
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 87-109
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.4664

Automatic QoS-aware Web Services Composition
based on Set-Cover Problem

Morteza Khani Dehnoi, Saeed Araban*

Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

(Communicated by Madjid Eshaghi Gordji)

Abstract

By definition, web-services composition works on developing merely optimum coordination among
a number of available web-services to provide a new composed web-service intended to satisfy some
users requirements for which a single web service is not (good) enough. In this article, the formu-
lation of the automatic web-services composition is proposed as several set-cover problems and an
approximation algorithm has been exploited to solve them. In proposed method, the web-service
composition has been carried out within two main phases, the top-down expansion of the composi-
tion tree, and the production of composed service by bottom-up traversal of composition tree. In
the first phase, the production of a composition tree (similar to the production of tree in problem-
solving by searching) is proposed by starting from the output or post-conditions of the requested
service towards its input or pre-conditions. Each node or state of the tree is a set of inputs and/or
outputs or conditions, and services as tree edges illustrate the transition from one node to another.
In the second phase, finding the path from the leaves of the produced composition tree to the root
is considered equal to reaching the output of requested service, and this path specifies the involved
services and the composition plan. The requested service input set determines the available leaves
of the composition tree. To achieve each non-leaf node of the tree, a set-cover problem is produced
and solved using a greedy approximation algorithm. If the production and solving of the set-cover
problems continues hierarchically until it reaches the root node, the composition plan and cost of the
required composition service will be specified. The main focus of this research is the joint sequential
and parallel composition with the aim of producing near-optimal and QoS-aware composed services.

Keywords: Web Services, Composed Services, Set-cover Problem, Approximation Algorithm.
2010 MSC: 76T20

∗Corresponding Author: Saeed Araban

Received: February 2020 Revised: October 2020

http://dx.doi.org/10.22075/ijnaa.2021.4664

88 Khani Dehnoi, Araban

1. Introduction

One of the greatest potential abilities of service technology that should be considered is the inter-
operability between services within or outside the boundaries of the service owner organization. If a
service calls other services to perform its functional tasks, the caller service is called the composed
service, and the called services are called the basic services. To increase functionality, a composed
service is not dependent on the basic services. Since a composed service may invoke other services
from heterogeneous systems to perform its tasks, it must be able to deal with various problems such
as inconsistency in data pattern, incompatibility in transactions, sequencing constraints in invoking
the operations and the security of distributed systems.

2. Literature review

Web-services composition is defined as developing merely optimum coordination among a number
of available web-services to provide a new composed web-service intended to satisfy some users
requirements for which a single web service is not (good) enough. An important goal of web-service
composition is to achieve maximum flexibility in adapting dynamically to an environment in which
the available services (whether simple or composed services) are constantly changing in terms of
availability, load balancing or application.

2.1. Composed Service Plan

Generally, the composed service plan is produced by two types of methods[1], [2]:

1. Workflow techniques

2. AI (Artificial Intelligence) planning techniques

The workflow techniques consider a composed service as a set of irresolvable (atomic) services along
with a workflow that includes the data flow and the flow of control of the execution of the involved
services. The workflow techniques provide some automatic methods for binding abstract roles to the
actual and objective sources or services.
On the other hand, the production of a composed service plan can be based on the AI planning. In
these methods, it is assumed that each service can be defined and identified by preconditions and its
executional effects on the environment. Therefore, a plan or process can be generated automatically
using AI planning methods, without having any predefined knowledge of workflow. The production
of the composed service plan in the method proposed in this article is based on AI planning.

2.2. Composed Service Execution

Composed web-services are usually executed by either of two strategies: Orchestration or Choreog-
raphy.
In Orchestration, a coordinator, that itself can be a service, controls and coordinates the services
involved in the composition. In this method, the services involved in the composition should not
be aware that they are parts of a higher-level business process. The central coordinator should be
aware of the overall purpose of the process, definitions of the roles, and the order of employing of
the web-services involved in the composition.
By contrast, Choreography acts without a central process. In the absence of coordinator, any service
involved in the composition operation knows when it should collaborate and with which service it
should interact. The collaboration is done based on message reciprocation. Every service involved in
the composition should be aware of the general business process (the task of the composed service),

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 89

the jobs to be done, the messages to be passed, and the schedule for message passing processes
[1], [3]. The execution of the composed service in the proposed method in this article is based on
Orchestration.

2.3. Automatic Web-Services Composition

Automatic web-services composition is when generation of the composition chain is done at runtime
(on the fly) without any manual interference. In this methods, a service request including the
characteristics of the requested service would cause the generation of a service consisting of several
components which has not been existed before the request. In other words, in this method, any
query instead of being just a contact solicitation for an interface would be considered as a request for
a composed system[2], [4]. The method proposed in this article provides an automatic composition
of web-services.

2.4. Static or Dynamic Web-Services Composition

From one viewpoint, the methods of web-services composition can be classified into two general di-
visions, static and dynamic. In static web-services composition, the information of available services
which can be used in the composition should be prepared and collected before starting the com-
position operation. Considering the great number of services and the fact that they get frequent
updates by the providers in terms of updating existing services as well as adding new services to the
community, collecting information about available services for the composition operation is the main
issue for these methods. Therefore, the static methods for the services composition always have an
internal inflexibility. Also, due to inability regarding the load balance in the partner services in the
composition, scalability has some restrictions using these methods.
In dynamic web-services composition, the composition plan is formed based on the present state
of the web world; as a result, it is not necessary to collect comprehensively the information of all
available services before the composition operation. The method presented in this article addresses
the dynamic web-services composition.

2.5. Quality-Aware Web-Services Composition

In addition to the functional specification, web-services are also known by their non-functional at-
tributes usually referred as Quality of Services (QoS) attributes. The importance of QoS attributes
shows itself where among several services which are equal in functionality, the chosen one is the most
satisfactory regarding the QoS preferences of the customer. If QoS parameters are the criteria for
web-service selection in composition process, it will be QoS-aware web-services composition. The
method proposed in this article addresses the QoS-aware web services discovery and composition.

2.6. Sequential and/or Parallel Web-Services Composition

If the functional requirements of the requested composed service can be achieved by consecutive
application of two or several services, it will be chain or sequential composition of web-services
(Figure 1).
On the other hand, if a part of the functional requirements of the requested service is met by
employing one service and another part of its requirements is met by employing one or several other
services, the composition is parallel (Figure 2).
The plan of a composed web-service can be described at several sequential and parallel levels (Figure
3).
Most automatic web-services composition methods have addressed the sequential composition of web-
services [5]–[7], but there have also been efforts for the parallel web-services composition [8], [9]. In

90 Khani Dehnoi, Araban

Figure 1: Sequential web-services composition

On the other hand, if a part of the functional requirements of the requested service is met

by employing one service and another part of its requirements is met by employing one or

several other services, the composition is parallel (Figure 2).

