
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 2303-2331
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2020.21625.2283

Energy aware multi objective algorithm for task
scheduling on DVFS-enabled cloud datacenters
using fuzzy NSGA-II

Saeed Fatehia, Homayun Motamenib,∗, Behnam Barzegara, Mehdi Golsorkhtabaramiria

aDepartment of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
bDepartment of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

Nowadays, energy consumption is curtailed in an effort to further protect the environment as well as
to avoid service level agreement (SLA) breach, as critical issues in task scheduling on heterogeneous
computing centers. Any reliable task scheduling algorithm should minimize energy consumption,
makespan, and cost for cloud users and maximize resource utilization. However, reduction of en-
ergy consumption leads to larger makespan and decreases load balancing and customer satisfaction.
Therefore, it is essential to obtain a set of non-domination solutions for these multiple, conflicting
objectives, as a non-linear, multi-objective, NP-hard problem. This paper formulates the energy
efficient task scheduling in green data centers as a multi-objective optimization problem so that
fuzzy Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) has been applied using the concept
of Dynamic Voltage Frequency Scaling (DVFS). In this procedure, we adopted fuzzy crossover and
mutation for optimal convergence of initial solutions. For this purpose, the binary variance function
of gene values and the mean variance function of objective values are proposed for fuzzy control of
mutation rate, increasing the variation in the optimal Pareto front as well as the correct frequency
variance function of the processors engaged in scheduling to control the crossover rate. This serves
to add the objective of indirect load balancing to the optimization objectives, thereby to replace
the three-objective optimization process with four-objective optimization. In the experiments, the
proposed NSGA-II with fuzzy algorithm is compared against the NSGA-II algorithm, involving three
scheduling strategies namely Green, Time and Cost Oriented Scheduling Strategy. The simulation
results illustrate that the newly method finds better solutions than others considering these ob-
jectives and with less iteration. In fact, the optimal Pareto solutions obtained from the proposed

∗Corresponding Author
Email address: motameni@iausari.ac.ir (Homayun Motameni)

Received: February 2020 Accepted: November 2020

http://dx.doi.org/10.22075/ijnaa.2020.21625.2283

2304 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

method improved the objectives of makespan, cost, energy and load balance by 4%, 17%, 1% and
13%, respectively.

Keywords: Green Computing, Multi Objective Optimization, Pareto solutions, DVFS, Task
scheduling.

1. Introduction

Energy management has always been one of the major concerns in cloud when it comes to supporting
the rapid growth of data centers and computing. Since fossil fuels are the main source of energy
production, energy consumption not only increases the cost of electricity for service providers but
also plays an important role in intensifying CO2 emissions and greenhouse gases resulting in environ-
mental pollution [1]. For instance, medium-sized data centers, such as university centers, consume
about 8,000 KW of electricity [2]. Large companies use computing nodes with DVFS capability, in
an attempt to minimize their dependence on conventional electricity generation [3]. Furthermore,
the emergence of cloud computing has led to vast development of computing resources, where the
maintenance of large-scale infrastructures has been assigned to cloud data centers through centralized
hardware and software management practices, as the technique becomes widespread, cloud comput-
ing moves toward commercialization, where computing and non-computing owners provide resources
to the cloud system with certain financial incentives. In this scenario, remote clients and users will
be able to access resources under the pay-as-you-go model [4]. Basically, the market-based model is
known as one of the crucial economic cloud models. In this model, resources hold prices set either
by their owners or on a supply/demand basis offered to the cloud system.

The efficient execution of tasks on cloud depends in turn on proper scheduling and load balanc-
ing on such a system. Load balancing is a technique for distribution of workload equitably among
computing resources in the cloud environment. This serves to achieve optimal resource efficiency,
maximize Throughput, reduce task completion time (makespan) and avoid excess overload on re-
sources in the cloud system is necessary [5]. Therefore, the proposed scheduling technique on data
centers with DVFS-enabled processors is expected to incur lowest cost at minimal time and energy
consumption for task completion, while satisfying the load balance.

