Coincidence point results for graph preserving hybrid pair of mappings

Sushanta Kumar Mohanta ${ }^{1, *}$ and Deep Biswas ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), Kolkata-700126, West Bengal, India

(Communicated by Madjid Eshaghi Gordji)

Abstract

We analyze the existence of coincidence points for hybrid pair of mappings defined on b-metric spaces endowed with a digraph G. Our main result is an extension of the well-known Nadler's fixed point theorem. Finally, we present a coincidence point theorem for mappings satisfying a general contractive condition of integral type. We include some examples to examine the validity of our results.

Keywords: b-metric, digraph, lower semicontinuous function, coincidence point. 2010 MSC: 54H25, 47H10.

1. Introduction

Banach contraction principle [7] is a very popular tool of mathematics in solving many problems in several branches of mathematics. Because of its importance, it has been extended and generalized in many ways(see [1, 2, 6, 14, 22, 23, 25, 27, 28, 29, 30] and references therein). Among all these, an interesting generalization was given by Nadler [28]. In fact, Nadler extended the Banach contraction principle from the single-valued mappings to the multi-valued mappings. Later on, hybrid fixed point theory for nonlinear single-valued and multi-valued mappings takes a vital role in many aspects. In 1989, Bakhtin [4] introduced the concept of b-metric spaces as a generalization of metric spaces and generalized the famous Banach contraction principle in metric spaces to b-metric spaces.

[^0]In recent investigations, the study of fixed point theory combining a graph is a new development in the domain of contractive type multi-valued theory. Starting from these considerations, the study of fixed points and common fixed points of mappings satisfying a certain contractive type condition endowed with a graph attracted many researchers, see for examples [9, 10, 11, 16, 17, 21, 31 . Inspired and motivated by the results in [5, 14, 18, we introduce the concept of (g, T, G)-lower semicontinuous functions in b-metric spaces and obtain some coincidence point results for hybrid pair of single-valued and multi-valued mappings in b-metric spaces with a digraph. Our results extend, unify and generalize several well-known comparable results in the literature. Finally, some examples are provided to justify the validity of our results.

2. Some Basic Concepts

In this section, we collect some basic notations, definitions and results in b-metric spaces which will be used throughout the paper.

Definition 2.1. [13] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is said to be a b-metric on X if the following conditions hold:
(i) $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq s(d(x, z)+d(z, y))$ for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space.
It is to be noted that the class of b-metric spaces is effectively larger than that of the ordinary metric spaces. The following example illustrates the above fact.

Example 2.2. 224] Let $X=\{-1,0,1\}$. Define $d: X \times X \rightarrow \mathbb{R}^{+}$by $d(x, y)=d(y, x)$ for all $x, y \in X, d(x, x)=0, x \in X$ and $d(-1,0)=3, d(-1,1)=d(0,1)=1$. Then (X, d) is a b-metric space, but not a metric space since the triangle inequality is not satisfied. Indeed, we have that

$$
d(-1,1)+d(1,0)=1+1=2<3=d(-1,0) .
$$

It is easy to verify that $s=\frac{3}{2}$.
Example 2.3. [3] Let $p \in(0,1)$. Then the space $L^{p}([0,1])$ of all real functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1}|f(t)|^{p} d t<\infty$ endowed with the functional $d: L^{p}([0,1]) \times L^{p}([0,1]) \rightarrow \mathbb{R}$ given by

$$
d(f, g)=\left(\int_{0}^{1}|f(t)-g(t)|^{p} d t\right)^{\frac{1}{p}}
$$

for all $f, g \in L^{p}([0,1])$ is a b-metric space with $s=2^{\frac{1}{p}}$.
Definition 2.4. [12] Let (X, d) be a b-metric space, $x \in X$ and $\left(x_{n}\right)$ be a sequence in X. Then
(i) $\left(x_{n}\right)$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. We denote this by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow$ $x(n \rightarrow \infty)$.
(ii) $\left(x_{n}\right)$ is Cauchy if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.
(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.5. [12] In a b-metric space (X, d), the following assertions hold:
(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
(iii) In general, a b-metric is not continuous.

Definition 2.6. [20] Let (X, d) be a b-metric space. A subset $A \subseteq X$ is said to be open if and only if for any $a \in A$, there exists $\epsilon>0$ such that the open ball $B(a, \epsilon) \subseteq A$. The family of all open subsets of X will be denoted by τ.

Theorem 2.7. [20] τ defines a topology on (X, d).
Theorem 2.8. [20] Let (X, d) be a b-metric space and τ be the topology defined above. Then for any nonempty subset $A \subseteq X$ we have
(i) A is closed if and only if for any sequence $\left(x_{n}\right)$ in A which converges to x, we have $x \in A$;
(ii) if we define \bar{A} to be the intersection of all closed subsets of X which contains A, then for any $x \in \bar{A}$ and for any $\epsilon>0$, we have $B(x, \epsilon) \cap A \neq \emptyset$.

Definition 2.9. [26] Let (X, d) be a b-metric space and A be a nonempty subset of X. The diameter of A, denoted by $\delta(A)$, is defined by $\delta(A)=\sup \{d(x, y): x, y \in A\}$. The subset A is said to be bounded if $\delta(A)$ is finite.

Let (X, d) be a b-metric space. Let $C B(X)$ be the set of all nonempty closed bounded subsets of X and $C L(X)$ be the set of all nonempty closed subsets of X. An element $x \in X$ is said to be a fixed point of a multi-valued mapping $T: X \rightarrow 2^{X}$ if $x \in T x$, where 2^{X} denotes the collection of all nonempty subsets of X. For $A, B \in C L(X)$, define

$$
\begin{aligned}
H(A, B) & =\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\}, \text { if the maximum exists; } \\
& =\infty, \text { otherwise }
\end{aligned}
$$

where $d(x, B)=\inf \{d(x, y): y \in B\}$. Such a map H is called the generalized Hausdorff b-distance induced by d.

Definition 2.10. Let (X, d) be a b-metric space and $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be two mappings. If $y=g x \in T x$ for some x in X, then x is called a coincidence point of T and g and y is called a point of coincidence of T and g.

We next review some basic notions in graph theory.
Let (X, d) be a b-metric space. We assume that G is a digraph with the set of vertices $V(G)=X$ and the set $E(G)$ of its edges contains all the loops, i.e., $\Delta \subseteq E(G)$ where $\Delta=\{(x, x): x \in X\}$. We also assume that G has no parallel edges. So we can identify G with the pair $(V(G), E(G)) . G$ may be considered as a weighted graph by assigning to each edge the distance between its vertices. By G^{-1} we denote the graph obtained from G by reversing the direction of edges i.e., $E\left(G^{-1}\right)=$ $\{(x, y) \in X \times X:(y, x) \in E(G)\}$. Let \tilde{G} denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a digraph for which the set of its edges is symmetric. Under this convention,

$$
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right)
$$

Our graph theory notations and terminology are standard and can be found in all graph theory books, like [8, 15, 19]. If x, y are vertices of the digraph G, then a path in G from x to y of length $n(n \in \mathbb{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{n}$ of $n+1$ vertices such that $x_{0}=x, x_{n}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1,2, \cdots, n$. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if \tilde{G} is connected.