Figure 2: Parallel web-services composition

The plan of a composed web-service can be described at several sequential and parallel

levels (Figure 3).

Figure 3: A sequential layer and a parallel layer of web-Services composition

Most automatic web-services composition methods have addressed the sequential

composition of web-services [5]–[7], but there have also been efforts for the parallel web-

services composition [8], [9]. In the proposed solution in this article, the possibility of

automatic parallel and sequential composition of services has simultaneously been

considered.

Figure 1: Sequential web-services composition

Figure 1: Sequential web-services composition

On the other hand, if a part of the functional requirements of the requested service is met

by employing one service and another part of its requirements is met by employing one or

several other services, the composition is parallel (Figure 2).

Figure 2: Parallel web-services composition

The plan of a composed web-service can be described at several sequential and parallel

levels (Figure 3).

Figure 3: A sequential layer and a parallel layer of web-Services composition

Most automatic web-services composition methods have addressed the sequential

composition of web-services [5]–[7], but there have also been efforts for the parallel web-

services composition [8], [9]. In the proposed solution in this article, the possibility of

automatic parallel and sequential composition of services has simultaneously been

considered.

Figure 2: Parallel web-services composition

Figure 1: Sequential web-services composition

On the other hand, if a part of the functional requirements of the requested service is met

by employing one service and another part of its requirements is met by employing one or

several other services, the composition is parallel (Figure 2).

Figure 2: Parallel web-services composition

The plan of a composed web-service can be described at several sequential and parallel

levels (Figure 3).

Figure 3: A sequential layer and a parallel layer of web-Services composition

Most automatic web-services composition methods have addressed the sequential

composition of web-services [5]–[7], but there have also been efforts for the parallel web-

services composition [8], [9]. In the proposed solution in this article, the possibility of

automatic parallel and sequential composition of services has simultaneously been

considered.

Figure 3: A sequential layer and a parallel layer of web-Services composition

the proposed solution in this article, the possibility of automatic parallel and sequential composition
of services has simultaneously been considered.

2.7. Categorization of Web-Services Composition Methods

Table 1 presents a categorization of service composition methods and their characteristics.

3. Proposed Solution

In this section, a solution is proposed for automatic QoS-aware web-services composition by modeling
as a minimum set cover problem and using the approximation algorithm. In the first step, the set
cover problem and the approximation algorithm for solving it as the main tool in the proposed

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 91

Table 1: Web-Services composition methods at a glance

Se
rvice

 C
o

m
p

o
sitio

n
 p

lan

M
e

th
o

d
 d

e
scrip

tio
n

R
e

fe
re

n
ce

s

Exe
cu

tio
n

 o
f C

o
m

p
o

se
d

Se
rvice

s

A
u

to
m

atio
n

Su
p

p
o

rtin
g P

aralle
l

C
o

m
p

o
sitio

n

D
yn

am
ic P

lan
n

in
g

Su
p

p
o

rtin
g co

m
p

o
se

d

Se
rvice

 re
co

ve
ry

Q
o

S-A
w

are
n

e
ss

C
o

n
sid

e
rin

g u
se

r

p
re

fe
re

n
ce

s

D
istrib

u
tio

n

Scalab
ility

W
o

rkflo
w

 b
ase

d

Th
ere is a w

o
rkflo

w
 as p

art o
f th

e req
u

est. Th
e m

ain
 p

ro
b

le
m

 is th
e o

p
tim

al selectio
n

 o
f

services fo
r ro

les in
 th

e w
o

rkflo
w

. Th
e p

ro
b

le
m

 is m
o

d
eled

 as a m
u

lti-o
b

je
ctive

o
p

tim
izatio

n
 p

ro
b

lem
 (M

O
O

P
).

Using
heuristic and

meta-
heuristic

methods for
optimization

[10],
[11],
[20]–
[27],
[12]–

[19][28],
[29][30]

Orch × ✓
Semi-
dyna
mic

Fully
(service

substitution)
✓ ✓ × ✓

Using Linear
or Integer

Programming
for

optimization

[31]–
[34]

Orch × ✓
Semi-
dyna
mic

Partially
(service

substitution)
✓ ✓ × ✓

Modelling
and solving

as a
Constraint

Satisfaction
Problem

(CSP)

[35]–
[37]

Orch × ✓
Semi-
dyna
mic

Partially
(service

substitution)
✓ ✓ × ✓

Clustering or
indexing
available
services

based on
functional or

non-
functional

features by
the service

brokers.

[38]–
[47]

Orch × ✓
Semi-
dyna
mic

Fully
(service

substitution)
✓ ✓ × ✓

W
o

rkflo
w

 is gen
e

rated
.

Design of
composition
is performed

in two
phases: 1)
workflow

generation,
2) optimal

selection of
services for
roles in the
workflow.

Due to

[48]–
[52]

Orch ✓ ✓
Semi-
dyna
mic

Partially
(service

substitution
– partial

replanning)

✓ ✓ × ×

92 Khani Dehnoi, Araban

complexity of
workflow

generation,
these

methods are
domain
specific.

A
I P

lan
n

in
g b

ase
d

Available services are
modeled as graphs

(Automata, Finite State
Transducer (FST) or
Colored Petri Net

(CPN)). These methods
require high

preprocessing and
model rebuilding. Major

problems in this
category are: 1)

Incompatibilities of the
highly dynamic

environment of web-
services, 2) Imbalance of

load on the services
involved in the
composition.

[53],
[54],
[63]–
[67],
[55]–

[62][68],
[69]

Orch ✓ × Static × ✓ × × ×

Available services are
modeled as rule-based
expert systems. These
methods require high

preprocessing and
rebuilding of inference

engine.

[8], [9] Orch ✓ × Static × × × × ✓

The problem is modeled
as a tree, which is

solved by searching. No
preprocessing is

required. Using agent
technology and users
feedbacks is possible.
The highest degree of

flexibility and loose
coupling is available.

[5], [6],
[78]–
[83],
[70]–
[77]

Orch ✓ ×
Dyna
mic

Partially
(partial

replanning)
× × ✓ ✓

Proposed method
described in section 3.

 Orch ✓ ✓
Dyna
mic

Partially
(service

substitution
– partial

replanning

✓ ✓ ✓ ×

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 93

method has been reviewed. In the next step a proper representation of the problem and the solution
production process have been provided. Finally, a small example of how to implement the proposed
solution has been provided.