The objectives of minimum cost, minimum execution time, minimum energy consumption and
maximum load balancing are inconsistent so that fast computing resources incur the highest cost
to complete tasks and vice versa. Moreover, the load distribution must be equitably distributed
among computational resources so as to achieve the objective of maximum load balancing. This
exacerbates the energy consumption while increasing the load balance, and reducing the execution
time of tasks. Since the problem of task scheduling on cloud data center processors is of NP Hard, and
given the multiple inconsistent objectives, the adoption of single-objective optimization algorithms
can eliminate scheduling information and deprive users of the right to choose [6]. Therefore, it is
recommended to employ multi-objective optimization scheduling methods that offer users multiple
solutions in the form of optimized Pareto fronts.

In the proposed method, due to the multiple conflicting objectives, we adopt a genetic algorithm
with non-dominated sorting. Moreover, we equipped the proposed algorithm with mutation and
crossover fuzzy operators based on variance function, so that the Pareto front is produced at higher
quality and less iterations. Meanwhile, the included fuzzy operators enhance the intelligence of the
algorithm.

The rest of this paper has been organized as follows. Section 2 reviews related works. Section 3
describes the problem description. Section 4 describes the proposed method Based on fuzzy NSGA-II

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2305

and mathematical models and the multi-objective estimation scheduling model. Results of evaluation
experiments compared with other algorithm are discussed in Section 5. Finally, Section 6 concludes
this paper.

2. Literature Review

Task scheduling in cloud data centers consuming a substantial amount of energy, has remained as
an inconclusive problem in research, because achievement of an ideal state still requires further inves-
tigation. Therefore, the efforts made by numerous researchers have focused on reduction of energy
consumption, makespan and cost, while enhancing resource efficiency and other parameters. In most
previous efforts, the explorations to solve this problem have been single-objective, making decisions
on optimization prior to the optimization operation. These approaches adopt decisions regardless
of possible choices about solutions. On the other hand, it is not easy to build a single objective
function by combining several objective functions, because there might be conflicting, contradic-
tory objectives in such problems. In modern approaches, multi-objective optimization algorithms
have replaced single-objective ones. Pareto’s optimal solutions in multi-objective optimization allow
making a decision and choosing the right solution from among several optimal solutions available.
Genetic algorithm is one of the most efficient optimization algorithms to cover the problem of task
scheduling in heterogeneous systems. Therefore, multi-objective genetic algorithm is preferable over
other alternatives. One of the most efficient types of multi-objective genetic algorithms is known as
NSGA-II.

Barzegar et al. [1] proposed a dual-phase, time- and energy-aware scheduling algorithm dubbed
EATDCDA to schedule directed acyclic graphs on DVFS-capable processors at the cloud. In the
first phase of the new method, a smart combination of duplication and clustering strategies focus
on reducing makespan and energy consumption while maintaining a set limit for throughput. After
determining the critical path and specifying the non-critical task in the second phase, the slack
time of each non-critical task was calculated and then the frequencies of DVFS-capable processors
were scaled down without prolonging the task execution times. The authors in [7] suggested NSGA-
II together with controlled elitism for task scheduling with dual-objective optimization. The first
objective is to minimize makespan while the second objective is to minimize flowtime. One of the
key points of this procedure is the control of elitism. Even though it does leave a significant effect
on the quality of solutions, the adoption of multi-objective optimization in the problem of task
scheduling in heterogeneous computational systems is considered a new venture. The authors in [8]
investigated the problem of scheduling in distributed systems using a non-dominated multi-objective
particle swarm optimization algorithm, where the two conflicting objectives of makespan and flowtime
are optimized simultaneously. In [9], the authors intended to solve the problems of resource load
balancing in a hybrid technique, which combines two algorithms of SA and GA. This provides an
optimal strategy for scheduling independent tasks in grades based on the asexual Genetic-Simulated
Annealing Clonal Algorithm (GSACA). The results of the newly proposed method have demonstrated
desirable performance compared to the genetic algorithm and simulated annealing algorithm. In
[10], the authors examined a hybrid approach to scheduling tasks while maintaining a load balance
in a distributed environment. This approach mainly attempts to achieve the task assignments with
minimum execution time and maximum node productivity and a good load balance among the
nodes. As representatives of both classes, the FCFS algorithm has been combined with the genetic
algorithm to cooperate. Jin et al. [11] proposed a polynomial solution that was called Speed Scaling
(SS) for task scheduling with polynomial complexity on restricted parallel computing nodes. Piatek
et al. [12] proposed an energy model that can be effectively used to estimate performance metric

