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Abstract
In all developed countries, energy systems are being adapted to employ sustainable energies as
such these countries are developing some programs to reduce the usage of fossil energy as much as
possible in order to avoid environmental pollution and make the world a better place to live. The use
of electrical vehicle (EV) is one of the appropriate options in this regard. In this paper, the power
of charging stations, load uncertainty, and the uncertainty of electricity price in power systems were
modeled using the behaviors of EV owners and a two-point estimate method, respectively. Then the
contribution coefficient of charging stations and wind generation units as a distribution system were
optimized using the NSBSA algorithm. Simulation was performed in MATLAB software, and IEEE
9-bus test system validated the efficiency of this algorithm.
Keywords: Charging Station, Wind Generator, NSBSA Algorithm.

1. Introduction

In today’s societies, a direct relationship exists between the accessibility to new energy resources and
the level of development in a country. Regarding limited energy resources in this era, the existing
energy resources are not reliable anymore. Unrenewable fuels are the primary energy resources in a
majority of countries worldwide, accounting for 80% of consumption and an 87% increase by 2030,
according to the International Energy Agency’s (IEA) statistic in 2016 [1]. There are concerns
about the economic and political consequences of fossil resources and the excessive consumption of
fossil resources, which  are diminishing every day, and the fact that a large portion of environmental
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pollutions are caused by greenhouse gases such as CO2 and NOx. That is why men should spare their
efforts to stop their dependency on fossil resources. For example, in a study by a Japanese company
in Tehran, it was revealed vehicles account for 88% of air pollution [2]. This made researchers look
for an appropriate solution to solve these kinds of troubles [3]. Using EVs and renewable resources
can improve this situation significantly, regardless of their numerous difficulties. Now, energy-saving
resources [4, 5] such as EVs’ batteries are needed to be used at peak times to address this problem
[6].

In [7], the EV owners’ behaviors were examined, and it was found out that more than 90% of EVs
are parked overnight. With considering Charging Stations (CSs) to connect this type of vehicles to
grid, it is possible to provide additional power of grid, i.e. Vehicle to Grid (V2G), by discharging the
vehicle’s batteries at load peak hours, and the vehicle can be charged for personal applications at low
load hours [8]. Controlling the charge and discharge procedure of vehicles is done by a smart grid.
A smart grid represents the utilization of information technology and advanced communications
to manage the energy consumption by consumers wisely. In other words, integrating information
from various energy resources such as renewable energy resources, consumers, NOx, EVs must be
identical to guarantee the network security and system stability, generation, and consumption [9].
On the other side, integrating EVs and Distributed Generation (DG) in power systems leads to peak
dissipation, reduced network losses, reduced dependencies on upstream networks, and benefits to the
EV owners.

Fulfilled programming of benefits from distribution system managers makes EVs be integrated
with DG to save energy at specific times and deliver the energy at other times. With intellectual
management of the charge and discharge of EVs’ batteries and V2G-based system, the use of wind
and sun energy in a power network would be more efficient [10]. In [11], it was argued that utilizing
EVs’ batteries to save the wind energy and deliver it to the network would affect the effective use
of this renewable energy resource. There are similar findings about the effect of EVs on the usage
of renewable resources in [12]. In [13], the interaction between the transportation system and power
system with EVs was studied using the data available in the transportation system. In this study,
it was revealed that V2G technology increases the flexibility of the power system and causes further
usage of wind in power generation. The findings in [14] indicated that although EVs as energy savers
may need further investments, they support renewable energy resources in power generation. In
[15], the programming and operation of the power system in the presence of EVs were examined. In
this study, it was revealed that the presence of V2G led to a 3% decrease in the programming and
operation of the power system’s costs in Northern Europe. Smart control strategies were adopted in
the operation of EVs in [16]; however, load uncertainty and electricity prices have not been considered.
In [17], the peak load was included as the main load of the network, and an hourly load model was
proposed. In [18, 19, 20, 21], multiple placements of EVs’ charging stations to minimize the objective
function were studied; however, load modeling, strong objective function, and load uncertainty and
electricity price were disregarded.

