modular ρ satisfies the ∆2-condition, then κ ≥ 1 for nontrivial modular ρ,

and κ ≥ 2 for nontrivial convex modular ρ. See references [10, 18, 21].
Now in here, we are going to investigate alternatively generalized stability of the equation (1.2) as-

sociated with approximate quartic Lie ∗-derivations via direct method using necessarily ∆2-condition
but not using the Fatou property in ρ-complete convex modular algebras.

Theorem 2.3. Let χρ be a ρ-complete convex modular ∗-algebra with ∆2-condition. Suppose there
exist two functions φ1 : χ

3
ρ → [0,∞) and φ2 : χ

2
ρ → [0,∞) for which a mapping f : χρ → χρ satisfies

ρ(QEλ
f (x, y) + f(z∗)− f(z)∗) ≤ φ1(x, y, z), (2.10)

∞∑
j=1

κ5j

2j
φ1(

x

2j
,
y

2j
,
z

2j
) := Ψ(x, y, z) < ∞, (2.11)

ρ(QDf (x, y)) ≤ φ2(x, y), (2.12)

lim
n→∞

κ8nφ2(2
−nx, 2−ny) = 0 (2.13)

for all x, y, z ∈ χρ and all λ ∈ T. Then there exists a unique quartic Lie ∗-derivation d2 : χρ → χρ

which satisfies the equation QEλ
d2
(x, y) = 0, QDd2(x, y) = 0 and

ρ(f(x)− d2(x)) ≤
1

2κ3
Ψ(x, x, 0) (2.14)

for all x, y ∈ χρ and all λ ∈ C.

Proof . First, we remark that since
∑∞

j=1
κ5j

2j
φ1(0, 0, 0) = Ψ(0, 0, 0) < ∞ and ρ(QE1

f (0, 0)) ≤
φ1(0, 0, 0), we lead to φ1(0, 0, 0) = 0, QE1

f (0, 0) = 0 and so f(0) = 0. Thus, it follows from (2.5) that

ρ(f(x)− 16f(
x

2
)) ≤ φ1(

x

2
,
x

2
, 0) ≤ κ

2
φ1(

x

2
,
x

2
, 0)

for all x ∈ χρ. Thus, one obtains the following inequality by the convexity of the modular ρ and
∆2-condition

ρ(f(x)− 162f(
x

22
)) ≤ 1

2
ρ
(
2f(x)− 2 · 16f(x

2
)
)
+

1

22
ρ
(
22 · 16f(x

2
)− 22 · 162f( x

22
)
)

≤ κ

2
φ1

(x
2
,
x

2
, 0
)
+

κ6

22
φ1

( x

22
,
x

22
, 0
)

for all x ∈ χρ. Then using the repeating process for any n ≥ 1, we prove the following functional
inequality

ρ(f(x)− 16nf(
x

2n
)) ≤ 1

κ4

n∑
j=1

κ5j

2j
φ1

( x

2j
,
x

2j
, 0
)

(2.15)



312 H. Kim, I. Chang and J. Park

for all x ∈ χρ. In fact, it is true for j = 1. Assume that the inequality (2.15) holds true for n. Then,
using the convexity of modular ρ, we deduce

ρ(f(x)− 16n+1f(
x

2n+1
))

= ρ
(1
2

{
2f(x)− 2 · 16f(x

2
)
}
+

1

2

{
2 · 16f(x

2
)− 2 · 16n+1f(

x

2n+1
)
})

≤ κ

2
ρ
(
f(x)− 16f(

x

2
)
)
+

κ5

2
ρ
(
f(

x

2
)− 16nf(

x

2n+1
)
)

≤ κ

2
φ1

(x
2
,
x

2
, 0
)
+

κ5

2
· 1

κ4

n∑
j=1

κ5j

2j
φ1

( x

2j+1
,

x

2j+1
, 0
)

=
κ

2
φ1

(x
2
,
x

2
, 0
)
+

1

κ4

n∑
j=1

κ5(j+1)

2j+1
φ1

( x

2j+1
,

x

2j+1
, 0
)

=
1

κ4

n+1∑
j=1

κ5j

2j
φ1

( x

2j
,
x

2j
, 0
)
,

which proves (2.15) for n+ 1. Now, replacing x by 2−mx in (2.15), we have

ρ
(
16mf(

x

2m
)− 16m+nf(

x

2m+n
)
)

≤ κ4mρ
(
f(

x

2m
)− 16nf(

x

2m+n
)
)

≤ κ4m

κ4

n∑
j=1

κ5j

2j
φ1

( x

2j+m
,

x

2j+m
, 0
)