2306 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

and energy consumption with DCworms simulation framework. Ding et al. [13] proposed algorithm
with deadline constraint, EEVS and develop new VM scheduler to reduce energy consumption. A
taxonomy of resource management techniques with Performance evaluation parameters, evaluation
platforms and design goals was presented in [5, 14] by considering conflicting metrics includes energy
aware, SLA-aware, network load aware, load balancing, revenue handling and hybrid cloud. A green
renewable energy scheduling algorithm in the data center when considering the environment respect,
system cost and the energy crisis was proposed by Lei et al. [15] to increase the utilization of
renewable energy as well as the task satisfaction rate and reduce the system cost in a cloud data
center. Sathya and GaneshKumar [16] proposed a multi-objective evolutionary model to regulate
the frequency and voltage of the VM so that NSGA-II was used together with DVFS to achieve a
set of non-domination solutions. Furthermore, the proposed model predicted the VM based on the
properties of tasks and processors using Artificial Neural Network (ANN). Sathya and GaneshKumar
[16] also investigated the impact of simultaneous using NSGA-II and ANN as a further discussion.

Literature also reveals works on the usage of DVFS for proposing task slack time algorithms
[17, 18]. A comprehensive review on how to utilize the DVFS technique in cloud data centers has
been published in [19]. In this work, the opportunity of applying DVFS technique in task scheduling
problems towards reduction of energy consumption without violating the user’s SLA was discussed.
A hybrid discrete particle swarm optimization (HDPSO) algorithm for solving scientific workflow
scheduling on heterogeneous platforms has been presented [20]. The notable procedure of HDPSO
is to call Hill Climbing algorithm randomly during execution of main DPSO.

3. Problem description

Scheduling tasks on computational data centers with a market-based cloud economic model pur-
sues several key objectives. Firstly, it intends to minimize the time required to complete the set of
tasks delegated to the processors, known as makespan, which depends on the nature of the distributed
computing systems [21, 22]. In conventional methods, this objective is covered by default. The sec-
ond objective involves the cost of executing user tasks in the cloud. In a market-based economic
cloud model, resource owners pre-set their service prices as per the amount of resources consumed
by users. Thus, the cost of task execution is of utmost importance in the cloud computing with
a market-based economic model. There is another objective known as load balancing considered
in optimization of the task scheduling problem. In fact, load balancing is addressed as one of the
critical objectives of the problem. Moreover, one of the key green objectives is the amount of energy
consumed by cloud data center processors. The noteworthy point is that the task scheduling problem
in mainstream methods is optimized through an objective function. Given the multiple, inconsistent
objectives, new approaches to multi-objective optimization are necessary. After all, integration of
inconsistent objectives into a single one becomes difficult and gives rise to potential fault when the
objectives do not vary at identical rates.