This paper is to analyze EVs as a distribution system (DS) and distributed generation units
such as private organizations with regard to load uncertainty and electricity price and present a
model using a two-point estimate method (2PEM) [22, 23] and power generation support with smart
control to maximize the benefit function of both distribution system and private organization with
contribution coefficient determined by optimization algorithm.
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2. PROBLEM FORMULATION

In this paper, two objective functions are included, which encompass other sub-functions. To
model these target functions, the parameters of electricity price, wind power, charging station system,
and the behavior of electric vehicle owners need to be considered. In the first part of the simulation,
the price curve, load, and wind are modeled based on the input and output values. In the second
part, optimization is performed using the NSBSA algorithm. In this case, the two-point estimate
method is used to obtain the electric and load price curves [24].

2.1. Uncertainty model
Regarding the wide application of DGs in the distribution network, various optimization methods

are presented to find the optimal place and capacity of DGs. The load model and electricity price
can significantly affect the pace and magnitude of the DGs’ placement problem. Although load curve
and electricity price are obtainable using the estimate methods, their curve variation as a percentage
of error is not certainly specified. In this paper, the uncertainty of the load continuity curve and
electricity price are modeled using normal distribution function probabilistically.

2.1.1. Load uncertainty
According to the probabilistic behavior of distribution network users in terms of electricity con-

sumption, daily load variation is the amount of load consumed during the first year of the program-
ming period. Each year of the programming period is divided into NDLF demand level (DL), and
the duration of each DL is t,h level. The second parameter of the load model is demand level factor
(DLF), which can be obtained using probability density function (PDF) as follows [25]:

DLF e
i,t,h = µD

i,t,h + λD,e
i,t,h × σD

i,t,h (2.1)

where, λ is a stochastic variable with standard deviation of and mean value of zero and a normal
distribution function for each DL. µ and σ are the estimated values of load demand level and their
standard deviation, respectively. The load demand curve can be obtained using Equation (2.6).
Considering the load growth rate γ for each year t during the program period, electricity consumption
level in at each DL can be calculated as follows [25]:

PD,e
i,t,h = PD

i,base ×DLF e
h × (1 + γ)t (2.2)

QD,e
i,t,h = QD

i,base ×DLF e
h × (1 + γ)t (2.3)

SD,e
i,t,h = PD

i,t,h + jQD,e
i,t,h (2.4)

SD
i,base = PD

i,base + jQD
i,base (2.5)

σD
i,t,h = 0.01× µD

i,t,h (2.6)



214 S.M. Alizadeh Masoumian, A. Alfi, A. Rezaee Jordehi

2.1.2. Electricity price uncertainty
According to electricity consumption level and the behavior of electricity market operator, the

purchased electricity of the main network is priced for customers. The electricity price changes
during each period of the program. The variations of this quantity can be modeled by multiplying
two parameters, i.e., the base price of electricity for each DL and price level factor [26, 27, 28]:

ρt,h = ρ× PLF e
t,h (2.7)

Price level factor (PLF) represents the behavior of the electricity market, and probability density
function can be calculated as follows [29]:

PLF e
t,h = µρ

t,h + λρ,e
i,t,h × σρ

t,h (2.8)

where, λ is a stochastic variable produced by standard deviation of one and mean value of zero for
each DL, µ and σ are the estimated values of PLF and their standard deviation, respectively. Price
level curve is obtained by Equation (2.9). Figure 1 shows the PLF coefficient for 24 hours, and the
DLF coefficient for nine buses (case study) for 24 hours [30].

σρ
t,h = 0.1× µρ

t,h (2.9)

Figure 1: DLF and PLF for daily period

2.2. Wind generator unit
Power generation depends on wind velocity factor in the concerned region. This parameter has

no certain value and is selected stochastically. Accordingly, the DG placement also depends on how
the parameter is modeled. In this case, several experiments were performed to show how Rayleigh
probability density function is the best option for modeling the stochastic behavior of wind velocity.
Rayleigh density function is a specific state of Weibull distribution function, which has the shape
index of 2 [31].