Definition 2.11. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. Then the mapping $f: X \rightarrow X$ is called edge preserving if

$$
x, y \in X,(x, y) \in E(\tilde{G}) \Rightarrow(f x, f y) \in E(\tilde{G}) .
$$

Definition 2.12. Let (X, d) be a b-metric space with a graph $G=(V(G), E(G))$ and let $f, g: X \rightarrow$ X be two mappings. Then f is called edge preserving w.r.t. g if

$$
x, y \in X,(g x, g y) \in E(\tilde{G}) \Rightarrow(f x, f y) \in E(\tilde{G}) .
$$

Definition 2.13. Let (X, d) be a b-metric space with a graph $G=(V(G), E(G))$. Then the mapping $T: X \rightarrow C L(X)$ is called edge preserving if

$$
x, y \in X, x \neq y,(x, y) \in E(\tilde{G}) \Rightarrow\left(z_{1}, z_{2}\right) \in E(\tilde{G}), \text { for all } z_{1} \in T x, z_{2} \in T y
$$

Definition 2.14. Let (X, d) be a b-metric space with a graph $G=(V(G), E(G))$. Let $T: X \rightarrow$ $C L(X)$ be a multi-valued mapping and $g: X \rightarrow X$ be a single-valued mapping. Then T is called edge preserving w.r.t. g if

$$
x, y \in X, x \neq y, \quad(g x, g y) \in E(\tilde{G}) \Rightarrow\left(z_{1}, z_{2}\right) \in E(\tilde{G}), \text { for all } z_{1} \in T x, z_{2} \in T y
$$

3. Main Results

Let (X, d) be a b-metric space with the coefficient $s \geq 1$. Let $T: X \rightarrow C L(X)$ be a multi-valued mapping and $g: X \rightarrow X$ be a single-valued mapping. We define the function $f_{g T}: X \rightarrow \mathbb{R}$ as $f_{g T}(x)=d(g x, T x)$. If $g=I$, the identity map on X, then $f_{g T}$ reduces to f_{T} where $f_{T}(x)=d(x, T x)$ for all $x \in X$. For a positive constant $\alpha \in(0,1)$ and each $x \in X$, we define the set

$$
{ }^{g} I_{\alpha}^{x}=\{y \in T x: \alpha d(g x, y) \leq d(g x, T x)\} .
$$

If $g=I$, the identity map on X, then ${ }^{g} I_{\alpha}^{x}$ reduces to I_{α}^{x} which is given by

$$
I_{\alpha}^{x}=\{y \in T x: \alpha d(x, y) \leq d(x, T x)\} .
$$

Definition 3.1. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $T: X \rightarrow C L(X)$ be a multi-valued mapping. A function $f: X \rightarrow \mathbb{R}$ is called T-lower semicontinuous if, for each $\left(x_{n}\right) \subseteq X$ with $x_{n+1} \in T x_{n}$ and $\lim _{n \rightarrow \infty} x_{n}=x \in X$, we have

$$
f x \leq \liminf _{n \rightarrow \infty} s f x_{n} .
$$

Definition 3.2. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $T: X \rightarrow C L(X)$ be a multi-valued mapping. Let ρ be a binary relation over X and let $S=\rho \cup \rho^{-1}$. A function $f: X \rightarrow \mathbb{R}$ is called (T, S)-lower semicontinuous if, for each $\left(x_{n}\right) \subseteq X$ with $x_{n+1} \in T x_{n}, x_{n} S x_{n+1}$ and $\lim _{n \rightarrow \infty} x_{n}=x \in X$, we have

$$
f x \leq \liminf _{n \rightarrow \infty} s f x_{n} .
$$

Definition 3.3. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. Let $T: X \rightarrow C L(X)$ be a multi-valued mapping and $g: X \rightarrow X$ be a single-valued mapping. A function $f: X \rightarrow \mathbb{R}$ is called (g, T)-lower semicontinuous if, for each $\left(g x_{n}\right) \subseteq g(X)$ with $g x_{n+1} \in T x_{n}$ and $\lim _{n \rightarrow \infty} g x_{n}=x(=$ $g t$, for some $t \in X) \in g(X)$, we have

$$
f t \leq \liminf _{n \rightarrow \infty} s f x_{n}
$$

Definition 3.4. Let (X, d, \preceq) be a partially ordered b-metric space with the coefficient $s \geq 1$. Let $T: X \rightarrow C L(X)$ be a multi-valued mapping and $g: X \rightarrow X$ be a single-valued mapping. A function $f: X \rightarrow \mathbb{R}$ is called (g, T, \preceq)-lower semicontinuous if, for each $\left(g x_{n}\right) \subseteq g(X)$ with $g x_{n+1} \in$ $T x_{n}, g x_{n}, g x_{n+1}$ are comparable and $\lim _{n \rightarrow \infty} g x_{n}=x(=g t$, for some $t \in X) \in g(X)$, we have

$$
f t \leq \liminf _{n \rightarrow \infty} s f x_{n}
$$

Definition 3.5. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. Let $T: X \rightarrow C L(X)$ be a multi-valued mapping and $g: X \rightarrow X$ be a single-valued mapping. A function $f: X \rightarrow \mathbb{R}$ is called (g, T, G)-lower semicontinuous if, for each $\left(g x_{n}\right) \subseteq g(X)$ with $g x_{n+1} \in T x_{n},\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ and $\lim _{n \rightarrow \infty} g x_{n}=x(=g t$, for some $t \in X) \in g(X)$, we have

$$
f t \leq \liminf _{n \rightarrow \infty} s f x_{n}
$$

It is valuable to note that if $G=G_{0}$, where G_{0} is the complete graph $(X, X \times X)$, then (g, T, G)-lower semicontinuity reduces to (g, T)-lower semicontinuity.

We now assume that (X, d) is a b-metric space endowed with a reflexive digraph G such that $V(G)=X$ and G has no parallel edges. Let $g: X \rightarrow X$ and $T: X \rightarrow C L(X)$ be such that $T(X) \subseteq g(X)$. Let $x_{0} \in X$ be arbitrary. Since $T(X) \subseteq g(X)$, there exists an element $x_{1} \in X$ such that $g x_{1} \in T x_{0}$. Continuing in this way, we can construct a sequence $\left(g x_{n}\right)$ such that $g x_{n} \in$ $T x_{n-1}, n=1,2,3, \cdots$.

Theorem 3.6. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $G=(V(G), E(G))$ be a graph. Let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that T is edge preserving w.r.t. g and there exists $r \in\left(0, s^{-1} \alpha\right)$ with $\alpha \in(0,1)$ such that for any $x \in X$, there is $g y \in{ }^{g} I_{\alpha}^{x}$ satisfying

$$
\begin{equation*}
d(g y, T y) \leq r d(g x, g y) \tag{3.1}
\end{equation*}
$$

If $f_{g T}$ is (g, T, G)-lower semicontinuous and there exists $x_{0} \in X$ such that $\left(g x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$, then g and T have a point of coincidence in $g(X)$.