In the discussion of cost, time, and energy, considered in cloud computing with a market-based
economic model, the higher the cost of task execution, the lower the computational time, and higher
the energy consumption. Consequently, the longer the computation time, the less expensive the
processors dedicated to execution, and thus the cost of computing and power consumption will be
mitigated. This is an instance of conflicting objectives with non -identical variation rates. In an effort
to increase time and reduce cost, for example, we may find a solution where there is insignificant cost
reduction at longer times. In this scenario, the user will experience high execution cost and time. As
for load balancing, the amount of energy consumption and execution time, greater load balancing
implies that tasks are distributed evenly on the processors. As a result, the amount of energy

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2307

consumed by the processors increase, whereas proper load balancing leads to shorter task execution
time on cloud data center processors. Therefore, this problem is resolved through multi-objective
optimization algorithms attempting to generate multiple solutions.

GA is one of the best possible strategies to tasks scheduling in clouds, since its efficiency has
been proven for solving the scheduling and dynamic load balancing problems in distributed parallel
systems. Due to the multiple, conflicting objectives, we adopt a multi-objective genetic algorithm
known as NSGA-II, which can achieve Pareto front [21, 23]. In addition to optimizing price, time,
energy and load balance, the proposed algorithm enables users to choose one or more alternatives
available by providing optimal or near-optimal various solutions. Additionally, we equipped the
proposed algorithm with fuzzy genetic operators so as to generate a higher quality Pareto front with
less iteration. In the proposed approach, we also consider cloud data centers consisting of DVFS-
enabled processors. This allows them to operate with different voltage-frequency pairs, which in turn
reduces power/energy consumption.

4. Proposed Method Based on Fuzzy NSGA-II

NSGA-II is a multi-objective evolutionary optimization algorithm which finds Pareto solutions
from initial population through consecutive iterations [24]. Generally the objective parameters have
conflicts within the fitness function. This algorithm relies on the principles of elitism to maintain vari-
ation, emphasizing non-dominated solutions and forming the Pareto front as optimal Pareto solutions.
NSGA-II adopts two effective strategies, including elite preservation and variation preservation over
generations. The variation preservation, i.e. niching technique, is used to assign variation rankings
to all subjects engaged in a non-dominated front. The members falling in any non-dominated fronts
in a lower density area are assigned higher rankings. The crowding distance criterion is adopted to
calculate the mean distance between two solutions on each side of the particular solution is achieved
along each objective vector. Therefore, NSGA-II has a unique advantage over other multi-objective
optimization algorithms [7].

In optimizing the problem of scheduling standalone tasks in a market-based cloud computing, we
first optimize the objectives of makespan, price, and energy through NSGA-II. We also propose the
idea of I AM HERE!!!!I AM HERE!!!!mutation and crossover fuzzy operators and compare it against
fixed rate operators in an effort to generate Pareto optimal solution at faster rate, minimal iteration
and higher quality. For this purpose, we propose several functions based on problem objectives in
order to achieve fuzzy control of mutation and crossover rates. Then, load balancing is indirectly
added to the optimization objectives. The fuzzy function inputs at this stage represent the variance
between the fitness’s of population subjects as well as the variance of subject genes indicating the
level of difference between the values of genes. This serves to increase variation in the optimal Pareto
front and its faster formation. The output of this fuzzy function determines the mutation rate.

In the next stages, the load balancing is indirectly considered to further improve the algorithm’s
efficiency. Using the NSGA-II and variance-based fuzzy crossover operator, the four-objective op-
timization is replaced by a three-objective optimization process. For this purpose, a function is
designed to indirectly optimize load balancing for fuzzy crossover rate control. The fuzzy function
inputs at this stage include the variance between subject fitnesses together with the variance of the
number of processors engaged in scheduling. The first input is used to increase variation in the Pareto
optimal front while the second input is used together with the makespan objective to indirectly apply
load balance. The output of this fuzzy function determines the crossover rate in the population of
each generation.