F (x, y, z) =
y

z
× (

x

z
)y−1 × e−(x

z
)y y=2−−−−−→

x=v,c=z
fwg(v) = (

2v

c2
)× e

(
−( v

c )
2
)

(2.10)

where, v and c are wind velocity and scaling index of Weibull distribution, respectively. The average
value of wind velocity during 24 hours is shown in Figure 2.
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Figure 2: Average value wind speed for daily

If the average value of wind velocity is obtained, the scaling index is then calculated, and the
mentioned distribution function corresponds to Figure 3.

vm =

∫ ∞

0

v · fwg(v)dv =

∫ ∞

0

(
2v2

c2

)
e

(
−( v

c )
2
)
dv =

√∏
2

c −→ c ∼= 1.12837vm (2.11)

Figure 3: wind speed Weibull distribution function

After modeling the wind velocity, the power generated by wind turbines can be obtained by
Equation (2.12) [32].

Pwg
i,t,h =


0 if v ≤ vcutin or v ≥ vcutout

Pwg
i,r

v−vcutin

vrated−vcutin
if vcutin ≤ v ≤ vrated

Pw
i,r else

(2.12)

where, Pwg
i,t,h is the authorized capacity of power generation in wind unit. vcutin , vcutout and vcutrated are cut

in, cut out, and rated speed of wind turbine for power generation, respectively.

2.3. Modeling charging station power
Charging station power depends on scheduling the charging manner of vehicle and other factors

such as capacity and kind of vehicles’ batteries, the initial charge of vehicles’ batteries, and vehicles
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present in the charging station. These parameters have no certain values and are stochastic. The
EV owners’ behaviors mostly affect the modeling of these uncertain parameters, in comparison to
the other factors. Capacity and kind of EVs’ batteries, which are different from the ones having been
produced by vehicle companies up to now. The capacity for vehicles’ batteries was considered to be
30 KW in this study. The lifetime of batteries was estimated to be about 5 years [33]. Accessibility
of each vehicle at each hour depends on the time when the vehicle enters and exits from the charging
station. These two times are both stochastic and caused by human behavior. Vehicles’ entrance time
to a charging station and their exit from parking lot must be obtained using vehicle reference to
charging stations with V2G capability data. For this purpose, to consider the effect of the stochastic
nature of time when vehicles obtain the output power of the charging station and to avoid incorrect
estimations, it is more practical to fit the data presented in Figure 4 in the form of normal distribution.
As presented in Figure 5, the mean, standard deviation, and variance of the normal distribution yield
are 4.3854, 3.6897, and 13.6140, respectively. In this paper, the arrival time of each vehicle to the
charging station was obtained from the normal distribution function.

Figure 4: Presence of vehicles in charging station by hour [32]

Figure 5: PDF for state of charge

The initial value of vehicle battery, i.e. the ratio of energy stored in the battery to its capacity, has
a value ranging from 0 to 100. When the vehicle battery is charged, the equivalent value increases;
however, the consumption of the battery energy (delivering power to grid or driving) decreases the
initial charge value. The storage capability of batteries is not used when the vehicle is in the charging
station. According to the stochastic nature of distance traveled by vehicles, efficiency, and kind of
vehicles’ battery, the initial value of remained energy in the vehicle’s battery is stochastic as well. In
this study, the initial charge value of the vehicles referring to the charging station was considered at
three levels, as shown in Figure 6.
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Scheduling the vehicle’s charging process is determined upon the request of the vehicle owner
at its entrance of each vehicle to the charging station, initial charge level, final charge level asked,
and exit time of each vehicle from the charging station. Then, considering this information and the
benefit resulted from deploying vehicles as storage devices, the benefits from charging the batteries
for driving, optimal charge and discharge schedule for a vehicle at the present time at a charging
station are determined. Time required for complete charge and discharge of vehicles’ battery can be
calculated using initial charge value by Equations (2.13)-(2.14) [34].

tcharge(j) =
(SOCmax − SOCj)× ESj

Pv

(2.13)

tdischarge(j) =
(SOCj − SOCmin)× ESj

Pv

(2.14)

where, SOC stands for State of Charge, and SOCmax, and SOCmin are maximum and minimum
charging values of the vehicle’s battery. ES is the vehicle’s battery capacity. Pv is the power received
by EV to be charged. This section presents mathematical modeling of charging station power [35].