Proof . We first note that ${ }^{g} I_{\alpha}^{x}$ is nonempty for any constant $\alpha \in(0,1)$ because $T x$ is a nonempty closed set for any $x \in X$. Suppose there exists $x_{0} \in X$ such that $\left(g x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$. If $g x_{0} \in T x_{0}$, then there is nothing to prove. So, we assume that $g x_{0} \notin T x_{0}$. Then, by using condition (3.1), for $x_{0} \in X$, there exists $g x_{1} \in{ }^{g} I_{\alpha}^{x_{0}}$ such that

$$
d\left(g x_{1}, T x_{1}\right) \leq r d\left(g x_{0}, g x_{1}\right) .
$$

As $g x_{1} \in T x_{0}$, it follows that $\left(g x_{0}, g x_{1}\right) \in E(\tilde{G})$ and $g x_{0} \neq g x_{1}$ which implies that $x_{0} \neq x_{1}$. T being edge preserving w.r.t. g, it must be the case that $\left(z_{1}, z_{2}\right) \in E(\tilde{G})$ for all $z_{1} \in T x_{0}, z_{2} \in T x_{1}$. If $g x_{1} \in T x_{1}$, then the theorem is proved. So, we assume that $g x_{1} \notin T x_{1}$. By an argument similar to that used above, for $x_{1} \in X$, there exists $g x_{2} \in{ }^{g} I_{\alpha}^{x_{1}}$ such that

$$
d\left(g x_{2}, T x_{2}\right) \leq r d\left(g x_{1}, g x_{2}\right),
$$

$\left(g x_{1}, g x_{2}\right) \in E(\tilde{G})$ and $g x_{1} \neq g x_{2}$. Continuing this process, we can construct a sequence $\left(g x_{n}\right)$ in $g(X)$ such that $g x_{n+1} \in{ }^{g} I_{\alpha}^{x_{n}}, g x_{n} \neq g x_{n+1},\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for $n=0,1,2, \cdots$ and

$$
\begin{equation*}
d\left(g x_{n+1}, T x_{n+1}\right) \leq r d\left(g x_{n}, g x_{n+1}\right) \tag{3.2}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$.
On the other hand $g x_{n+1} \in{ }^{g} I_{\alpha}^{x_{n}}$ implies that

$$
\begin{equation*}
\alpha d\left(g x_{n}, g x_{n+1}\right) \leq d\left(g x_{n}, T x_{n}\right) \tag{3.3}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$.
Using conditions (3.2) and (3.3), we obtain

$$
\begin{equation*}
d\left(g x_{n+1}, g x_{n+2}\right) \leq \frac{1}{\alpha} d\left(g x_{n+1}, T x_{n+1}\right) \leq \frac{r}{\alpha} d\left(g x_{n}, g x_{n+1}\right)=k d\left(g x_{n}, g x_{n+1}\right) \tag{3.4}
\end{equation*}
$$

for all $n \in \mathbb{N} \cup\{0\}$, where $k=\frac{r}{\alpha}<s^{-1}$.
We now show that $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$.
For $m, n \in \mathbb{N}$ with $m>n$, we obtain by repeated use of condition (3.4) that

$$
\begin{aligned}
& d\left(g x_{n}, g x_{m}\right) \leq s d\left(g x_{n}, g x_{n+1}\right)+s^{2} d\left(g x_{n+1}, g x_{n+2}\right)+\cdots \\
&+s^{m-n-1} d\left(g x_{m-2}, g x_{m-1}\right)+s^{m-n-1} d\left(g x_{m-1}, g x_{m}\right) \\
& \leq {\left[s k^{n}+s^{2} k^{n+1}+\cdots+s^{m-n-1} k^{m-2}+s^{m-n-1} k^{m-1}\right] d\left(g x_{0}, g x_{1}\right) } \\
& \leq {\left[s k^{n}+s^{2} k^{n+1}+\cdots+s^{m-n-1} k^{m-2}+s^{m-n} k^{m-1}\right] d\left(g x_{0}, g x_{1}\right) } \\
&= s k^{n}\left[1+(k s)+(k s)^{2}+\cdots+(k s)^{m-n-1}\right] d\left(g x_{0}, g x_{1}\right) \\
&< s k^{n}\left[1+(k s)+(k s)^{2}+\cdots\right] d\left(g x_{0}, g x_{1}\right) \\
&= \frac{s k^{n}}{1-k s} d\left(g x_{0}, g x_{1}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

This gives that $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$. As $g(X)$ is complete, there exists $u \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u=g t$ for some $t \in X$.
Again, using conditions (3.2) and (3.3), we get

$$
d\left(g x_{n+1}, T x_{n+1}\right) \leq \frac{r}{\alpha} d\left(g x_{n}, T x_{n}\right) \text { for all } n \in \mathbb{N} \cup\{0\} .
$$

This implies that

$$
d\left(g x_{n}, T x_{n}\right) \leq\left(\frac{r}{\alpha}\right)^{n} d\left(g x_{0}, T x_{0}\right) \text { for all } n \in \mathbb{N} \cup\{0\}
$$

Therefore,

$$
\liminf _{n \rightarrow \infty} s f_{g T}\left(x_{n}\right)=\lim _{n \rightarrow \infty} s f_{g T}\left(x_{n}\right)=\lim _{n \rightarrow \infty} s d\left(g x_{n}, T x_{n}\right)=0
$$

Since $g x_{n+1} \in T x_{n}, \quad\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G}), \lim _{n \rightarrow \infty} g x_{n}=g t$ and $f_{g T}$ is (g, T, G)-lower semicontinuous, we get

$$
f_{g T}(t)=d(g t, T t)=0
$$

Since $T t$ is closed, it follows that $u=g t \in T t$, i.e., u is a point of coincidence of g and T.
Corollary 3.7. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. Let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that there exists $r \in\left(0, s^{-1} \alpha\right)$ with $\alpha \in(0,1)$ such that for any $x \in X$, there is $g y \in{ }^{g} I_{\alpha}^{x}$ satisfying

$$
d(g y, T y) \leq r d(g x, g y)
$$

If $f_{g T}$ is (g, T)-lower semicontinuous, then g and T have a point of coincidence in $g(X)$.
Proof . The proof follows from Theorem 3.6 by taking $G=G_{0}$, where G_{0} is the complete graph $(X, X \times X)$.

Corollary 3.8. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and let $G=$ $(V(G), E(G))$ be a graph. Assume that $T: X \rightarrow C L(X)$ is edge preserving and there exists $r \in$ $\left(0, s^{-1} \alpha\right)$ with $\alpha \in(0,1)$ such that for any $x \in X$, there is $y \in I_{\alpha}^{x}$ satisfying

$$
d(y, T y) \leq r d(x, y) .
$$

If f_{T} is (T, G)-lower semicontinuous and there exists $x_{0} \in X$ such that $\left(x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$, then T has a fixed point in X.