2308 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

4.1. Solution Encoding

Each solution is represented as a two-dimensional vector with a length equal to the number of
tasks. For n-task and m-processor scheduling problem, we consider a chromosomes of length n.
The values in the first row of the chromosome range from 0 to m-1, indicating the processor index
assigned to the task corresponding to that gene. The values of each gene in the second row represent
the voltage-frequency level of the processor assigned to the task. This encoding strategy has been
illustrated in Figure 1, while the voltage-frequency levels of the processor equipped with the DVFS
technique can be viewed in Table 1.

Table 1: Voltage-frequency pairs of AMD Athlon-64 processors [3]

Level Frequency (GHz) Voltage (V) Speed (MIPS) Relative speed Power
0 0.8 0.9 4000 40 2.03
1 1.0 1.0 5000 50 3.85
2 1.2 1.1 6000 60 4.84
3 1.4 1.2 7000 70 5.95
4 1.6 1.3 8000 80 6.35
5 1.8 1.4 9000 90 7.2
6 2 1.5 10000 100 8.4

Figure 1: Schematic overview of the chromosome used for the scheduling problem

For example, as shown in Figure 1, the 6th task is assigned to the 4th computing node with 1.2 V
and 1.4 GHz, where the corresponding processing speed and relative processor speed are 7000 MIP
and 70%, respectively.

In order to generate the initial population to a number of k, a random number between 0 and
m-1 is assigned for each gene from the first row of the chromosome, while a random number between
0 and L-1 is assigned for each gene from the second row of the chromosome. Then, the k number of
chromosomes this process is iterated until the initial population is generated.

4.2. Mathematical modeling of the system

This section provides formal definitions for the system’s architecture model, task model, resource
model, energy model, and energy-aware multi-objective task scheduling model in green cloud data
centers used in implementing our proposed method. The notations have been summarized in Table
2.

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2309

Table 2: Definitions of notations
Notation Definition

ti The task ith
DC Data Center

N or n The number of tasks (nodes) in DAG
MIPS Million Instruction Per Second
MI Million Instruction

et(ti, pi) The execution time of task ith on processor jth
P Power consumption

Pdynamic Dynamic power consumption
Pstatic Static power consumption
E Energy consumption
k Number of initial population
Ti Size of ith task in terms of MI
et The communication time to transfer message dij between task ti and tj
Texe Execution time of task i on processor j
SPj Processing speed of processor j in terms of MIPS
j Processor index

prj Source unit price j per second
Price(j) Cost of executing task i on source j
PF Pareto Front set of members
D(k) Then number of kth member genes with values different from the

corresponding genes in the best number
σ2 Mean variance of objective values
A1 Input membership function for binary variance of gene values
A2 The input membership function for the correct mean variance of sources involved
B Input membership function for mean variance of objective values

PXover Output membership function for crossover rate
α Expected mean value of each processor frequency
Li Frequency of each processor in scheduling
Aj Set of task indices assigned to processor j
|j| Number of computing nodes
|k| Number of virtual machines in each computing node
|m| Number of processors in each virtual machine

(vj, fj) Voltage and frequency pairs of processor
vhighj

Highest voltage of jth processor
fhighj

Highest frequency of jth processor

4.2.1. Proposed system architecture model

This architecture consists of batch tasks, a data center with m number of heterogeneous, inde-
pendent computing nodes, and a global scheduler. At any given time, an application is subdivided
into multiple tasks and sent to the cloud data center global scheduler. After optimizing the task
scheduling problem based on scheduling information and preset objectives, the cloud scheduler offers
the user different schedules. Being informed of the energy consumed, the price and time to complete
a task in the proposed schedules, the user or decision-maker selects one execution method.

2310 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

Then, the user-selected scheduling is executed and the tasks are assigned to one of the processors
equipped with DVFS-enabled, which enables processors to operate with multiple voltage-frequency
pairs. Each processor in computing nodes has a local queue. Computing nodes receive tasks for exe-
cution from their local queue. The post-completion results of execution are integrated and delivered
to the user by the cloud scheduler. Upon approved payment of task execution cost, the user will
receive the result of application execution at the time set in scheduling (Figure 2).