3.1. Set Cover Problem

The set cover problem is a classic problem in the computer sciences and complexity theory, and is
among the 21 famous Karp problems, whose NP-Completeness has been proven in 1972 [84]. Consider
the universal set U and the set S including m of the other sets, in a way that the union of m sets
inside S is equal to U. That is, the set S covers the set U. The set cover problem is to identify set
C as the smallest subset of S whose inside sets union is equal to U. That is, set C also covers set U.
For example, if U and S considered as U = {1, 2, 3, 4, 5} and S = {{1, 2, 3} , {2, 4} , {3, 4} , {4, 5}},
by solving the set cover problem the result will be C = {{1, 2, 3} , {4, 5}}. If the selection of each set
within S has a number as a cost, the problem will be of the weighted set cover type.
There are good approximation algorithms such as Johnson’s Greedy Algorithm [85] with logarithmic
approximation coefficient and polynomial time order for the set cover problem. Heuristic methods
such as Genetic Algorithm in [86] and Ant Colony Algorithm in [87] are also used to improve the
approximation. According to the surveyed background, in web-service composition, the set cover
problem has not been used and has only been used in some researches such as [88] and [89] to prove
that the composition problem is NP-Complete.
Johnson’s Greedy Algorithm [85] to solve the set cover problem selects a set of S at each step that
contains the highest utility or in other words the least cost per not selected member. For this purpose,
for each set, it calculates the result of cost divided by the number of members and selects the set
with the least dividing result. The selected set is added to C and its members will be eliminated
from U and unselected sets. The algorithm is complete when U is empty. It has been proved in [85]
that the approximation coefficient of this algorithm is H(n) in which n is the number of members of
the reference set U. This means that Johnson’s algorithm selects those sets for U cover whose sum
of costs may be at most H(n) times greater than the minimum cover cost. It should be mentioned
that H(n) is the nth harmonic number and is obtained from the following equation.

H(n) =
n∑

k=1

1

k
≤ lnn + 1 (3.1)

3.2. Representing the Problem of Services Composition

The suggested method proposes the composition of web services into two main phases:

1. Top-down expansion of the composition tree

2. Bottom-up traversal of composition tree to production of composed service plan

The general process of the proposed method is shown in the following activity diagram.

3.3. Top-Down Expansion of Composition Tree

Employing each service is considered to convert a pre-execution status (including inputs and precondi-
tions) to a post-execution status (including outputs and post-conditions). In the issue of web-services
composition, the output of each service can provide the input of one or several other services. In this
way, the space of the web-services composition problem can be used as a tree model and by problem-
solving with a search. In this way, each node or the status of a tree is a set of inputs, outputs,
and conditions in which services as tree edges provide the possibility of transition from one node to

94 Khani Dehnoi, Araban
1. Top-down expansion of the composition tree

2. Bottom-up traversal of composition tree to production of composed service plan

The general process of the proposed method is shown in the following activity diagram.

Figure 4: General process of the proposed method

2.3 Top-Down Expansion of Composition Tree

Employing each service is considered to convert a pre-execution status (including inputs

and preconditions) to a post-execution status (including outputs and post-conditions). In

the issue of web-services composition, the output of each service can provide the input of

one or several other services. In this way, the space of the web-services composition

problem can be used as a tree model and by problem-solving with a search. In this way,

each node or the status of a tree is a set of inputs, outputs, and conditions in which

services as tree edges provide the possibility of transition from one node to another node.

The described tree is called the composition tree. In this research, a composition tree is

produced from the output or the post-conditions of the requested service toward the input

or its preconditions:

State Space: The state space includes pre-execution and post-execution status of all

available services

Tree Root (initial state): The requested service outputs are the content of the root node.

Successor Function: The Successor function takes a node as input and finds all web

services that are available at the same time and their output contains a part of the node

content that is expanding. The successor function restores the input set of each one of the

services it finds as produced nodes (children of current node).

Goal Test (End-Node Production Test in Each Branch): The production of trees in

each branch continues up to where we reach a node that its content is subset of input or

preconditions of the requested service, or the depth or weight limitation of the path is

violated. The depth or weight limitation of the path can be determined depending on the

composition time limitation or the services cost limitation by a request.

Composed Service Cost: Composed service cost, is a composite factor of QoS that can

be calculated for each valid sub-tree of the composition tree. Mapping QoS attributes in

cost is performed by a cost function. The cost function receives the QoS index vector of

Figure 4: General process of the proposed method

another node. The described tree is called the composition tree. In this research, a composition tree
is produced from the output or the post-conditions of the requested service toward the input or its
preconditions:
State Space: The state space includes pre-execution and post-execution status of all available
services
Tree Root (initial state): The requested service outputs are the content of the root node.
Successor Function: The Successor function takes a node as input and finds all web services that
are available at the same time and their output contains a part of the node content that is expanding.
The successor function restores the input set of each one of the services it finds as produced nodes
(children of current node).
Goal Test (End-Node Production Test in Each Branch): The production of trees in each
branch continues up to where we reach a node that its content is subset of input or preconditions
of the requested service, or the depth or weight limitation of the path is violated. The depth or
weight limitation of the path can be determined depending on the composition time limitation or
the services cost limitation by a request.
Composed Service Cost: Composed service cost, is a composite factor of QoS that can be calcu-
lated for each valid sub-tree of the composition tree. Mapping QoS attributes in cost is performed
by a cost function. The cost function receives the QoS index vector of an employed service and the
QoS importance coefficients vector from the request as input, and maps it as a cost by computing
similarity of two input vectors. Cost function applies to all employed services of composed service
plan and sum of results regards as composed service cost.
The process of top-down expansion of composition tree is shown in the following activity diagram.

3.4. Bottom-Up Production of Composed Service Plan

Reaching from the valid leaves of the composition tree to the root is equal to reaching the outputs of
the requested service, and the path to reach the root specifies the composition plan (services involved
in the composition). Leaves of a tree whose content is a subset of the requested service input are
available. To reach every non-leaf node of a tree, a set-cover problem should be produced and solved.
Components of the set-cover problem are defined as follows:
U-set: It will contain the content of the current node.
S-set: For each child of the current node, a set will be placed in S that the members of this set will
be the intersection of set U with the current edge service output.
Modeling the Weight of Sets: The weight of each set will be equal to the total cost of reaching
the child node, and the cost of corresponding service to transition from the child to the current node.
It is remembered that the cost of each service is calculated by calculating the similarity of the QoS
index vector of this service and the QoS importance coefficients vector from the request.

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 95

an employed service and the QoS importance coefficients vector from the request as input,

and maps it as a cost by computing similarity of two input vectors. Cost function applies

to all employed services of composed service plan and sum of results regards as composed

service cost.

The process of top-down expansion of composition tree is shown in the following activity

diagram.

Figure 5: Process of top-down expansion of composition tree

2.4 Bottom-Up Production of Composed Service Plan

Reaching from the valid leaves of the composition tree to the root is equal to reaching the

outputs of the requested service, and the path to reach the root specifies the composition

plan (services involved in the composition). Leaves of a tree whose content is a subset of

the requested service input are available. To reach every non-leaf node of a tree, a set-

cover problem should be produced and solved. Components of the set-cover problem are

defined as follows:

U-set: It will contain the content of the current node.