Proof . The proof follows from Theorem 3.6 by taking $g=I$, the identity map on X.
Corollary 3.9. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and let $T: X \rightarrow$ $C L(X)$ be a multivalued mapping. Assume that there exists $r \in\left(0, s^{-1} \alpha\right)$ with $\alpha \in(0,1)$ such that for any $x \in X$, there is $y \in I_{\alpha}^{x}$ satisfying

$$
d(y, T y) \leq r d(x, y) .
$$

If f_{T} is T-lower semicontinuous, then T has a fixed point in X.
Proof. The proof follows from Theorem 3.6 by taking $g=I$ and $G=G_{0}$.

Corollary 3.10. Let (X, d, \preceq) be a partially ordered b-metric space with the coefficient $s \geq 1$. Let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that if $x, y \in X, x \neq y$ and $g x$, gy are comparable, then z_{1}, z_{2} are comparable for all $z_{1} \in T x, z_{2} \in T y$. Suppose also that there exists $r \in\left(0, s^{-1} \alpha\right)$ with $\alpha \in(0,1)$ such that for any $x \in X$, there is $g y \in{ }^{g} I_{\alpha}^{x}$ satisfying

$$
d(g y, T y) \leq r d(g x, g y)
$$

If $f_{g T}$ is (g, T, \preceq)-lower semicontinuous and there exists $x_{0} \in X$ such that $g x_{0}, z$ are comparable for all $z \in T x_{0}$, then g and T have a point of coincidence in $g(X)$.

Proof . The proof can be obtained from Theorem 3.6 by taking $G=G_{2}$, where the graph G_{2} is defined by $E\left(G_{2}\right)=\{(x, y) \in X \times X: x \preceq y$ or $y \preceq x\}$.

Corollary 3.11. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$. Let ρ be a binary relation over X and let $S=\rho \cup \rho^{-1}$. Suppose $T: X \rightarrow C L(X)$ is such that if $x, y \in X, x \neq y$ and $x S y$, then $z_{1} S z_{2}$ for all $z_{1} \in T x, z_{2} \in T y$. Suppose also that there exists $r \in\left(0, s^{-1} \alpha\right)$ with $\alpha \in(0,1)$ such that for any $x \in X$, there is $y \in I_{\alpha}^{x}$ satisfying

$$
d(y, T y) \leq r d(x, y)
$$

If f_{T} is (T, S)-lower semicontinuous and there exists $x_{0} \in X$ such that $x_{0} S z$ for all $z \in T x_{0}$, then T has a fixed point in X.

Proof . The proof follows from Theorem 3.6 by taking $g=I$ and $G=(V(G), E(G))$, where $V(G)=X, E(G)=\{(x, y) \in X \times X: x S y\} \cup \triangle$.

As an application of Theorem 3.6, we obtain the following theorems.
Theorem 3.12. Let (X, d) be a b-metric space with the coefficient $s \geq 1$ and let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be a hybrid pair of mappings such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that there exists $r \in\left(0, s^{-1}\right)$ such that

$$
\begin{equation*}
H(T x, T y) \leq r d(g x, g y) \tag{3.5}
\end{equation*}
$$

for all $x, y \in X$. Then g and T have a point of coincidence in $g(X)$.
Proof. We take $G=G_{0}=(X, X \times X)$. By using condition (3.5), we obtain

$$
d(g y, T y) \leq H(T x, T y) \leq r d(g x, g y)
$$

for all $x \in X$ and $g y \in T x$. Hence condition (3.1) of Theorem 3.6 holds trivially for each $x \in X$ and $g y \in{ }^{g} I_{\alpha}^{x}$ with $\alpha \in(0,1)$ such that $r<\alpha s^{-1}$. We now show that $f_{g T}: X \rightarrow \mathbb{R}$ defined by $f_{g T}(x)=d(g x, T x)$ is $\left(g, T, G_{0}\right)$-lower semicontinuous. In fact, if $\left(g x_{n}\right) \subseteq g(X)$ with $g x_{n+1} \in T x_{n}$ and $\lim _{n \rightarrow \infty} g x_{n}=x(=g t$, for some $t \in X) \in g(X)$, then

$$
\begin{aligned}
d(g t, T t) & \leq s\left[d\left(g t, g x_{n+1}\right)+d\left(g x_{n+1}, T t\right)\right] \\
& \leq s\left[d\left(g t, g x_{n+1}\right)+H\left(T x_{n}, T t\right)\right] \\
& \leq s\left[d\left(g t, g x_{n+1}\right)+r d\left(g x_{n}, g t\right)\right]
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$, we get $f_{g T}(t)=0$. Consequently, it follows that

$$
f_{g T}(t) \leq \liminf _{n \rightarrow \infty} s f_{g T}\left(x_{n}\right) .
$$

Thus, all the hypotheses of Theorem 3.6 hold true and the conclusion of Theorem 3.12 can be obtained from Theorem 3.6,

The following is the Nadler's fixed point theorem in b-metric spaces.
Corollary 3.13. Let (X, d) be a complete b-metric space with the coefficient $s \geq 1$ and let $T: X \rightarrow$ $C L(X)$ be a multivalued mapping. Assume that there exists $r \in\left(0, s^{-1}\right)$ such that

$$
H(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then T has a fixed point in X.
Proof . The proof follows from Theorem 3.12 by taking $g=I$.
Remark 3.14. It is worth mentioning that Theorem 3.6 is a generalization of the above version of Nadler's fixed point theorem in the setting of b-metric spaces.
The theorem stated below is a generalization Nadler's fixed point theorem in metric spaces which can be obtained from Theorem 3.12 by taking $s=1$.

Theorem 3.15. Let (X, d) be a metric space and let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be a hybrid pair of mappings such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that there exists $r \in(0,1)$ such that

$$
\begin{equation*}
H(T x, T y) \leq r d(g x, g y) \tag{3.6}
\end{equation*}
$$

for all $x, y \in X$. Then g and T have a point of coincidence in $g(X)$.
Theorem 3.16. Let (X, d) be a b-metric space with the coefficient $s \geq 1$. Let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that there exists $r \in\left(0, s^{-1}\right)$ such that for any $x \in X, g y \in T x$,

$$
d(g y, T y) \leq r d(g x, g y)
$$

If $f_{g T}$ is (g, T)-lower semicontinuous, then g and T have a point of coincidence in $g(X)$.
Proof . As ${ }^{g} I_{\alpha}^{x} \subseteq T x$, the proof follows from Theorem 3.6 by taking $G=G_{0}$.
Now, we present the following theorem which can be seen as an extension of Theorem 3.3 of [18]. The proof is based on an argument similar to that used by Branciari in Theorem 2.1 of [5].