Figure 2: Architecture model of the proposed system for Tasks scheduling in heterogeneous cloud data center

4.2.2. Task model

Each application is composed of several independent and heterogeneous tasks represented by
T = {t1, t2, · · · , tj, · · · , tN}. Each task is executed uninterruptedly on only one processor. The size
of tasks is selected randomly within one range (minimum ... maximum) so that the distribution of
task sizes will be uniform.

4.2.3. Computational Resource Model

Each cloud computing node is a single processor with four features based on economic cloud
computing principles as follows:

� The processing speed in millions of instructions per second,

� The price of each processor in terms of money per second,

� The specific tasks on each processor available prior to the scheduling execution. Once the task
is completed, it begins to complete a new task.

� The number of voltage-frequency pairs per processor along with the amount of power consumed
per level.

The current speed, price and load of each processor are each determined randomly within a specific
interval. For this purpose, a range (minimum ... maximum) is set for each factor and then produced

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2311

uniformly. The prices of processors are directly proportional to their processing speeds. In other
words, the higher the processing speed of a processor, the higher the price. Considering the speeds
and generating random prices, they are arranged in an ascending order to be directly proportional
to each other.

4.2.4. Energy model

Generally cloud data centers incorporates CMOS circuits based processors with dynamic and
static power consumption based on Equation (4.1).

P = Pdynamic + Pstatic. (4.1)

Execution of tasks consume processors computation energy which can be calculated solely with
dynamic power consumption through Equation (4.2).

Pdynamic = ACv2f (4.2)

DVFS-enabled processors are exploited to in HPC systems.
The new approaches are used in reduction of energy consumption such as DVFS-enabled proces-

sors exploited in HPC systems. The execution of DVFS-enabled processors are based on two factors
namely; voltage and frequency (vj, fj).

Table 1 shows an example for the voltage-frequency pairs of AMD Athlon-64 processors at seven
DVFS levels.

The voltage and frequency of processor j which has k number of DVFS levels is calculated by
Equation (4.3).

(vj, fj) =
{
(vlowj

, flowj
) = (v1j, f1j) < (v2j, f2j) < · · · < (vkj, fkj) = (vhighj

, fhighj
)
}
. (4.3)

The maximum power consumption of processor Pproc.highest occurs when it operates at maximum volt-
age vhighest and frequency fhighest. Therefore, it can be concluded that the active power consumption
for a processor under voltage and frequency set (vj, fj) is calculated through Equation (4.4).

Pprocj = Pproc.highest ×
v2j × fj

v2highest × fhighest

Pproc.highest = ACv2highestfhighest (4.4)

Given the scheduling n tasks on DVFS-enabled processors, the total energy consumption can be
calculated through Equation (4.5).

Pprocs.active =
n∑

i=1

Pproc.highest

(
k∑

j=1

v2j × fj

v2highest × fhighest

)

Eprocs.active =
n∑

i=1

Pproc.highest

(
k∑

j=1

v2j × fj

v2highest × fhighest
× et

(
ti, pm(vj, fj)

))
(4.5)

4.2.5. Multi-objective scheduling model

This paper mainly focuses on the four objectives of reducing total energy consumed, reducing
the time required to execute tasks, reducing the cost, and increasing the load balance. In fact, the
proposed method considers the efficiency of processor utilization. The objectives of the proposed
model have been shown below.

2312 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

4.2.5.1. Total energy consumption. Energy consumption should be minimized in cloud data centers
so as to save energy. Since one of the main objectives of this paper is to reduce the energy consumed
by processor during the execution of tasks, this has been formulated through Equation (4.6).

F1(X) = min {Eprocs.active} = min

{
n∑

i=1

Pproc.highest

(
k∑

j=1

v2j × fj

v2highest × fhighest
× et

(
ti, pm(vj, fj)

))}
.