S-set: For each child of the current node, a set will be placed in S that the members of this

set will be the intersection of set U with the current edge service output.

Modeling the Weight of Sets: The weight of each set will be equal to the total cost of

reaching the child node, and the cost of corresponding service to transition from the child

to the current node. It is remembered that the cost of each service is calculated by

calculating the similarity of the QoS index vector of this service and the QoS importance

coefficients vector from the request.

Thus, by solving the above set-cover problem, the cost and plan of reaching the current

node are calculated. If the production and problem solving of the set-cover continue

Figure 5: Process of top-down expansion of composition tree

Thus, by solving the above set-cover problem, the cost and plan of reaching the current node are
calculated. If the production and problem solving of the set-cover continue hierarchically to reach
the root node, the plan and cost of the requested composed service will be produced. In the present
research, the Johnson approximation algorithm [85] is used to solve the set-cover problems.
Two points about the proposed method should be mentioned: First, the composition tree produced
in the proposed method can also be applied in composed service recovery (partial re-planning and
service substitution). Second, there is no need to aggregate the information of available services
before the composition operations, and the composition operations can be performed dynamically.
The process of bottom-up production of composed service plan is shown in the following activity
diagram.

3.5. Solving a Sample of Web-Services Composition Problem

To clarify the method, a very simple and demonstrable sample of the problem is described and solved
below. In Figure 7, the problem space including available services and the request of composition
service is described.
The result of the first phase of the method, namely top-down expansion of composition Tree is
presented in Figure 8.
The execution of the second phase of the method, namely bottom-up traversal of composition tree
for the production of composed service plan is presented in Figure 9. The process of hierarchically
producing and executing the set cover problem and the calculated value as the cost of reaching each
node (red-colored numbers) are specified in the figure.
In Figure 10 the final plan of the requested composed service is illustrated after eliminating unused
branches.
In Figure 11, the BPMN diagram of composed service produced for the sample problem is drawn.

4. Implementation and Test

The proposed method of this article is implemented in the Service-Oriented Enterprise Architecture
Laboratory (SOEA LAB) of the Ferdowsi University of Mashhad [90], and the QoS-WSC data set [91]
has been used to test it. This data set has 18 service repositories for testing QoS-aware web-services

96 Khani Dehnoi, Araban

hierarchically to reach the root node, the plan and cost of the requested composed service

will be produced. In the present research, the Johnson approximation algorithm [85] is

used to solve the set-cover problems.

Two points about the proposed method should be mentioned: First, the composition tree

produced in the proposed method can also be applied in composed service recovery

(partial re-planning and service substitution). Second, there is no need to aggregate the

information of available services before the composition operations, and the composition

operations can be performed dynamically. The process of bottom-up production of

composed service plan is shown in the following activity diagram.

Figure 6: process of bottom-up production of composed service plan

2.5 Solving a Sample of Web-Services Composition Problem

To clarify the method, a very simple and demonstrable sample of the problem is described

and solved below. In Figure 7, the problem space including available services and the

request of composition service is described.

Figure 6: process of bottom-up production of composed service plan

Figure 7: Sample Problem Space

The result of the first phase of the method, namely top-down expansion of composition

Tree is presented in Figure 8.

Figure 8: Composition Tree of Sample Problem

The execution of the second phase of the method, namely bottom-up traversal of

composition tree for the production of composed service plan is presented in Figure 9.

Figure 7: Sample Problem Space

composition. Its smallest data repository contains 2,156 and its largest data repository contains
8,356 WSDL files to describe the space of available services. Each WSDL file contains the functional
description of the service (in the form of two request and response messages), a QoS index vector (in
the form of QoS tag), as well as the description of the service interface (in the form of a port message).
This test data set contains 198 service composition problems in the form of 18 query files. For each
query file, one solution file contains all possible solutions and one best solution file contains the best
solution in terms of QoS for the issues raised in the related query file. The information of services
and solutions is maintained by the BPEL (Business Process Execution Language) standard. The
results obtained from the experiment in all composition queries correspond to the results declared
in the data set. Examples of the WSDL file, the request query, and the corresponding composition

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 97

Figure 7: Sample Problem Space

The result of the first phase of the method, namely top-down expansion of composition

Tree is presented in Figure 8.

Figure 8: Composition Tree of Sample Problem

The execution of the second phase of the method, namely bottom-up traversal of

composition tree for the production of composed service plan is presented in Figure 9.

Figure 8: Composition Tree of Sample Problem
The process of hierarchically producing and executing the set cover problem and the

calculated value as the cost of reaching each node (red-colored numbers) are specified in

the figure.

Figure 9: Hierarchical Production and solving of Set-Cover Problems in Sample Problem

In Figure 10 the final plan of the requested composed service is illustrated after

eliminating unused branches.

Figure 10: Composition Service Plan of Sample Problem

Figure 9: Hierarchical Production and solving of Set-Cover Problems in Sample Problem

tree, solution (composed service plan), and BPMN diagram produced by the proposed method are
presented in Appendix.

5. Evaluation of the Proposed Solution

Evaluation of the proposed method for the three criteria of completeness, performance and approxi-
mation factor, and from the two perspectives of theory evaluation and experiment-based evaluation
are presented in the following.
Completeness: Completeness of the method means that if there is a valid solution, the method
guarantees to find it. In the proposed method, since the composition tree is fully produced, if there
is a solution, it will be found. If the production of the composition tree is limited to a specified depth

98 Khani Dehnoi, Araban

The process of hierarchically producing and executing the set cover problem and the

calculated value as the cost of reaching each node (red-colored numbers) are specified in

the figure.

Figure 9: Hierarchical Production and solving of Set-Cover Problems in Sample Problem

In Figure 10 the final plan of the requested composed service is illustrated after

eliminating unused branches.

Figure 10: Composition Service Plan of Sample Problem
Figure 10: Composition Service Plan of Sample ProblemIn Figure 11, the BPMN diagram of composed service produced for the sample problem is

drawn.
BPEL Sample Problem Package

Sa
m

p
le

 P
ro

b
le

m

C
o

m
p

o
si

t
Se

rv
ic

e

R
e

q
u

e
st

e
r

Se
rv

ic
e

 C
o

m
p

o
si

ti
o

n
 A

ge
n

t

Service
request

S2

Receive

S3

S1

S7

S9

S8

Service
Reply

i

e,f,g

h,i

h,i

a,b,c,d

e,f

a,b

n,o,p,q,r,s

f,g

b

i,j,k,l

n,o

j,k,l

p,q,r,s

a,c,d

Figure 11: BPMN Diagram of the Produced Composition Service

3 Implementation and Test

The proposed method of this article is implemented in the Service-Oriented Enterprise

Architecture Laboratory (SOEA LAB) of the Ferdowsi University of Mashhad [84], and

the QoS-WSC data set [85] has been used to test it. This data set has 18 service

repositories for testing QoS-aware web-services composition. Its smallest data repository

contains 2,156 and its largest data repository contains 8,356 WSDL files to describe the

space of available services. Each WSDL file contains the functional description of the

service (in the form of two request and response messages), a QoS index vector (in the

form of QoS tag), as well as the description of the service interface (in the form of a port

message). This test data set contains 198 service composition problems in the form of 18

query files. For each query file, one solution file contains all possible solutions and one

best solution file contains the best solution in terms of QoS for the issues raised in the

related query file. The information of services and solutions is maintained by the BPEL

(Business Process Execution Language) standard. The results obtained from the

experiment in all composition queries correspond to the results declared in the data set.