Theorem 3.17. Let (X, d) be a metric space and let $G=(V(G), E(G))$ be a graph. Let $T: X \rightarrow$ $C L(X)$ and $g: X \rightarrow X$ be such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that T is edge preserving w.r.t. g and there exists a constant $r \in(0,1)$ such that for any $x \in X, g y \in T x$ with $(g x, g y) \in E(\tilde{G})$, there is $g z \in T y$ satisfying

$$
\begin{equation*}
\int_{0}^{d(g y, g z)} \varphi(t) d t \leq r \int_{0}^{d(g x, g y)} \varphi(t) d t \tag{3.7}
\end{equation*}
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a Lebesgue-integrable mapping which is summable(i.e., with finite integral) on each compact subset of $[0, \infty)$, and such that for each $\epsilon>0, \int_{0}^{\epsilon} \varphi(t) d t>0$. If $f_{g T}$ is (g, T, G)-lower semicontinuous and there exists $x_{0} \in X$ such that $\left(g x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$, then g and T have a point of coincidence in $g(X)$.

Proof . Suppose there exists $x_{0} \in X$ such that $\left(g x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$. If $g x_{0} \in T x_{0}$, then there is nothing to prove. So, we assume that $g x_{0} \notin T x_{0}$. Now, by using condition (3.7), for $x_{0} \in X, g x_{1} \in T x_{0}$ with $\left(g x_{0}, g x_{1}\right) \in E(\tilde{G})$, there exists $g x_{2} \in T x_{1}$ such that

$$
\int_{0}^{d\left(g x_{1}, g x_{2}\right)} \varphi(t) d t \leq r \int_{0}^{d\left(g x_{0}, g x_{1}\right)} \varphi(t) d t
$$

As $g x_{1} \in T x_{0}$, it follows that $g x_{1} \neq g x_{0}$ and so $x_{0} \neq x_{1}$. Since T is edge preserving w.r.t. g, it must be the case that $\left(z_{1}, z_{2}\right) \in E(\tilde{G})$ for all $z_{1} \in T x_{0}, z_{2} \in T x_{1}$. This gives that $\left(g x_{1}, g x_{2}\right) \in E(\tilde{G})$. If $g x_{1} \in T x_{1}$, then the theorem is proved. So, we assume that $g x_{1} \notin T x_{1}$.
Again, by using condition (3.7), for $x_{1} \in X, g x_{2} \in T x_{1}$ with $\left(g x_{1}, g x_{2}\right) \in E(\tilde{G})$, there exists $g x_{3} \in T x_{2}$ such that

$$
\int_{0}^{d\left(g x_{2}, g x_{3}\right)} \varphi(t) d t \leq r \int_{0}^{d\left(g x_{1}, g x_{2}\right)} \varphi(t) d t
$$

As $g x_{2} \in T x_{1}$, it follows that $g x_{2} \neq g x_{1}$ and so $x_{1} \neq x_{2}$. Continuing this process, we can construct a sequence $\left(g x_{n}\right)$ in $g(X)$ such that $g x_{n+1} \in T x_{n}, g x_{n} \neq g x_{n+1},\left(g x_{n}, g x_{n+1}\right) \in E(\tilde{G})$ for $n=$ $0,1,2, \cdots$ and

$$
\begin{equation*}
\int_{0}^{d\left(g x_{n+1}, g x_{n+2}\right)} \varphi(t) d t \leq r \int_{0}^{d\left(g x_{n}, g x_{n+1}\right)} \varphi(t) d t \tag{3.8}
\end{equation*}
$$

for $n=0,1,2, \cdots$.
We now prove that $\left(g x_{n}\right)$ converges to a point of coincidence of g and T in three steps.
Step 1. $f_{g T}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Let us put $u_{n}=d\left(g x_{n}, g x_{n+1}\right), n=0,1,2, \cdots$. Then, it is easy to verify that $\left(u_{n}\right)_{n=0}^{\infty}$ is decreasing. By repeated use of condition (3.8), we obtain

$$
\int_{0}^{d\left(g x_{n}, g x_{n+1}\right)} \varphi(t) d t \leq r^{n} \int_{0}^{d\left(g x_{0}, g x_{1}\right)} \varphi(t) d t, n=1,2,3, \cdots
$$

Therefore,

$$
\int_{0}^{u_{n}} \varphi(t) d t \leq r^{n} \int_{0}^{u_{0}} \varphi(t) d t, n=1,2,3, \cdots
$$

As a consequence, we have

$$
\lim _{n \rightarrow \infty} \int_{0}^{u_{n}} \varphi(t) d t=0
$$

As $\left(u_{n}\right)_{n=0}^{\infty}$ is a decreasing sequence of positive real numbers, it is convergent. We shall show that $\lim _{n \rightarrow \infty} u_{n}=0$. If possible, suppose that $\lim _{n \rightarrow \infty} u_{n}=c$, where $c>0$. This implies that the sequence $\left(u_{n}\right)_{n=0}^{\infty}$ is eventually in every neighbourhood of c. So, there exists $n_{0} \in \mathbb{N}$ such that $u_{n} \geq \frac{c}{2}$ for all $n \geq n_{0}$. Therefore,

$$
\lim _{n \rightarrow \infty} \int_{0}^{u_{n}} \varphi(t) d t \geq \int_{0}^{\frac{c}{2}} \varphi(t) d t>0
$$

which contradicts the fact that

$$
\lim _{n \rightarrow \infty} \int_{0}^{u_{n}} \varphi(t) d t=0
$$

Thus, $\lim _{n \rightarrow \infty} u_{n}=0$.
As $0 \leq f_{g T}\left(x_{n}\right)=d\left(g x_{n}, T x_{n}\right) \leq d\left(g x_{n}, g x_{n+1}\right)=u_{n}$, we have $f_{g T}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Step 2. $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$.
If possible, suppose $\left(g x_{n}\right)$ is not a Cauchy sequence in $g(X)$. Then there exists an $\epsilon>0$ such that for each $i \in \mathbb{N}$, there are $m_{i}, n_{i} \in \mathbb{N}$ with $m_{i}>n_{i}>i$ such that

$$
d\left(g x_{n_{i}}, g x_{m_{i}}\right) \geq \epsilon .
$$

Therefore, we can choose the sequences $\left(m_{i}\right),\left(n_{i}\right)$ in \mathbb{N} such that for each $i \in \mathbb{N}, m_{i}$ is the smallest positive integer in the sense that $d\left(g x_{n_{i}}, g x_{m_{i}}\right) \geq \epsilon$ but $d\left(g x_{n_{i}}, g x_{p}\right)<\epsilon$ for each $p \in\left\{n_{i}+1, \cdots, m_{i}-1\right\}$.