Figure 6: Modeling input and output power of charging station (three levels)

Pcharge =
∑
i=1

Ni × Pvi × ES ×
[(
ncharge1 + ncharge2 + ncharge3

)
×
(
SOCmax − SOCcharge3

)
+

(
ncharge1 + ncharge2

)
×
(
SOCcharge3 − SOCcharge2

)
+ ncharge3 ×

(
SOCcharge2 − SOCcharge1

)]
(2.15)

Pdischarge =
∑
i=1

Ni × Pvi × ES ×
[(
ndischarge1 + ndischarge2 + ndischarge3

)
×
(
SOCdischarge1 − SOCmin

)
+
(
ndischarge1 + ndischarge2

)
×
(
SOCdischarge2 − SOCdischarge1

)
+ ndischarge3 ×

(
SOCdischarge3 − SOCdischarge2

)]
(2.16)

N and Pvi are capacity and vehicle presence percentage, respectively. ndischargei and nchargei are the
number of vehicles with an initial charge of SOCmax and SOCmin at ith charging station.
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2.4. Objective function
The objective function consisting of OF1 and OF2. OF1 is distribution system manager (DS)

benefit and OF2 is wind generator (WG) benefit. The coefficient K is used to participate in the two
functions. DS received a 0.05× 107 $ contribution from WG as a cooperation.

OF1 = (1−K)×Bwg +Bcs + 500000 (2.17)

OF2 = WG+K ×Bwg − 500000 (2.18)

2.4.1. Charging station’s investment cost
Charging station’s installation costs encompass charging station’s equipment cost, wages, charg-

ing station’s construction cost, and charging station’s place cost. These costs are calculated in
accordance with Equation (2.19) and the benefit function of the distribution system manager (2.20).
Furthermore, the inflation rate and benefit rate have been considered in these functions [34].

Cinv
total =

Ncs∑
i=1

(
Cequip

i + Cconstruction
i

)
× CPi =

Ncs∑
i=1

Cac × CPi (2.19)

DS = Bcharge
total +Bdischarge

total +Bload
total +Bloss

total +Breliability
total − Cinv

total (2.20)

2.4.2. Benefits of charging
Regarding the EV drivers, charging station managers can increase the benefits by presenting

charging services. To this end, the benefit resulted from recharging the vehicle’s battery can be
obtained from Equation (2.23) [36].

Rcharge
total =

T∑
t=1

Nh∑
h=1

Ncs∑
i=1

ρt,h × P cs
i,t,h × τt,h ×

(
1 + InfR

1 + IntR

)t

(2.21)

Ccharge
total =

T∑
t=1

Nh∑
h=1

Ncs∑
i=1

(
ρgridt,h,pur

µconv

+ cd

)
× P cs

i,t,h × τt,h ×
(
1 + InfR

1 + IntR

)t

(2.22)

Bcharge
total = Rcharge

total − Ccharge
total (2.23)

2.4.3. Benefits of discharging
At peak times, the battery can provide less expensive energy to contribute to the network,

compared with the upstream network’s energy [37]. The benefits from V2G technology can be
obtained from Equation (2.26).