Examples of the WSDL file, the request query, and the corresponding composition tree,

Figure 11: BPMN Diagram of the Produced Composition Service

(or cost), if there is a solution down to that depth (or cost), the proposed method guarantees to find
it. In the experiments performed on the QoS-WSC data set, a valid solution has also been found for
every composition query.
Performance: The time complexity of the first phase of the proposed method (top-down expansion

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 99

of composition tree) is proportional to the number of nodes produced in the composition tree. If
the maximum branching factor of tree is b and the maximum depth of the composition tree is d and
the number of available services is S, the execution time of the proposed method will be limited to
O(Sbd). In the second phase of the proposed method (bottom-up production of composed service),
for each non-leaf node of the composition tree, a set-cover problem has been produced and solved.
Since the Johnson algorithm (with polynomial time order) is used to solve each set-cover problem,
the time order of the second phase will not be more than the time order of the first phase, so the time
order of the presented method will be the same as O(Sbd). Also in the experiments performed on the
QoS-WSC data set, the number of available services and the maximum depth of the valid responses
for each query are specified. The maximum branching factor is also the same for all queries. The
execution time of the proposed method for each query has also been measured.
The data extracted from the tests show that three independent variables have effect on the proposed
method execution time.

1. Number of available services

2. Number of functional requirements

3. Depth of composition tree

Figures 12, 13 and 14 show the effect of these variables on the composition time. The consistency of
the results of the evaluation based on the experiment and theoretical evaluation can be observed in
these diagrams.

Figure 12: Effect of number of available services on composition time

Figure 13: Effect of depth of composition tree on composition time

Figure 12: Effect of number of available services on composition time

Figure 2 shows the effect of the number of available services and average of inputs/outputs on the
loading time of the available services.
Approximation Factor: The approximation factor is the proximity criterion of the cost of the
composed service produced by proposed method to the cost of the optimal composition. In the
proposed method the only approximate component is Johnson’s algorithm for solving the set cover
problems, so the approximation factor of proposed method is proportional to Johnson’s algorithm.
In the experiments performed on the QoS-WSC data set, for every composition query, the cost of
composed service produced by proposed method is near enough to the cost of the optimal composition
(i.e. no more than the multiplication of best solution cost by the approximation factor).

100 Khani Dehnoi, Araban

Figure 12: Effect of number of available services on composition time

Figure 13: Effect of depth of composition tree on composition time Figure 13: Effect of depth of composition tree on composition time

Figure 14: Effect of number of functional requirements on composition time

 Figure 2 shows the effect of the number of available services and average of

inputs/outputs on the loading time of the available services.

Figure 15: Effect of number of available services and average of inputs/outputs on

loading time

Figure 14: Effect of number of functional requirements on composition time

Figure 14: Effect of number of functional requirements on composition time

 Figure 2 shows the effect of the number of available services and average of

inputs/outputs on the loading time of the available services.

Figure 15: Effect of number of available services and average of inputs/outputs on

loading time

Figure 15: Effect of number of available services and average of inputs/outputs on loading time

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 101

6. Conclusion

In this paper, a new method for automatic web-services composition is proposed. In this regard, the
problem has been formulated as a several set-cover problems and an approximation algorithm has
been applied to solve them. In proposed method, the web-service composition has been performed in
two main phases, the top-down expansion of the composition tree, and the production of composed
service plan by bottom-up traversal of composition tree. The main focus of this research has been
the joint sequential and parallel composition with the aim of producing near-optimal and QoS-aware
composed services.

References
[1] “Web Service Choreography Interface (WSCI) 1.0.” [Online]. Available: https://www.w3.org/TR/wsci/.
[Accessed: 13-Apr-2020].
[2] G. Baryannis and D. Plexousakis, “Automated Web Service Composition?: State of the Art and
Research Challenges,” ICS-FORTH, Tech. Rep, no. October, 2010.
[3] L. A. F. Leite, G. Ansaldi Oliva, G. M. Nogueira, M. A. Gerosa, F. Kon, and D. S. Milojicic, “A
systematic literature review of service choreography adaptation,” Serv. Oriented Comput. Appl.,
vol. 7, no. 3, pp. 199–216, 2013.
[4] J. Rao and X. Su, “A Survey of Automated Web Service Composition Methods,” in Proceedings of
the First international conference on Semantic Web Services and Web Process Composition, Springer-
Verlag, 2005, pp. 43–54.
[5] Y. Chen, J. Huang, and C. Lin, “Partial Selection: An Efficient Approach for QoS-Aware Web
Service Composition,” in 2014 IEEE International Conference on Web Services, 2014, pp. 1–8.
[6] Q. Wu and F. Ishikawa, “Towards Service Skyline for Multi-granularity Service Composition,” in
Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing - IWWISS
’14, 2014, pp. 1–6.
[7] M. Suresh Kumar and P. Varalakshmi, “A Novel Approach for Dynamic Web Service Compo-
sition through Network Analysis with Backtracking,” in Advances in Computing and Information
Technology, 2013, pp. 357–365.
[8] S. R. Ponnekanti and A. Fox, “SWORD?: A Developer Toolkit for Web Service Composition,”
Proc. Elev. Int. World Wide Web Conf., vol. 45, pp. 1–23, 2009.
[9] Y. Yao and H. Chen, “A Rule-Based Web Service Composition Approach,” in 2010 Sixth Inter-
national Conference on Autonomic and Autonomous Systems, 2010, pp. 150–155.
[10] L. Huang, X. Zhang, Y. Huang, G. Wang, and R. Wang, “A Qos Optimization for Intelli-
gent and Dynamic Web Service Composition Based on Improved PSO Algorithm,” in 2011 Second
International Conference on Networking and Distributed Computing, 2011, pp. 214–217.
[11] M. Li, T. Deng, H. Sun, H. Guo, and X. Liu, “GOS: A Global Optimal Selection Approach for
QoS-Aware Web Services Composition,” in 2010 Fifth IEEE International Symposium on Service
Oriented System Engineering, 2010, pp. 7–14.
[12] W. Li and H. Yan-xiang, “A Web Service Composition Algorithm Based on Global QoS Op-
timizing with MOCACO,” in Proceedings of the 2011, International Conference on Informatics,
Cybernetics, and Computer Engineering (ICCE2011), 2011, pp. 79–86.
[13] H. Rezaie, N. NematBaksh, and F. Mardukhi, “A Multi-Objective Particle Swarm Optimization
for Web Service Composition,” in NDT 2010: Networked Digital Technologies, 2010, pp. 112–122.
[14] L. Li, P. Cheng, L. Ou, and Z. Zhang, “Applying Multi-objective Evolutionary Algorithms to
QoS-Aware Web Service Composition,” in ADMA 2010: Advanced Data Mining and Applications,
2010, pp. 270–281.

