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Abstract

We show that every approximate solution of the Hosszú’s functional equation

f(x+ y + xy) = f(x) + f(y) + f(xy) for any x, y ∈ R,
is an additive function and also we investigate the Hyers-Ulam stability of this equation in the
following setting

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ + ϕ(x, y)

for any x, y ∈ R and δ > 0.
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1. Introduction

In the book, ”A collection of Mathematical problems”, S. M. Ulam posed the question of the stability
of the Cauchy functional equation. Ulam asked: if we replace a given functional equation by a
functional inequality, when can one assert that the solutions of the inequality lie near to the solutions
of the strict equation? [17] Originally, he had proposed the following more specific question during
a lecture given before the University of Wisconsin’s Mathematics Club in 1940.
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Given a group G1, a metric group (G2, d), a number ε > 0 and a mapping f : G1 −→ G2 which
satisfies the inequality d(f(xy), f(x)f(y)) < ε for all x, y ∈ G1, does there exist an homomorphism
h: G1 −→ G2 and a constant k > 0, depending only on G1 and G2 such that d(f(x), h(x)) ≤ kε
for all x in G1? A partial and significant affirmative answer was given by D. H. Hyers [5] under the
condition that G1 and G2 are Banach spaces. Furthermore many authors provided a generalization
of Hyers’s stability Theorem which allows the Cauchy difference to be unbounded (see [4, 12, 14]).
The stability problems of various functional equations ha been investigated by many authors (see
[1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16]). The main purpose of this work is to study the Hyers-Ulam
stability of the Hosszus functional equation

f(x+ y + xy) = f(xy) + f(x) + f(y), x, y ∈ R. (1.1)

Many investigations were used to establish Hyer’s Ulam stability of this equation (see [1, 9, 11]). In
this work we give an other way to establish this stability. Moreover we give the Hyers-Ulam-Rassias
stability of this equation.

2. Notations

Throughout this paper we use following notations:

• δ is a positive number.

• ϕ : R × R −→ R+ is one application and ϕ0 = ϕ, ϕn(x, y) = ϕn−1(2
εx, 2εy) with n ∈ N∗ and

ε ∈ {−1, 1}.

• For some application f : R −→ R, we define θ : R× R −→ R+ by

θ(x, y) = 5δ + 2|f(1)|+ϕ(x, 2y+ 1) +ϕ(x+ y+ xy, 1) + 2ϕ(x, y) +ϕ(y, 1) if one of numbers x
or y is non null and θ(0, 0) = δ + ϕ(0, 0).

• ϕ̃(x, y) =
∑+∞

i= 1−ε
2

ϕi−1(2
εx,2εy)

2iε+
1−ε
2

and consequently

θ̃(x, y) = 5δ + 2|f(0)|+ ϕ̃(x, 2y + 1) + ϕ̃(x+ y + xy, 1) + 2ϕ̃(x, y) + ϕ̃(y, 1).

3. Preliminary Results

For later use we need the following lemmas

Lemma 3.1. Let f : R× R −→ R satisfies the functional inequality

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ + ϕ(x, y), x, y ∈ R, (3.1)

for some δ and ϕ : R −→ R+. Then f satisfies the following inequalities

i) |f(0)| ≤ δ+ϕ(0,0)
2

,

ii) |f(x) + f(−x)| ≤ δ + ϕ(x,−1),

iii) and |f(2x+ 1)− 2f(x)| ≤ δ + |f(1)|+ ϕ(x, 1).
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Proof . i) By letting x = y = 0 in (3.1) we obtain | − 2f(0)| ≤ δ + ϕ(0, 0) which implies that

|f(0)| ≤ δ+ϕ(0,0)
2

.
ii) Let y = −1 in (3.1) then we get

|f(x) + f(−x)| ≤ δ + ϕ(x,−1), x ∈ R.

iii) For y = 1 in (3.1) we obtain that

|f(2x+ 1)− 2f(x)| ≤ δ + |f(1)|+ ϕ(x, 1), x ∈ R.

�

Lemma 3.2. Let f : R −→ R satisfies the functional inequality (3.1). Then f satisfies the inequality

|f(2st+ t)− 2f(st)− f(t)| ≤ θ(t, s) (3.2)

for all s, t ∈ R.

Proof . Next, by setting in (3.1) (x, y) = (t, 2s+ 1) or (y, x) = (t, 2s+ 1) we get that
|f(2st+ t)− 2f(ts)− f(t)| ≤
|f(2st+ t) + f(2s+ 1) + f(t) + f(t+ (2s+ 1) + t(2s+ 1))|+
|f(2(t+ s+ ts) + 1)− 2f(t+ s+ st)|+
|2f(t+ s+ st)− 2f(ts)− 2f(t)− 2f(s))|+
|f(2s+ 1)− 2f(s)| ≤
[δ + ϕ(t, 2s+ 1)] + [δ + |f(1)|+ ϕ(t+ s+ st, 1)]+
2[δ + ϕ(t, s)] + [δ + f(1) + ϕ(s, 1)] ≤
5δ + 2|f(1)|+ ϕ(t, 2s+ 1) + ϕ(t+ s+ st, 1) + 2ϕ(t, s) + ϕ(s, 1) = θ(t, s) for all s, t ∈ R.�

Lemma 3.3. Let f : R −→ R satisfies the functional inequality (3.1). Then, for all s, t ∈ R we
have

|f(2st+ t)− f(2st)− f(t)| ≤ θ(t, s) + θ(2st,
−1

2
) + |f(0)|+ 2[δ + ϕ(st,−1)] (3.3)

≤ 12δ+ 4|f(1)|+ |f(0)|+ϕ(t, 2s+ 1) +ϕ(t+ s+ ts, 1) + 2ϕ(t, s) +ϕ(s, 1) +ϕ(2st, 0) +ϕ(st− 1
2
, 1) +

2ϕ(2st, −1
2

) + ϕ(−1
2
, 1) + 2ϕ(st,−1).