Rdischarge
total =

T∑
t=1

Nb∑
h=1

Ncs∑
i=1

ρt,h × P cs
i,t,h × τt,h ×

(
1 + InfR

1 + IntR

)t

(2.24)

Cdischarge
total =

T∑
t=1

Nb∑
h=1

Ncs∑
i=1

(
ρEV
t,h,pur

µconv

+ Cd

)
× P cs

i,t,h × τt,h ×
(
1 + InfR

1 + IntR

)t

(2.25)

Bdischarge
total = Rdischarge

total − Cdischarge
total (2.26)

Cd is equipment depreciation cost posed by V2G and efficiency rate of charging station inverters.
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2.4.4. Benefits from power provided by an upstream network
Most of the distribution network is fed by an upstream network. With the inclusion of charging

stations, the power level is reduced. It would then reduce the purchased power costs and consequently
increase the benefits of distribution system manager.

Rload
total =

T∑
t=1

Nh∑
h=1

ρt,h × P load
t,h × τ loadt,h ×

(
1 + InfR

1 + IntR

)t

(2.27)

C load
total =

T∑
t=1

Nh∑
h=1

ρgridt,h × P grid
t,h,pur × τ gridt,h ×

(
1 + InfR

1 + IntR

)t

(2.28)

Bload
total = Rload

total − C load
total (2.29)

P grid
t,h =


P load
t,h + P loss

t,h −
∑Ncs

i=1 P
cs
i,t,h for peak demand levels

P load
t,h + P loss

t,h +
∑Ncs

i=1 P
cs
i,t,h for medium demand levels

P load
t,h + P loss

t,h +
∑Ncs

i=1 P
cs
i,t,h for low demand levels

(2.30)

2.4.5. Benefits from reducing active power losses
With the inclusion of DG units and V2G to the distribution network, the losses will be reduced.

The benefits resulted from electricity sold to customers would be enhanced for the distribution system
manager. This can be calculated from Equation (2.31) [34].

Bloss
total =

T∑
t=1

Nh∑
h=1

[(
Plosswithout CS and WG

t,h − Plosswith CS and WG
t,h

)
× ρt,h × τt,h

]
×
(
1 + InfR

1 + IntR

)t

(2.31)

2.4.6. Benefits from reliability improvement
During the programming period, the distribution network faces troubles such as electricity outage

and variation in reliability factors, which consequently lead to lots of detriments. With improving
these factors, the distribution system manager’s benefits can be increased, as illustrated in Equation
(2.33) [38]. In this study, energy not-supplied (ENS) factor was used.

CENS =

[
Nl∑
l=1

Cint × λl × Ll ×

(
Nres∑
res=1

Pres × tres +

Nrep∑
rep=1

Prep × trep

)]
+ Cequip (2.32)

Breliability
total =

T∑
t=1

[(
Cwithout CS and WG

ENS − Cwith CS and WG
ENS

)]
×
(
1 + InfR

1 + IntR

)t

(2.33)

2.4.7. Resulted benefits and investment cost from DG units’ operation (wind unit)
Wind unit’s operation cost includes fuel cost and annual maintenance costs. Fuel cost was ignored

in this study. The benefit from the wind unit can be obtained from Equation (2.38) [39].

WGC =
T∑
t=1

Nh∑
h=1

Nb∑
i=1

Nwg∑
wg=1

(
Pwg
i,t,h ×OCwg × τt,h + Costmain,wgi

)
×
(
1 + InfR

1 + IntR

)t

(2.34)
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WGR =
T∑
t=1

Nh∑
h=1

Nb∑
i=1

Nwg∑
wg=1

(
Pwg
i,t,h × ρt,h × τt,h

)
×
(
1 + InfR

1 + IntR

)t

(2.35)

WGB = WGR−WGC (2.36)

WGIC =
T∑
t=1

Nh∑
h=1

Nb∑
i=1

Nwg∑
wg=1

(
Swg
i,max × ICwg

)
×
(
1 + InfR

1 + IntR

)t

(2.37)

WG = WGB −WGIC (2.38)

2.5. Load flow method and problem constraints
Newton-Raphson method was selected for load flow. For each h-DL, load flow relationships were

calculated for each year of the programming period. Furthermore, the constraints of the voltage and
current running through the distribution network equipment were considered at each level [27].