102 Khani Dehnoi, Araban

[15] J. He, L. Chen, X. Wang, and Y. Li, “Web Service Composition Optimization Based on Improved
Artificial Bee Colony Algorithm,” J. Networks, vol. 8, no. 9, Sep. 2013.
[16] F. Chen, M. Li, and H. Wu, “GACRM: A dynamic multi-Attribute decision making approach
to large-Scale Web service composition,” Appl. Soft Comput., vol. 61, pp. 947–958, Dec. 2017.
[17] F. Chen, R. Dou, M. Li, and H. Wu, “A flexible QoS-aware Web service composition method
by multi-objective optimization in cloud manufacturing,” Comput. Ind. Eng., vol. 99, pp. 423–431,
Sep. 2016.
[18] H. Wang, B. Zou, G. Guo, D. Yang, and J. Zhang, “Integrating Trust with User Preference for
Effective Web Service Composition,” IEEE Trans. Serv. Comput., vol. 10, no. 4, pp. 574–588, Jul.
2017.
[19] X. Liang, A. K. Qin, K. Tang, and K. C. Tan, “QoS-aware Web Service Composition with
Internal Complementarity,” IEEE Trans. Serv. Comput., pp. 1–1, 2016.
[20] Y. Liu, J. Liao, Q. Qi, J. Wang, and J. Wang, “Lightweight approach for multi-objective web
service composition,” IET Softw., vol. 10, no. 4, pp. 116–124, Aug. 2016.
[21] S. Niu, G. Zou, Y. Gan, Y. Xiang, and B. Zhang, “Towards the optimality of QoS-aware web
service composition with uncertainty,” Int. J. Web Grid Serv., vol. 15, no. 1, p. 1, 2019.
[22] S.-L. Fan, F. Ding, C.-H. Guo, and Y.-B. Yang, “Supervised Web Service Composition Inte-
grating Multi-objective QoS Optimization and Service Quantity Minimization,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10966 LNCS, Springer, Cham, 2018, pp. 215–230.
[23] S. Chibani Sadouki and A. Tari, “Multi-objective and discrete Elephants Herding Optimization
algorithm for QoS aware web service composition,” RAIRO - Oper. Res., vol. 53, no. 2, pp. 445–459,
Apr. 2019.
[24] A. Kedia, A. Pandel, A. Mohata, and S. Sowmya Kamath, “An Intelligent Algorithm for Auto-
matic Candidate Selection for Web Service Composition,” Springer, Singapore, 2018, pp. 373–382.
[25] A. Sawczuk da Silva, H. Ma, Y. Mei, and M. Zhang, “A Hybrid Memetic Approach for Fully
Automated Multi-Objective Web Service Composition,” in 2018 IEEE International Conference on
Web Services (ICWS), 2018, pp. 26–33.
[26] M. H. Shirvani, “Web Service Composition in multi-cloud environment: A bi-objective genetic
optimization algorithm,” in 2018 Innovations in Intelligent Systems and Applications (INISTA), 2018,
pp. 1–6.
[27] X. Sun et al., “A Fluctuation-Aware Approach for Predictive Web Service Composition,” in
2018 IEEE International Conference on Services Computing (SCC), 2018, pp. 121–128.
[28] Y. Cheng and C. Ding, “Optimization of web services composition using artificial bee colony
algorithm,” in 2017 10th International Congress on Image and Signal Processing, BioMedical Engi-
neering and Informatics (CISP-BMEI), 2017, pp. 1–6.
[29] D. H. Elsayed, M. H. Gheith, E. S. Nasr, and A. E. D. M. El Ghazali, “Integration of Parallel Ge-
netic Algorithm and Q-learning for QoS-aware Web Service Composition,” in 2017 12th International
Conference on Computer Engineering and Systems (ICCES), 2017, pp. 221–226.
[30] Y. Zhao, W. Tan, and T. Jin, “QoS-aware Web Service Composition Considering the Con-
straints between Services,” in Proceedings of the 12th Chinese Conference on Computer Supported
Cooperative Work and Social Computing - ChineseCSCW ’17, 2017, pp. 229–232.
[31] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach for efficient Web service composition
with end-to-end QoS constraints,” ACM Trans. Web, vol. 6, no. 2, pp. 1–31, May 2012.
[32] V. Gabrel, M. Manouvrier, and C. Murat, “Optimal and Automatic Transactional Web Ser-
vice Composition with Dependency Graph and 0-1 Linear Programming,” in ICSOC 2014: Service-
Oriented Computing, 2014, pp. 108–122.