≤ κ4m

κ4

n∑
j=1

κ5j

2j
φ1

( x

2j+m
,

x

2j+m
, 0
)
· κ

m

2m

=
1

κ4

m+n∑
j=m+1

κ5j

2j
φ1

( x

2j
,
x

2j
, 0
)
,

which converges to zero as m → ∞ by the assumption (2.11). Thus, the sequence {16nf( x
2n
)} is a

ρ-Cauchy for all x ∈ χρ and so it is ρ-convergent in χρ since the space χρ is ρ-complete. Hence, one
may define a mapping d2 : χρ → χρ as

d2(x) := ρ− lim
n→∞

16nf(
x

2n
) ⇐⇒ lim

n→∞
ρ
(
16nf(

x

2n
)− d2(x)

)
= 0,

for all x ∈ χρ.
Now, we prove the mapping d2 satisfies the equation (1.2). Letting z := 0 and setting (x, y)

:= (2−nx, 2−ny) in (2.10), and then multiplying the resulting inequality by 24n, we get

ρ(24nQEλ
f (2

−nx, 2−ny)) ≤ κ4nφ1(2
−nx, 2−ny, 0)

≤ κ4nφ1(2
−nx, 2−ny, 0) · κ

n

2n

=
κ5n

2n
φ1(2

−nx, 2−ny, 0),
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which tends to zero as n → ∞ for all x, y ∈ χρ. Thus, it follows from Remark 1.2 that

ρ(
1

31
QEλ

d2
(x, y))

= ρ
( 1

31
QEλ

d2
(x, y)− 1

31
24nQEλ

f (
x

2n
,
y

2n
) +

1

31
24nQEλ

f (
x

2n
,
y

2n
)
)

≤ 1

31
ρ
(
d2(3λx− λy)− 24nf(

3λx− λy

2n
)
)
+

1

31
ρ
(
d2(3λx− 2λy)− 24nf(

3λx− 2λy

2n
)
)

+
9λ4

31
ρ
(
24nf(

2x− y

2n
)− d2(2x− y)

)
+

9λ4

31
ρ
(
24nf(

x− y

2n
)− d2(x− y)

)
+

1

31
ρ
(
d2(λy)− 24nf(

λy

2n
)
)
+

9λ4

31
ρ
(
24nf(

x

2n
)− d2(x)

)
+

1

31
ρ
(
24nQEλ

f (
x

2n
,
y

2n
)
)

for all x, y ∈ χρ and all positive integers n. Taking the limit as n → ∞, one obtains

QEλ
d2
(x, y) = 0

for all x, y ∈ χρ and all λ ∈ T. Thus, for any nonzero λ ∈ C we deduce the identity d2(λx) = λ4d2(x)
for all x ∈ χρ and all λ ∈ C, which concludes that d2 is quartic homogeneous.

Now, we are going to prove that d2 is a quartic Lie ∗-derivation. First, it is easy to see that
the mapping d2 is quartic homogeneous by the same reasoning as in Theorem 2.1. From the last
inequality (2.12) and the last condition (2.13), it follows that

ρ
(1
4
QDd2(x, y)

)
= ρ
(1
4
QDd2(x, y)− 162n

QDf (2
−nx, 2−ny)

4
+ 162n

QDf (2
−nx, 2−ny)

4

)
≤ 1

4
ρ
(
d2([x, y])− 162nf(2−2n[x, y])

)
+

1

4
ρ
(
16n[x4, f(2−ny)]− [x4, d2(y)]

)
+
1

4
ρ
(
16n[f(2−nx), y4]− [d2(x), y

4]
)
+

1

4
ρ
(
162nQDf (2

−nx, 2−ny)
)

≤ 1

4
ρ
(
d2([x, y])− 162nf(2−2n[x, y])

)
+

1

4
ρ
(
[x4, 16nf(2−ny)− d2(y)]

)
+
1

4
ρ
(
[16nf(2−nx)− d2(x), y

4]
)
+

κ8n

4
φ2

(
2−nx, 2−ny

)
for all x, y ∈ χρ, from which QDd2(x, y) = 0 by taking n → ∞, and so d2 is a quartic Lie derivation.
In addition, it follows from the definition of d2 that the following inequality

ρ
(1
3

(
d2(z

∗)− d2(z)
∗
))

≤ 1

3
ρ
(
d2(z

∗)− 16nf
(z∗
2n

))
+
1

3
ρ
(
16nf

( z

2n

)∗
− d2(z)

∗
)
+

1

3
ρ
(
16nf

(z∗
2n

)
− 16nf

( z

2n

)∗)
≤ 1

3
ρ
(
d2(z

∗)− 16nf
(z∗
2n

))
+
1

3
ρ
(
16nf

( z

2n

)∗
− d2(z)