P grid
t,h ± P cs

i,t,h + Pwg
i,t,h − PD·e

i,t,h − V e
i,t,h

∑
YijV

e
j,t,h × cos

(
δei,t,h − δei,t,h − θij

)
= 0 (2.39)

Qgrid
t,h −QD·e

i,t,h − V e
i,t,h

∑
YijV

e
j,t,h × sin

(
δei,t,h − δei,t,h − θij

)
= 0 (2.40)

Il,t,h ≤ I lmax, Sgrid
t,h ≤ Sgrid

max (2.41)

Vmin ≤ V e
i,t,h ≤ Vmax (2.42)

Pwg
i,t,h ≤ Pwg

imax, i = 1, 2, 3, · · · , Nb, CP ≤ CPmax (2.43)

3. PROPOSED NSBSA ALGORITHM AS A SOLUTION METHOD

In this paper, non-dominated sorting backtracking algorithm (NSBSA) was used to solve the
optimization problems. The expansion of this algorithm in accordance with previous studies made the
search algorithm more efficient. This algorithm is population-based and encompasses five procedures
[40].
Algorithm NSBSA
Initialization
repeat

2.Selection 1
Generation of Trial-Population
3.Mutation
4.Crossover

end
5.Selection 2

until stopping conditions are met
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Unlike lots of search algorithms, NSBSA has an individual control parameter and its simple
structure can solve multi-model problems fast. Also, NSBSA can adapt to various kinds of numerical
optimization problems [35, 40].
Control Mechanism of NSBSA
Input: T, Search space limits (i.e.,lowj, upj)
Output: T
for i from 1 to N do

for j from 1 to D do
if (Ti,j < lowj) or (Ti,j > upj) then
Ti,j=rnd.(upj-lowj)+lowj
end

end
end

In this optimization, NSBSA, which is an unconscious search strategy and uses two searches
simultaneously, was used to maximize the benefit. One of the searches is executed from the starting
state to the objective state, and the other one is executed from the objective state to the starting state
[40]. Instead of analyzing the objective test, NSBSA analyzes whether the boundaries of searches
cross each other or not. If yes, the solution is obtained.

The selection criterion in NSBSA is a recognized ad quality factor with a rank parameter. The
solution set is ranked at the beginning to be selected, and the solution with a lower rank has a better
quality. Ranking is done using the dominant mechanism. In other words, solution sets dominating the
other solutions, not their members, will be arranged with the same rank in Pareto front [41, 42, 43].

x dom y ⇐⇒ ∀ i : xi ≥ yi
∃ i0 : xi0 ≻ yi0

(3.1)

Figure 7: Solutions ranking [41, 42, 43]

Moreover, after collocating the solutions based on the ranking, selection will be based on crowding
distance. This means that the selection criterion is the crowding distance of similar ranks. Crowding
distance illustrates that more solutions result in more variation in Pareto front. The mathematical
expression of this parameter is in accordance with Equations (3.1)-(3.2) and Figures 7-8.
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Figure 8: Crowding Distance [41, 42, 43]

di =

∣∣OF i+1
1 −OF i−1

1

∣∣
|OFmax

1 −OFmin
1 |

+

∣∣OF i+1
2 −OF i−1

2

∣∣
|OFmax

2 −OFmin
2 |

(3.2)

3.1. Under study network and parameters required for simulation
In this study, IEEE 9-bus system was used. The model and the parameter of the concerned

network are shown in Figure 9 and Table 1.

Figure 9: Nine-bus test system [34]

Table 1: Network information of case study [34]
Bus Resistance Reactance Line length Load

(ohm) (ohm) (Km) (MW)
1 3 1.4 1.5 1.5 6
3 7 2.78 5.5 5.5 8.8
1 2 2 4 4 11.2
2 6 2.8 5.5 5.5 5
1 5 1.7 1.7 1.7 8.8
5 9 2.1 4 4 10.2
1 4 2.26 4.5 4.5 7
4 8 2.4 5 5 8.7
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All the load points can be selected as candidate buses to install the DG units. The maximum
and minimum values of the authorized capacity of wind generation units and charging stations were
1-6 MW and 100-600 vehicles, respectively. Placement was programmed for 10 years, and each phase
of the programming period was divided into 24 DL. In the abovementioned DL, 365 days per year
was assumed.