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 103

[33] B. S, C. Rajendran, and S. RP, “Penalty Based Mathematical Models for Web Service Com-
position in a Geo-Distributed Cloud Environment,” in 2017 IEEE International Conference on Web
Services (ICWS), 2017, pp. 886–889.
[34] M. Ghobaei-Arani and A. Souri, “LP-WSC: a linear programming approach for web service
composition in geographically distributed cloud environments,” J. Supercomput., vol. 75, no. 5, pp.
2603–2628, May 2019.
[35] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for QoS-based web service
composition,” in Proceedings of the 19th international conference on World wide web - WWW ’10,
2010, p. 11.
[36] C.-F. Lin, R.-K. Sheu, Y.-S. Chang, and S.-M. Yuan, “A relaxable service selection algorithm
for QoS-based web service composition,” Inf. Softw. Technol., vol. 53, no. 12, pp. 1370–1381, 2011.
[37] E. Kaldeli, A. Lazovik, and M. Aiello, “Continual Planning with Sensing for Web Service Com-
position,” Artif. Intell., pp. 1198–1203, 2010.
[38] D. Darling Jemima and G. R. Karpagam, “Conceptual framework for semantic web service com-
position,” in 2016 International Conference on Recent Trends in Information Technology (ICRTIT),
2016, pp. 1–6.
[39] F. Wagner, B. Kloepper, F. Ishikawa, and S. Honiden, “Towards robust service compositions in
the context of functionally diverse services,” in Proceedings of the 21st international conference on
World Wide Web - WWW ’12, 2012, p. 969.
[40] L. Wu, Y. Zhang, and Z. Di, “A service-cluster based approach to service substitution of web
service composition,” in Proceedings of the 2012 IEEE 16th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), 2012, pp. 564–568.
[41] M. Rathore, M. Rathore, and U. Suman, “A quality of service broker based process model for
dynamic web service composition,” Proc. 3RD Int. Work. Model. Enterp. Inf. Syst. (EIS’ 07, pp.
1267–1274, 2011.
[42] N. H. Rostami, E. Kheirkhah, and M. Jalali, “An Optimized Semantic Web Service Composition
Method Based on Clustering and Ant Colony Algorithm,” Feb. 2014.
[43] K. Huynh, T. Quan, and T. Bui, “Smaller to Sharper: Efficient Web Service Composition
and Verification Using On-the-fly Model Checking and Logic-Based Clustering,” in International
Conference on Computational Science and Its Applications, 2016, pp. 453–468.
[44] J. Li, Y. Yan, and D. Lemire, “Full Solution Indexing for Top-K Web Service Composition,”
IEEE Trans. Serv. Comput., vol. 11, no. 3, pp. 521–533, 2018.
[45] J. Li, Y. Yan, and D. Lemire, “Full Solution Indexing for Top-K Web Service Composition,”
IEEE Trans. Serv. Comput., vol. 11, no. 3, pp. 521–533, May 2018.
[46] V. A. Permadi and B. J. Santoso, “Efficient skyline-based web service composition with QoS-
awareness and budget constraint,” in 2018 International Conference on Information and Communi-
cations Technology (ICOIACT), 2018, pp. 855–860.
[47] S. Chattopadhyay and A. Banerjee, “QoS constrained Large Scale Web Service Composition
using Abstraction Refinement,” IEEE Trans. Serv. Comput., pp. 1–1, 2017.
[48] Z.-Z. Liu, D.-H. Chu, Z.-P. Jia, J.-Q. Shen, and L. Wang, “Two-stage approach for reliable
dynamic Web service composition,” Knowledge-Based Syst., vol. 97, pp. 123–143, Apr. 2016.
[49] S. Bansal, A. Bansal, G. Gupta, and M. B. Blake, “Generalized semantic Web service composi-
tion,” Serv. Oriented Comput. Appl., vol. 10, no. 2, pp. 111–133, Jun. 2016.
[50] A. Sawczuk da Silva, Y. Mei, H. Ma, and M. Zhang, “Particle Swarm Optimisation with
Sequence-Like Indirect Representation for Web Service Composition,” in EvoCOP 2016: Evolu-
tionary Computation in Combinatorial Optimization, 2016, pp. 202–218.

104 Khani Dehnoi, Araban

[51] A. Sawczuk da Silva, Y. Mei, H. Ma, and M. Zhang, “A memetic algorithm-based indirect
approach to web service composition,” in 2016 IEEE Congress on Evolutionary Computation (CEC),
2016, pp. 3385–3392.
[52] A. Sawczuk da Silva, H. Ma, Y. Mei, and M. Zhang, “A Hybrid Memetic Approach for Fully
Automated Multi-Objective Web Service Composition,” in 2018 IEEE International Conference on
Web Services (ICWS), 2018, pp. 26–33.
[53] Y. Yan, M. Chen, and Y. Yang, “Anytime QoS optimization over the PlanGraph for web service
composition,” in Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC
’12, 2012, p. 1968.
[54] R. Eshuis, F. Lécué, and N. Mehandjiev, “Flexible Construction of Executable Service Com-
positions from Reusable Semantic Knowledge,” ACM Trans. Web, vol. 10, no. 1, pp. 1–27, Feb.
2016.
[55] I. Salomie, V. R. Chifu, and C. B. Pop, “Hybridization of Cuckoo Search and Firefly Algorithms
for Selecting the Optimal Solution in Semantic Web Service Composition,” in Cuckoo Search and
Firefly Algorithm, Springer International Publishing, 2014, pp. 217–243.
[56] C. B. Pop, V. R. Chifu, I. Salomie, and M. Dinsoreanu, “Immune-Inspired Method for Selecting
the Optimal Solution in Web Service Composition,” in RED 2009: Resource Discovery, 2010, pp.
1–17.
[57] Z. Zhang, W. Li, Z. Wu, and W. Tan, “Towards an Automata-Based Semantic Web Services
Composition Method in Context-Aware Environment,” in 2012 IEEE Ninth International Conference
on Services Computing, 2012, pp. 320–327.
[58] Y. Xiao, X. Zhou, and X. Huang, “Automated Semantic Web Service Composition Based on
Enhanced HTN,” in 2010 Fifth IEEE International Symposium on Service Oriented System Engi-
neering, 2010, pp. 59–63.
[59] H. Tong, J. Cao, S. Zhang, and M. Li, “A Distributed Algorithm for Web Service Composition
Based on Service Agent Model,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 12, pp. 2008–2021,
Dec. 2011.
[60] X. Tang, C. Jiang, and M. Zhou, “Automatic Web service composition based on Horn clauses
and Petri nets,” Expert Syst. Appl., vol. 38, no. 10, pp. 13024–13031, 2011.
[61] A. Bekkouche, S. M. Benslimane, M. Huchard, C. Tibermacine, F. Hadjila, and M. Merzoug,
“QoS-aware optimal and automated semantic web service composition with user’s constraints,” Serv.
Oriented Comput. Appl., vol. 11, no. 2, pp. 183–201, Jun. 2017.
[62] F. Moo Mena, R. Hernandez Ucan, V. Uc Cetina, and F. Madera Ramirez, “Web service com-
position using the bidirectional Dijkstra algorithm,” IEEE Lat. Am. Trans., vol. 14, no. 5, pp.
2522–2528, May 2016.
[63] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An Integrated Semantic Web
Service Discovery and Composition Framework,” IEEE Trans. Serv. Comput., vol. 9, no. 4, pp.
537–550, Jul. 2016.
[64] F. Bey, S. Bouyakoub, and A. Belkhir, “Time-Based Web Service Composition,” Int. J. Semant.
Web Inf. Syst., vol. 14, no. 2, pp. 113–137, Apr. 2018.
[65] S.-L. Fan, Y.-B. Yang, and X.-X. Wang, “Efficient Web Service Composition via Knapsack-
Variant Algorithm,” Springer, Cham, 2018, pp. 51–66.
[66] L. Ţucăr and P. Diac, “Semantic Web Service Composition based on Graph Search,” Procedia
Comput. Sci., vol. 126, pp. 116–125, Jan. 2018.
[67] H. Elmaghraoui, L. Benhlima, and D. Chiadmi, “Dynamic web service composition using
AND/OR directed graph,” in 2017 3rd International Conference of Cloud Computing Technologies
and Applications (CloudTech), 2017, pp. 1–8.