We now show that $d\left(g x_{n_{i}}, g x_{m_{i}}\right) \rightarrow \epsilon+$ as $i \rightarrow \infty$. As $\lim _{n \rightarrow \infty} u_{n}=0$, by the triangular inequality, we have

$$
\begin{aligned}
\epsilon & \leq d\left(g x_{n_{i}}, g x_{m_{i}}\right) \\
& \leq d\left(g x_{n_{i}}, g x_{m_{i}-1}\right)+d\left(g x_{m_{i}-1}, g x_{m_{i}}\right) \\
& <\epsilon+d\left(g x_{m_{i}-1}, g x_{m_{i}}\right) \\
& \rightarrow \epsilon+\text { as } i \rightarrow \infty .
\end{aligned}
$$

Next we shall show that there exists $n_{0} \in \mathbb{N}$ such that for each natural number $i>n_{0}$, we have $d\left(g x_{n_{i}+1}, g x_{m_{i}+1}\right)<\epsilon$. If possible, suppose there exists a subsequence $\left(i_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that $d\left(g x_{n_{i_{k}}+1}, g x_{m_{i_{k}+1}}\right) \geq \epsilon$. Then, we obtain

$$
\begin{aligned}
\epsilon & \leq d\left(g x_{n_{i_{k}}+1}, g x_{m_{i_{k}}+1}\right) \\
& \leq d\left(g x_{n_{i_{k}}+1}, g x_{n_{i_{k}}}\right)+d\left(g x_{n_{i_{k}}}, g x_{m_{i_{k}}}\right)+d\left(g x_{m_{i_{k}}}, g x_{m_{i_{k}}+1}\right) \\
& \rightarrow \epsilon \text { as } k \rightarrow \infty .
\end{aligned}
$$

By using condition (3.8), we get

$$
\int_{0}^{d\left(g x_{n_{i_{k}}+1}, g x_{m_{i_{k}}+1}\right)} \varphi(t) d t \leq r \int_{0}^{d\left(g x_{n_{i_{k}}}, g x_{m_{i_{k}}}\right)} \varphi(t) d t .
$$

Taking limit as $k \rightarrow \infty$, we obtain

$$
\int_{0}^{\epsilon} \varphi(t) d t \leq r \int_{0}^{\epsilon} \varphi(t) d t
$$

which is a contradiction since $r \in(0,1)$ and $\int_{0}^{\epsilon} \varphi(t) d t>0$. This ensures that for a certain $n_{0} \in \mathbb{N}$, we have $d\left(g x_{n_{i}+1}, g x_{m_{i}+1}\right)<\epsilon$ for all $i>n_{0}$. We now prove that there exist a $\sigma_{\epsilon} \in(0, \epsilon)$ and an $i_{\epsilon} \in \mathbb{N}$ such that for each natural number $i>i_{\epsilon}$, we have $d\left(g x_{n_{i}+1}, g x_{m_{i}+1}\right)<\epsilon-\sigma_{\epsilon}$. In fact, if there exists a subsequence $\left(i_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that $d\left(g x_{n_{i_{k}}+1}, g x_{m_{i_{k}+1}}\right) \rightarrow \epsilon-$ as $k \rightarrow \infty$, then by using condition (3.8), we get

$$
\int_{0}^{d\left(g x_{n_{i_{k}}+1}, g x_{m_{i_{k}}+1}\right)} \varphi(t) d t \leq r \int_{0}^{d\left(g x_{n_{i_{k}}}, g x_{m_{i_{k}}}\right)} \varphi(t) d t .
$$

Taking limit as $k \rightarrow \infty$, we obtain

$$
\int_{0}^{\epsilon} \varphi(t) d t \leq r \int_{0}^{\epsilon} \varphi(t) d t
$$

which is again a contradiction. Therefore, for each natural number $i>i_{\epsilon}$,

$$
\begin{aligned}
\epsilon & \leq d\left(g x_{n_{i}}, g x_{m_{i}}\right) \\
& \leq d\left(g x_{n_{i}}, g x_{n_{i}+1}\right)+d\left(g x_{n_{i}+1}, g x_{m_{i}+1}\right)+d\left(g x_{m_{i}+1}, g x_{m_{i}}\right) \\
& <d\left(g x_{n_{i}}, g x_{n_{i}+1}\right)+\left(\epsilon-\sigma_{\epsilon}\right)+d\left(g x_{m_{i}+1}, g x_{m_{i}}\right) \\
& \rightarrow \epsilon-\sigma_{\epsilon}, \text { as } i \rightarrow \infty .
\end{aligned}
$$

This gives that $\epsilon \leq \epsilon-\sigma_{\epsilon}$, a contradiction. Therefore, $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$.
Step 3. Existence of a coincidence point.
Since $\left(g x_{n}\right)$ is a Cauchy sequence in $g(X)$ and $g(X)$ is complete, there exists $u \in g(X)$ such that $\lim _{n \rightarrow \infty} g x_{n}=u(=g t$, for some $t \in X)$. By using (g, T, G)-lower semicontinuity of $f_{g T}$, we have

$$
0 \leq f_{g T}(t) \leq \liminf _{n \rightarrow \infty} f_{g T}\left(x_{n}\right)=\lim _{n \rightarrow \infty} f_{g T}\left(x_{n}\right)=0,
$$

which implies that $f_{g T}(t)=0$ and so $d(g t, T t)=0$. As $T t$ is closed, it follows that $u=g t \in T t$. Therefore, u is a point of coincidence of g and T in $g(X)$.

The following corollary is the Theorem 3.3 of [18].
Corollary 3.18. Let (X, d) be a complete metric space and $T: X \rightarrow C L(X)$ be a multi-valued mapping. Assume that there exists a constant $r \in(0,1)$ such that for any $x \in X, y \in T x$, there is $z \in T y$ satisfying

$$
\int_{0}^{d(y, z)} \varphi(t) d t \leq r \int_{0}^{d(x, y)} \varphi(t) d t
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a Lebesgue-integrable mapping which is summable(i.e., with finite integral) on each compact subset of $[0, \infty)$, and such that for each $\epsilon>0, \int_{0}^{\epsilon} \varphi(t) d t>0$. If f_{T} is T-lower semicontinuous, then T has a fixed point in X.

Proof . The proof follows from Theorem 3.17 by taking $g=I$ and $G=G_{0}$.
Corollary 3.19. Let (X, d) be a metric space. Let $T: X \rightarrow C L(X)$ and $g: X \rightarrow X$ be such that $T(X) \subseteq g(X)$ and $g(X)$ a complete subspace of X. Assume that there exists a constant $r \in(0,1)$ such that for any $x \in X, g y \in T x$, there is $g z \in T y$ satisfying

$$
d(g y, g z) \leq r d(g x, g y)
$$

If $f_{g T}$ is (g, T)-lower semicontinuous, then g and T have a point of coincidence in $g(X)$.
Proof. The proof follows from Theorem 3.17 by taking $G=G_{0}$ and $\varphi(t)=1$ for each $t \geq 0$.
Remark 3.20. Several special cases of Theorem 3.17 can be obtained by restricting $T: X \rightarrow X$ and taking different φ and G.