Table 2: Required information and values [32]
value units Parameter

4 % Demand growth rate-γ
0.9 Per Unit Minimum magnitude of voltage
1.1 Per Unit Maximum magnitude of voltage
0.03 Fault/Km Fault rate in line-λl

0.5 Hour Timeout during error location-trep
3 Hour Duration during fix error-tres
5 % Inflation rate - InfR
6 % Interest rate - IntR
5 m/s V cut

in

35 m/s V cut
out

20 m/s V cut
rated

Table 3: CS Data [32]
value units Parameter

85-90-95 SOC1,2,3 Initial charging of vehicles
25-25-50 % Number of charging Vehicle

10-12.5-15 SOC1,2,3 Initial discharging of vehicles
35-40-25 % Number of discharging Vehicle

10 Kw Charging/discharging power rate
95 % Vehicle to Grid equipment-µconv

Table 4: Information electricity market [32]
value units Parameter

68 $/MWh Electricity wholesale purchase price
0.18 $/MWh Base price ENS
83 $/MWh base price electricity retail sell-ρ
28 $/MWh Operating cost of WGs - OCwg

64 $/MWh Electricity purchase price from vehicle
0.001 $/MWh Degradation cost of V2G
72 $/MWh Electricity price of sold to costumers
121 $/MWh Price of energy not supply

4. SIMULATION RESULTS AND DISCUSSION
Simulation was performed in two scenarios. First, the contribution coefficient, K, was set to be

zero, indicating that, with regard to the private organizations’ investment, these organizations do not
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contribute to the distribution system manager, and that the resulting benefit from network’s supplied
power is gathered by the distribution system manager. The performance of these organizations is
presented in Table 5.

Table 5: Optimal pareto front of scenario I × 107 $ with K=0
solution OF1 OF2 C.D

1 4.5786 -0.4114 Inf
2 1.0008 -0.1122 Inf
3 3.7014 -0.1496 0.7132
4 2.6581 -0.1870 0.6522
5 4.5633 -0.3740 0.6045
6 4.2047 -0.2614 0.5966
7 3.3982 -0.2244 0.5609
8 3.7705 -0.2618 0.3504

Figure 10: Optimal Pareto front (K=0)

Table 6: Optimal place/capacity of CS and WG units
Charging Station Wind Generator

Number bus Capacity(Vehicle) Number bus Capacity(MW)
6 1

1 6 130 3 8 1
9 2

Table 7: Benefits for DS and WG ×107 $
Optimal Bdis Bch Bup Bloss Br

3 0.0548 0.0107 1.1522 1.1024 0.0009

As it appears to be competently logical, the contribution of the private organizations is 0%.
Although these organizations had invested, they played no role in the operation. Accordingly, their
benefit function was negative. The best state in the third solution has a CD factor of 0.7132.
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A more optimal solution is obtained by increasing this factor. Using the concerned optimization
method, the benefit in the 3rd solution was 0.0090+06 $ from reliability function, 11.5220e+06 $
from upstream network function, 11.0240e+06 $ from reduced active power losses, 0.1070e+06 $
from charging function, 0.5480e+06 $ from discharging function in the 10th year. In the second
scenario, the contribution coefficient was generated stochastically by software. The installation place
and capacity of private organizations and distribution system managers are presented in Tables 8
and 9, respectively.