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 105

[68] S.-L. Fan, Y.-B. Yang, and X.-X. Wang, “Efficient Web Service Composition via Knapsack-
Variant Algorithm,” Springer, Cham, 2018, pp. 51–66.
[69] A. Bekkouche, S. M. Benslimane, M. Huchard, C. Tibermacine, F. Hadjila, and M. Merzoug,
“QoS-aware optimal and automated semantic web service composition with user’s constraints,” Serv.
Oriented Comput. Appl., vol. 11, no. 2, pp. 183–201, Jun. 2017.
[70] S. Niu, G. Zou, Y. Gan, Z. Zhou, and B. Zhang, “UCLAO* and BHUC: Two Novel Planning
Algorithms for Uncertain Web Service Composition,” in 2016 IEEE International Conference on
Services Computing (SCC), 2016, pp. 531–538.
[71] Bo Zhang, “A heuristic bidirectional search algorithm for automatic Web service composition,”
in 2010 International Conference on Advanced Intelligence and Awareness Internet (AIAI 2010),
2010, pp. 407–411.
[72] S. Deng, B. Wu, J. Yin, and Z. Wu, “Efficient planning for top-K Web service composition,”
Knowl. Inf. Syst., vol. 36, no. 3, pp. 579–605, Sep. 2013.
[73] N. Ukey, R. Niyogi, A. Milani, and K. Singh, “A Bidirectional Heuristic Search Technique for
Web Service Composition,” in ICCSA 2010: Computational Science and Its Applications – ICCSA
2010, 2010, pp. 309–320.
[74] C.-S. Wu and I. Khoury, “Tree-based Search Algorithm for Web Service Composition in SaaS,”
in 2012 Ninth International Conference on Information Technology - New Generations, 2012, pp.
132–138.
[75] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic Web Service Composition with a
Heuristic-Based Search Algorithm,” in 2011 IEEE International Conference on Web Services, 2011,
pp. 81–88.
[76] F. D. O. Jr and J. De Oliveira, “QoS-based Approach for Dynamic Web Service Composition.,”
J. Univers. Comput. Sci., vol. 17, no. 5, pp. 712–741, 2011.
[77] M. Ghobaei-Arani, A. A. Rahmanian, M. S. Aslanpour, and S. E. Dashti, “CSA-WSC: cuckoo
search algorithm for web service composition in cloud environments,” Soft Comput., vol. 22, no. 24,
pp. 8353–8378, Dec. 2018.
[78] H. Fekih, S. Mtibaa, and S. Bouamama, “An Efficient User-Centric Web Service Composition
Based on Harmony Particle Swarm Optimization,” Int. J. Web Serv. Res., vol. 16, no. 1, pp. 1–21,
Jan. 2019.
[79] H. Ye and T. Li, “Web Service Composition with Uncertain QoS: An IQCP Model,” Springer,
Singapore, 2019, pp. 146–162.
[80] S. Deng, Y. Du, and L. Qi, “A Web Service Composition Approach Based on Planning Graph
and Propositional Logic,” J. Organ. End User Comput., vol. 31, no. 3, pp. 1–16, Jul. 2019.
[81] E. Shahsavari and S. Emadi, “Semantic Constraint and QoS-Aware Large-Scale Web Service
Composition,” Shahrood Univ. Technol., vol. 7, no. 1, pp. 181–191, Jan. 2019.
[82] J. Huang, Y. Zhou, Q. Duan, and C. Xing, “Semantic Web Service Composition in Big Data
Environment,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017, pp.
1–7.
[83] J. Alves and J. Marchi, “Web Service Composition: An Agent-Based Approach,” in 2017 Brazil-
ian Conference on Intelligent Systems (BRACIS), 2017, pp. 121–126.
[84] “Set cover problem.” [Online]. Available: https://en.wikipedia.org/wiki/Set cover problem.
[Accessed: 16-Jul-2017].
[85] D. S. Johnson, “Approximation algorithms for combinatorial problems,” J. Comput. Syst. Sci.,
vol. 9, no. 3, pp. 256–278, Dec. 1974.
[86] J. . Beasley and P. . Chu, “A genetic algorithm for the set covering problem,” Eur. J. Oper.
Res., vol. 94, no. 2, pp. 392–404, Oct. 1996.

106 Khani Dehnoi, Araban

[87] R. Jovanovic and M. Tuba, “An ant colony optimization algorithm with improved pheromone
correction strategy for the minimum weight vertex cover problem,” Appl. Soft Comput., vol. 11, no.
8, pp. 5360–5366, Dec. 2011.
[88] S. C. Geyik, B. K. Szymanski, P. Zerfos, and D. Verma, “Dynamic Composition of Services in
Sensor Networks,” in 2010 IEEE International Conference on Services Computing, 2010, no. Scc,
pp. 242–249.
[89] V. Gabrel, M. Manouvrier, K. Moreau, and C. Murat, “QoS-aware automatic syntactic service
composition problem: Complexity and resolution,” Futur. Gener. Comput. Syst., Apr. 2017.
[90] “Journal Citation Reports - Web of Science Group.” [Online]. Available: https://clarivate.com/webofsciencegroup/solutions/journal-
citation-reports/. [Accessed: 22-Mar-2020].
[91] M. Khani and S. Araban, “QoS-WSC,” Mendeley Data, 2020.

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 107

Appendix

Appendix 1: A sample of WSDL file

7 Appendix

Appendix 1: A sample of WSDL file

Appendix 2: A sample of composition query
Appendix 2: A sample of composition query

Appendix 3: A part of expanded composition tree

108 Khani Dehnoi, Araban

Appendix 3: A part of expanded composition tree

Appendix 2: A sample of composition query

Appendix 3: A part of expanded composition tree

Appendix 4: a sample of produced composed service planAppendix 4: a sample of produced composed service plan

Appendix 5: BPMN diagram of composed service

Automatic QoS-aware Web Services Composition based ... 12 (2021) No. 1, 87-109 109

Appendix 5: BPMN diagram of composed service

Appendix 4: a sample of produced composed service plan

Appendix 5: BPMN diagram of composed service

	Introduction
	Literature review
	 Composed Service Plan
	 Composed Service Execution
	 Automatic Web-Services Composition
	 Static or Dynamic Web-Services Composition
	 Quality-Aware Web-Services Composition
	 Sequential and/or Parallel Web-Services Composition
	 Categorization of Web-Services Composition Methods

	 Proposed Solution
	 Set Cover Problem
	 Representing the Problem of Services Composition
	 Top-Down Expansion of Composition Tree
	 Bottom-Up Production of Composed Service Plan
	 Solving a Sample of Web-Services Composition Problem

	 Implementation and Test
	 Evaluation of the Proposed Solution
	 Conclusion