The following example shows that Theorem 3.6 is an extension of Theorem 3.12.
Example 3.21. Let $X=\left\{\frac{1}{2^{n}}: n \in \mathbb{N}\right\} \cup\{0,1\}$ with $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with $s=2$. Let G be a digraph such that $V(G)=X$ and $E(G)=\Delta \cup\left\{\left(0, \frac{1}{2^{n}}\right): n=0,1,2, \cdots\right\}$. Let $T: X \rightarrow C L(X)$ be defined by

$$
T x=\left\{\begin{array}{l}
\left\{0, \frac{1}{2^{n+1}}\right\}, x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\} \\
\{0\}, x=0
\end{array}\right.
$$

and $g x=\frac{x}{2}$ for all $x \in X$. Obviously, $T(X)=g(X)=X \backslash\{1\}$ and $g(X)$ is a complete subspace of (X, d).

For $x=1, y=0$, we have $g x=\frac{1}{2}, g y=0, T x=\left\{0, \frac{1}{2}\right\}, T y=\{0\}$. Therefore,

$$
H(T x, T y)=\frac{1}{4}=d(g x, g y)>r d(g x, g y)
$$

for any $r \in\left(0, s^{-1}\right)$ and hence condition (3.5) of Theorem 3.12 does not hold.
For $x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\}, y=0$, we have $g x=\frac{1}{2^{n+1}}, g y=0, T x=\left\{0, \frac{1}{2^{n+1}}\right\}, T y=\{0\}$ and so $(g x, g y) \in E(\tilde{G})$ which implies that $\left(z_{1}, z_{2}\right) \in E(\tilde{G})$ for all $z_{1} \in T x, z_{2} \in T y$. Therefore, T is edge preserving w.r.t. g. Obviously, $x_{0}=0 \in X$ such that $\left(g x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$.

Moreover, for $x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\}$, we have $T x=\left\{0, \frac{1}{2^{n+1}}\right\}$ and so there exists $g y=\frac{1}{2^{n+1}} \in{ }^{g} I_{\alpha}^{x}$ for any $\alpha \in(0,1)$ such that

$$
d(g y, T y)=d\left(\frac{1}{2^{n+1}},\left\{0, \frac{1}{2^{n+1}}\right\}\right)=0=r d(g x, g y)
$$

for any $r \in\left(0, \alpha s^{-1}\right)$.
Also, for $x=0$, there exists $g y=0 \in{ }^{g} I_{\alpha}^{x}$ for any $\alpha \in(0,1)$ such that

$$
d(g y, T y)=0=r d(g x, g y)
$$

for any $r \in\left(0, \alpha s^{-1}\right)$.
Thus, condition (3.1) of Theorem 3.6 holds. Now, it is easy to compute that $f_{g T}(x)=0$ for all $x \in X$. Hence, it is obvious that $f_{g T}$ is (g, T, G)-lower semicontinuous. Then the existence of a point of coincidence of g and T follows from Theorem 3.6.

It should be noticed that Theorem 3.6 can not assure the uniqueness of a point of coincidence. It is obvious that g and T have infinitely many points of coincidence in $g(X)$. In fact, if $x \in X$, then $g x \in T x$. So, every element of X except 1 is a point of coincidence of g and T.

We now examine the necessity of (g, T, G)-lower semicontinuity of $f_{g T}$ in Theorem 3.6 .
Example 3.22. Let $X=\left\{\frac{1}{2^{n}}: n \in \mathbb{N}\right\} \cup\{0,1\}$ with $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a complete b-metric space with $s=2$. Let G be a digraph such that $V(G)=X$ and $E(G)=\left\{\left(\frac{1}{2^{n}}, \frac{1}{2^{m}}\right): m \leq n, m, n=0,1,2, \cdots\right\} \cup\{(0,0),(0,1)\}$. Let $T: X \rightarrow C L(X)$ be defined by

$$
T x=\left\{\begin{array}{l}
\left\{\frac{1}{2^{n+1}}, \frac{1}{2^{n+2}}\right\}, x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\}, \\
\{1\}, x=0
\end{array}\right.
$$

and $g x=x$ for all $x \in X$. Obviously, $T(X) \subseteq g(X)=X$.
For $x=\frac{1}{2^{n}}, y=\frac{1}{2^{m}} m \neq n, m, n \in \mathbb{N} \cup\{0\}$, we have $(g x, g y) \in E(\tilde{G})$ which implies that $\left(z_{1}, z_{2}\right) \in E(\tilde{G})$ for all $z_{1} \in T x, z_{2} \in T y$.
Again, for $x=1, y=0$, we have $(g x, g y) \in E(\tilde{G})$ which gives that $\left(z_{1}, z_{2}\right) \in E(\tilde{G})$ for all $z_{1} \in$ $T x, z_{2} \in T y$. Therefore, T is edge preserving w.r.t. g. Obviously, $x_{0}=0 \in X$ such that $\left(g x_{0}, z\right) \in$ $E(\tilde{G})$ for all $z \in T x_{0}$.

Further, for $x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\}$, we have $T x=\left\{\frac{1}{2^{n+1}}, \frac{1}{2^{n+2}}\right\}$ and so there exists $g y=y=\frac{1}{2^{n+1}} \in$ ${ }^{g} I_{\alpha}^{x}$ for any $\alpha \in(0,1)$ such that

$$
\begin{aligned}
d(g y, T y) & =d\left(\frac{1}{2^{n+1}},\left\{\frac{1}{2^{n+2}}, \frac{1}{2^{n+3}}\right\}\right) \\
& =d\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n+2}}\right) \\
& =\left|\frac{1}{2^{n+1}}-\frac{1}{2^{n+2}}\right|^{2} \\
& =\frac{1}{4} d(g x, g y) .
\end{aligned}
$$

Also, for $x=0$, there exists $g y=y=1 \in{ }^{g} I_{\alpha}^{x}$ for any $\alpha \in(0,1)$ such that

$$
d(g y, T y)=d\left(1,\left\{\frac{1}{2}, \frac{1}{2^{2}}\right\}\right)=d\left(1, \frac{1}{2}\right)=\frac{1}{4}=\frac{1}{4} d(g x, g y) .
$$

Therefore, for any $x \in X$, there is $g y \in{ }^{g} I_{\alpha}^{x}$ for $\alpha=\frac{2}{3}$ such that

$$
d(g y, T y)=r d(g x, g y)
$$

where $r=\frac{1}{4}<\alpha s^{-1}$.
Thus, condition (3.1) of Theorem 3.6 holds. But, it is easy to compute that

$$
f_{g T}(x)=\left\{\begin{array}{l}
\frac{1}{2^{2 n+2}}, x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\} \\
1, x=0
\end{array}\right.
$$

This shows that $f_{g T}$ is not (g, T, G)-lower semicontinuous. Thus, g and T have no point of coincidence in X due to lack of the (g, T, G)-lower semicontinuity of $f_{g T}$.