Table 8: Optimal Pareto front of scenario II × 107 $ with K
solution OF1 OF2 K C.D

1 5.0693 -1.8786 0.1021 Inf
2 2.3926 2.6988 0.9986 Inf
3 3.3412 1.7572 0.6874 0.3128
4 3.0710 2.0484 0.7836 0.2989
5 4.6530 0.4510 0.2410 0.2746
6 4.2222 0.8707 0.3819 0.2465
7 4.0789 1.0125 0.4299 0.2237
8 3.4950 1.6027 0.6349 0.2231
9 2.6697 2.4420 0.9183 0.2187
10 3.9134 1.1835 0.4923 0.2154
11 3.5948 1.3867 0.5533 0.2071
12 5.0593 0.0524 0.1068 0.2063
13 2.5130 2.5675 0.9665 0.1925
14 3.7879 1.3206 0.5362 0.1894
15 2.8321 2.2802 0.8608 0.1892
16 4.4217 0.6705 0.3173 0.1769
17 4.8554 0.2502 0.1732 0.1706
18 2.9362 2.1832 0.8293 0.1696
19 4.4689 0.6260 0.3025 0.1625
20 4.8940 0.2186 0.1628 0.1447

Figure 11: Optimal Pareto front of K
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Table 9: Optimal place/capacity of CS and WG units
Charging Station Wind Generator

Number bus Capacity(Vehicle) Number bus Capacity(MW)
6 1

1 2 312 3 8 6
9 1

Table 10: Benefits for DS and WG ×107 $
Optimal Bdis Bch Bup Bloss Br

3 0.0421 0.0081 2.6576 2.9166 0.0206

The results indicate that the first and second solutions have infinite crowding distance as such
they are not appropriate solutions, and the third solution with crowding distance of 0.3128 is an
optimal solution. In this solution with a contribution factor of 68.74%, the benefits from distribution
system (CS) and private organization (WG) are 33412000 $ and 17572000 $, respectively. Three DG
units and a charging station were modeled in a network (Table 9). Moreover, the benefits from the
optimization method are presented in Table 10. Using this optimization method in the 3rd solution,
the benefits were 0.2060e+06 $ from reliability function, 26.5760e+06 $ from upstream network
function, 29.1660e+06 $ from reduced active power losses, 0.0810e+06 $ from charging function,
and 0.4210e+06 $ from discharging function in the 10th year. Figure 12 shows the profits from the
reliability function in the presence of CS and WG in the first, third, sixth, and tenth years for a
24-hour daily period, according to which better results are obtained in the 10th year, and the highest
profit (6.5062e+05 $) was made in the 10th year.

Figure 12: Benefits from reliability function in a short time (with CS and WG)

Figure 13 shows the profit resulting from a decrease in active power losses. Planning led to the
highest profit in the 10th year (3.1777e+06 $). CS and WGs are involved in such planning.
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Figure 13: Benefits from the reduce active losses in a short time (with CS and WG)

In objective functions, the profit partly comes from the upstream network power, as presented in
Figure 14. The profit was assessed in four periods; however, the system reached the highest profit
during the 10th year. In this regard, CS and WGs are also present in the 10th year, resulting in
significant profits.

Figure 14: Benefits from upstream function in a short time (with CS and WG)

Figure 15 shows the voltage profiles for nine buses. Voltage profile exhibits better results and less
oscillation in the tenth year, compared to the other years. Figure 16 (a) shows the voltage profile of
busses with no CS and WG. Better results are obtained for this profile in the tenth year (Figure 15).
The effect of CS and DG on the voltage profile is obvious as the profit from the reliability function
decreases in the absence of CS and WG during the 10th year (Figure 16 (b)).
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Figure 15: Busses’ voltage profile in a short time (with CS and WG)

Figure 16: (a) Busses’ voltage profile in a short time (without CS and WG), (b) Benefits from reliability function
(without CS and WG)

5. Conclusion

Regarding load uncertainty and electricity price uncertainty, a new model was proposed in this
study. On the other hand, with regard to the variation of wind velocity, the joint contribution of
obtained output power of wind units and the simultaneous programming of wind units and charging
stations is economically justifiable, from which the distribution system earn the greatest benefits.
In addition, charging station power was obtained according to the probabilistic behavior of the EV
owners. In this paper, the BSA algorithm was applied to optimize the NSBSA implementation.This
algorithm has not been modeled in energy systems.
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