∗
)
+

κ4n

3
φ1

(
0, 0,

z

2n

)
· κ

n

2n

holds for all vectors z, which goes to zero as n → ∞. Hence, one concludes d2 is a quartic Lie
∗-derivation.
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On the other hand, by ∆2-condition without using the Fatou property, one can see the following
inequality

ρ(f(x)− d2(x)) = ρ
(1
2

{
2f(x)− 2 · 16nf( x

2n
)
}
+

1

2

{
2 · 16nf( x

2n
)− 2d2(x)

})
≤ κ

2
ρ
(
f(x)− 16nf(

x

2n
)
)
+

κ

2
ρ
(
16nf(

x

2n
)− d2(x)

)
≤ κ

2
· 1

κ4

n∑
j=1

κ5j

2j
φ1(

x

2j
,
x

2j
, 0) +

κ

2
ρ
(
16nf(

x

2n
)− d2(x)

)
≤ 1

2κ3

∞∑
j=1

κ5j

2j
φ1(

x

2j
,
x

2j
, 0) =

1

2κ3
Ψ(x, x, 0),

for all positive integers n, which yields the approximation (2.14) by taking n → ∞.
Finally, applying the same argument as in the proof of Theorem [10], we prove the uniqueness of

d2 satisfying the approximation (2.14) near f .
Hence, one can find a unique quartic Lie ∗-derivation d2 satisfying the estimation (2.14) near f .

□

Remark 2.4. In Theorem 2.3, if χ := χρ is a Banach ∗-algebra with norm ∥ · ∥ := ρ, and so
ρ(2x) = 2ρ(x), κ := 2, then it follows from (2.10),(2.11),(2.12) and (2.13) that there exists a unique
quartic Lie ∗-derivation d2 : χ → χ, defined as d2(x) = limn→∞ 16nf( x

2n
), x ∈ χ, which satisfies the

equation (1.2) and

ρ(f(x)− d2(x)) ≤
1

16

∞∑
j=1

24jφ1(
x

2j
,
x

2j
, 0)

for all x ∈ χ.

As a corollary of Theorem 2.1 and Theorem 2.3, we obtain the following stability result of the
equation (1.2) associated with quartic Lie ∗-derivations, which generalizes stability result in normed
∗-algebras.

Corollary 2.5. Let χ = χρ be a complete normed ∗-algebra with norm ∥ · ∥. For given nonnegative
real numbers θi, ϑi together with 4 ̸= ri (i = 1, 2, 3) and a, b with 4 ̸= a + b, suppose a mapping
f : χ → χ satisfies

∥QEλ
f (x, y) + f(z∗)− f(z)∗∥ ≤ θ1∥x∥r1 + θ2∥y∥r2 + θ3(∥x∥a∥y∥b + ∥z∥r3),

∥QDf (x, y)∥ ≤ ϑ1∥x∥2r1 + ϑ2∥y∥2r2 + ϑ3∥x∥2a∥y∥2b

for all x, y, z ∈ χ and all λ ∈ T. If for each x ∈ χ the mapping r → f(rx) from R to χ is continuous,
then there exists a unique quartic Lie ∗-derivation d2 : χ → χ such that

ρ(f(x)− d2(x)) ≤
θ1∥x∥r1
|2r1 − 24|

+
θ2∥x∥r2
|2r2 − 24|

+
θ3∥x∥a+b

|2a+b − 24|

for all x ∈ χ.

In the following, we obtain a stability theorem of quartic Lie ∗-derivations by quartically contrac-
tive conditions of control functions ϕi for perturbing terms QEλ

f and QDf .
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Theorem 2.6. Let χρ be a ρ-complete convex modular ∗-algebra with ∆2-condition. Suppose there

exist two functions φ1 : χ
3
ρ → [0,∞) and φ2 : χ

2
ρ → [0,∞) and two positive constant li with l1 <

25

κ5

and l2 <
28

κ8 for which a mapping f : χρ → χρ satisfies

ρ(QEλ
f (x, y) + f(z∗)− f(z)∗) ≤ φ1(x, y, z), φ1(

x

2
,
y

2
,
z

2
) ≤ l1

16
φ1(x, y, z),

ρ(QDf (x, y)) ≤ φ2(x, y), φ2(
x

2
,
y

2
) ≤ l2

162
φ2(x, y)

for all x, y, z ∈ χρ and all λ ∈ T. Then there exists a unique quartic Lie ∗-derivation d2 : χρ → χρ

which satisfies the equation QEλ
d2
(x, y) = 0, QDd2(x, y) = 0 and

ρ(f(x)− d2(x)) ≤
κ2l1

2(25 − κ5l1)
φ1(x, x, 0)

for all x, y ∈ χρ and all λ ∈ C.
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