Proof .By letting s = −1
2

in (3.3) we obtain that
|f(t) + 2f(−t

2
)| ≤ θ(t, −1

2
) + |f(0)|.

Furthermore, for all t ∈ R, we have |f(t)− 2f( t
2
)| = |f(t) + 2f(− t

2
)− (2f(− t

2
) + 2f( t

2
))|

≤ |f(t) + 2f(− t
2
)|+ 2|f(− t

2
) + f( t

2
)| ≤ θ(t, −1

2
) + |f(0)|+ 2(δ + ϕ( t

2
,−1))

≤ 7δ + 2|f(1)|+ |f(0)|+ ϕ(t, 0) + ϕ(1
2
t− 1

2
, 1) + 2ϕ(t, −1

2
) + ϕ(−1

2
, 1) + ϕ( t

2
,−1).

Finnally for all s, t ∈ R, we get from (3.1) and (3.3) that
|f(2st+ t)− f(2st)− f(t)|
≤ |f(2st+ t)− 2f(st)− f(t)|+ |f(2st)− 2f(st)|
≤ θ(t, s) + θ(2st, −1

2
) + |f(0)|+ 2(δ + ϕ(st,−1))

≤ 5δ + 2|f(1)|+ |f(0)|+ ϕ(t, 2s+ 1) + ϕ(t+ s+ ts, 1) + 2ϕ(t, s) + ϕ(s, 1)
+5δ + 2|f(1)|+ ϕ(2st, 0) + ϕ(st− 1

2
, 1) + 2ϕ(2st, −1

2
) + ϕ(−1

2
, 1) + 2[δ + ϕ(st,−1)]

≤ 12δ+ 4|f(1)|+ |f(0)|+ϕ(t, 2s+ 1) +ϕ(t+ s+ ts, 1) + 2ϕ(t, s) +ϕ(s, 1) +ϕ(2st, 0) +ϕ(st− 1
2
, 1) +

2ϕ(2st, −1
2

) + ϕ(−1
2
, 1) + 2ϕ(st,−1). �
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4. Main Results

In this section we give our main result

Theorem 4.1. Let f : R −→ R be a function. Then, f satisfies the functional equation

f(x+ y + xy)− f(x)− f(y)− f(xy) = 0, x, y ∈ R (4.1)

if only if f is an additive function.

Proof . The result is obtained by a similar calculation as in Lemmas 3.2 and 3.3.�

Theorem 4.2. Let f : R −→ R satisfies the functional inequality

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ + ϕ(x, y), x, y ∈ R (4.2)

for some δ and ϕ : R −→ R+ such that ϕ̃(x, y) < +∞. Then there exists a unique additive function
T : R −→ R such that for all x ∈ R,

|f(x)− T (x)| ≤ θ̃(x,
1

2
) + θ̃(x,

−1

2
) + |f(0)|+ 2(δ + ϕ̃(

x

2
,−1)), x ∈ R.

Proof . By Lemmas 3.2 and 3.3 we have
|f(x+ y)− f(x)− f(y)|

≤


θ(x, y

2x
) + θ(y, −1

2
) + |f(0)|+ 2(δ + ϕ(y

2
,−1)), x, y ∈ R, if x 6= 0;

θ(y, x
2y

) + θ(x, −1
2

) + |f(0)|+ 2(δ + ϕ(x
2
,−1)), x, y ∈ R, if y 6= 0;

θ(0, 0) + θ(0, −1
2

) + |f(0)|+ 2(δ + ϕ(0,−1)), if y = x = 0.
Lemmas 3.2 and 3.3

(t, s) =


(x, y

2x
) if x 6= 0;

(y, x
2y

) if y 6= 0;

(0, 0) if x = y = 0.
In view of [5], [12] and Theorem 4.1 we get the sought result. �

Corollary 4.3. Let f : R −→ R satisfies the functional inequality

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ, x, y ∈ R (4.3)

for some real positive number δ. Then there exists a unique additive function T : R −→ R such that
for all x ∈ R,

|f(x)− T (x)| ≤ 25

2
δ + 4|f(1)|.

Corollary 4.4. Let f : R −→ R satisfies the functional inequality

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ(|x|p + |y|p), x, y ∈ R (4.4)

for some real positive number p 6= 1. Then there exists a unique additive function T : R −→ R such
that for all x ∈ R,

|f(x)− T (x)| ≤ δ
2ε

2ε − 2εp
{2|x|p + 21−p + 2|x

2
|p + 2 +

ϕ(0, 0)

2
},

where ε is the sign of (1− p).
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Corollary 4.5. Let f : R −→ R satisfies the functional inequality

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ(|x|p|y|q), x, y ∈ R (4.5)

for some real positive numbers p and q such that r = p + q 6= 1. Then there exists a unique additive
function T : R −→ R such that for all x ∈ R,

|f(x)− T (x)| ≤ δ
2ε

2ε − 2εr
{|x|p21−q + 2|x

2
|p +

ϕ(0, 0)

2
},

where ε is the sign of (1− r).

Corollary 4.6. Let f : R −→ R satisfies the functional inequality

|f(x+ y + z − xy + yz − xyz)− f(x)− f(y)− f(z) + f(xy)− f(yz) + f(xyz)| ≤ δ (4.6)

for all x, y, z ∈ R and a some real positive number δ. Then there exists a unique additive function
T : R −→ R such that for all x ∈ R,

|f(x)− T (x)| ≤ 25

2
(δ + |f(0)|) + 4|f(1)|.
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