The following example shows that Theorem 3.17 is an extension of Theorem 3.15.
Example 3.23. Let $X=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$ with $d(x, y)=|x-y|$ for all $x, y \in X$. Then (X, d) is a complete metric space. Let G be a digraph such that $V(G)=X$ and $E(G)=\Delta \cup\left\{\left(0, \frac{1}{n}\right): n=\right.$ $1,2,3, \cdots\}$. Let $T: X \rightarrow C L(X)$ be defined by

$$
T x=\left\{\begin{array}{l}
\left\{0, \frac{1}{n+1}\right\}, x=\frac{1}{n}, n \in \mathbb{N} \\
\{0\}, x=0
\end{array}\right.
$$

and $g x=\frac{x}{x+1}$ for all $x \in X$. Obviously, $T(X)=g(X)=X \backslash\{1\}$ and $g(X)$ is a complete subspace of (X, d).

For $x=1, y=0$, we have $g x=\frac{1}{2}, g y=0, T x=\left\{0, \frac{1}{2}\right\}, T y=\{0\}$. Therefore,

$$
H(T x, T y)=\frac{1}{2}=d(g x, g y)>r d(g x, g y)
$$

for any $r \in(0,1)$ and hence condition (3.6) of Theorem 3.15 does not hold.
For $x=\frac{1}{n}, n \in \mathbb{N}, y=0$, we have $g x=\frac{1}{n+1}, g y=0, T x=\left\{0, \frac{1}{n+1}\right\}, T y=\{0\}$ and so $(g x, g y) \in E(\tilde{G})$ which implies that $\left(z_{1}, z_{2}\right) \in E(\tilde{G})$ for all $z_{1} \in T x, z_{2} \in T y$. Therefore, T is edge preserving w.r.t. g. Obviously, $x_{0}=0 \in X$ is such that $\left(g x_{0}, z\right) \in E(\tilde{G})$ for all $z \in T x_{0}$.

We note that, for $x=\frac{1}{n}, n \in \mathbb{N}$, we have $T x=\left\{0, \frac{1}{n+1}\right\}$ and $g y=0=g 0 \in T x$ with $(g x, g y) \in E(\tilde{G})$. So, for $x \in X, g y=0=g 0 \in T x$ with $(g x, g y) \in E(\tilde{G})$, there exists $g z=g 0=0 \in T y$ such that condition (3.7) of Theorem 3.17 holds for any $r \in(0,1)$ and any Lebesgue-integrable mapping $\varphi:[0, \infty) \rightarrow[0, \infty)$ which is summable(i.e., with finite integral) on each compact subset of $[0, \infty)$, and such that for each $\epsilon>0, \int_{0}^{\epsilon} \varphi(t) d t>0$. Now, it is easy to compute that $f_{g T}(x)=0$ for all $x \in X$. Hence, it is obvious that $f_{g T}$ is (g, T, G)-lower semicontinuous. Then the existence of a point of coincidence of g and T follows from Theorem 3.17.

It should be noticed that g and T have infinitely many points of coincidence in $g(X)$. In fact, if $x \in X$, then $g x \in T x$. So, every element of X except 1 is a point of coincidence of g and T.

Remark 3.24. It is valuable to note that g is not a Banach contraction. In fact, for $x=\frac{1}{n}, y=$ $\frac{1}{m}, n \neq m$, we have

$$
\begin{aligned}
\frac{d(g x, g y)}{d(x, y)} & =\frac{\left|\frac{1}{n+1}-\frac{1}{m+1}\right|}{\left|\frac{1}{n}-\frac{1}{m}\right|} \\
& =\frac{m n}{(n+1)(m+1)}
\end{aligned}
$$

Therefore, $\sup \left\{\frac{d(g x, g y)}{d(x, y)}: x, y \in X, x \neq y\right\}=1$.

References

[1] M. U. Ali, T. Kamran, E. Karapinar, (α, ψ, ξ)-contractive multivalued mappings, Fixed Point Theo. Appl. 2014, 2014:7.
[2] J. H. Asl, S. Rezapour and N. Shahzad, On fixed points of $\alpha-\psi$-contractive multifunctions, Fixed Point Theo. Appl. 2012, 2012:212.
[3] V. Berinde, Generalized contractions in quasimetric spaces, In: Seminar on Fixed Point Theory,)1993) 3-9.
[4] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989) 26-37.
[5] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002) 531-536.
[6] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969) 458-464.
[7] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3(1922), 133-181.
[8] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.
[9] I. Beg, A. R. Butt and S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010) 1214-1219.
[10] F. Bojor, Fixed point of φ-contraction in metric spaces endowed with a graph, Ann. Univ.of Craiova, Math. Comp. Sci. Series, 37 (2010) 85-92.
[11] F. Bojor, Fixed points of Kannan mappings in metric spaces endowed with a graph, An. St. Univ. Ovidius Const. 20 (2012) 31-40.
[12] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math. 4 (2009) 285-301.
[13] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1(1993) 5-11.
[14] M. Cosentino, M. Jleli, B. Samet and C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory and Applications, 2015, 2015:70.
[15] G. Chartrand, L. Lesniak and P. Zhang, Graph and digraph, CRC Press, New York, NY, USA, 2011.
[16] F. Echenique, A short and constructive proof of Tarski's fixed point theorem, Int. J. Game Theo. 33(2005) 215-218.
[17] R. Espinola and W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topology Appl. 153(2006) 1046-1055.
[18] Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317(2006), 103-112.
[19] J. I. Gross and J. Yellen, Graph theory and its applications, CRC Press, New York, NY, USA, 1999.
[20] N. Hussain, R. Saadati and R. P. Agrawal, On the topology and wt-distance on metric type spaces, Fixed Point Theo. Appl. 2014, 2014:88.
[21] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008) 1359-1373.
[22] H. Kaneko, S. Sessa, Fixed point theorems for compatible multi-valued and single-valued mappings, Int. J. Math. Math. Sci. 12 (1989) 257-262.
[23] P. Kaushik and S. Kumar, Fixed point results for (α, ψ, ξ)-contractive compatible multi-valued mappings, J. Nonlinear Anal. Appl. doi:10.5899/2016/jnaa-00305.
[24] S. K. Mohanta, Common fixed points in b-metric spaces endowed with a graph, Mat. Vesnik, 68 (2016) 140-154.
[25] S. K. Mohanta, Common fixed points for mappings in G-cone metric spaces, J. Nonlinear Anal. Appl. 2012 (2012), doi:10.5899/2012/jnaa-00120.
[26] S. K. Mohanta and S. Patra, Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph, J. Linear. Top. Alg. 6 (2017) 301-321.
[27] S. K. Mohanta and R. Maitra, Coupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces, Int. J. Nonlinear Anal. Appl. 6 (2015) 140-152.
[28] S. Nadler, Multi-valued contraction mappings, Pac. J. Math. 20 (1969) 475-488.
[29] H. K. Pathak, Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hungar. 67 (1995) 69-78.
[30] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal. 75 (2012) 2154-2165.
[31] J. Tiammee and S. Suantal, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theo. Appl. 2014, 2014: 70.

[^0]: *Corresponding author
 Email address: mohantawbsu@rediffmail.com; deepbiswas91@gmail.com (Sushanta Kumar Mohanta ${ }^{1, *}$ and Deep Biswas ${ }^{2}$)