(4.6)

4.2.5.2. Makespan of tasks. Referring to the longest time to complete tasks on cloud data center
processors, makespan is a parameter involved in scheduling as an objective function. Suppose Ti

represents the size of ith task in terms of MI and processing speed of each processor may turn low
or high (SPj is the processing speed of processor j in terms of MIPS). Therefore, the execution time
of task i on processor j is obtained by Equation (4.7).

texe(ti, P rocj) =
Ti

SPj(vkj, fkj)
(4.7)

Suppose 10 tasks are assigned to 5 heterogeneous processors, each operating at a voltage-frequency
pair level. The tasks and processors come with sizes and speeds shown in Tables 3 and 4, respectively.
For each processor, there will be a time to complete the tasks assigned accordingly. Figure 3 shows
the completion time of each processor.

Table 3: Example of tasks and their sizes

Tasks T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Size (MI) 60 36 54 46 62 34 32 58 40 24

Figure 3: Example of task completion times on processors

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2313

T
ab

le
4
:
E
x
a
m
p
le

o
f
p
ro
ce
ss
o
rs

a
n
d
th
ei
r
p
ro
p
er
ti
es

[?
]

N
am

e
of

A
M
D

A
th
lo
n
-6
4

A
M
D

T
u
ri
on

M
T
-6
4

A
M
D

op
te
ro
n
22
18

In
te
l
co
re

i3
-5
40

S
y
n
th
et
ic

p
ro
ce
ss
or

(N
o.
1)

(N
o.
2)

(N
o.
3)

(N
o.
4)

(N
o.
5)

V
ol
ta
ge

0.
9,

1.
0,

1.
1,

1.
2,

0.
9,

0.
95
,
1,

1.
2,

1.
22
5,

1.
35
,

0.
75
,
1,

1.
3,

0.
9,

1,
1.
05
,

(V
)

1.
3,

1.
4,

1.
5

1.
05
,
1.
25

1.
5,

1.
6

1.
6,

1.
8

1.
1,

1.
15
,
1.
2

F
re
q
u
en
cy

0.
8,

1.
0,

1.
2,

1.
4,

0.
3,

0.
4,

0.
5,

0.
3,

0.
4,

0.
53
3,

0.
15
,
0.
4,

0.
6,

0.
5,

0.
6,

0.
7,

(G
H
z)

1.
6,

1.
8,

2
0.
9,

1
0.
6,

0.
66
7

0.
8,

1
0.
8,

0.
9,

1
P
ow

er
2.
03
,
3.
85
,
4.
84
,
5.
95
,

0.
97
,
1.
64
,
2.
05
,

1.
3,

1.
9,

3.
5,

0.
08
,
0.
17
,
0.
4,

2.
03
,
3,

3.
85
,

(w
)

6.
35
,
7.
2,

8.
4

3.
29
,
5

4.
2,

5.
3

0.
9,

1.
6

4.
84
,
5.
95
,
7.
2

S
p
ee
d

40
00
,
50
00
,
60
00
,
70
00
,

30
00
,
40
00
,
50
00
,

40
00
,
50
00
,
60
00
,

40
00
,
50
00
,
60
00
,

20
00
,
30
00
,
40
00
,

(M
IP

S
)

80
00
,
90
00
,
10
00
0

60
00
,
70
00

70
00
,
80
00

80
00
,
10
00
0

50
00
,
60
00
,
70
00

2314 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

The execution time of each task on the corresponding dedicated processor will be obtained through
Equation (4.7) according to Figure 3 below:

texe(1, 2, 1) = 60/4 = 15, texe(2, 5, 5) = 36/7 = 5.15, texe(3, 1, 2) = 54/6 = 9,
texe(4, 3, 1) = 46/5 = 9.2, texe(5, 3, 3) = 62/7 = 8.8, texe(6, 4, 0) = 34/4 = 8.5,
texe(7, 5, 2) = 32/4 = 8, texe(8, 1, 5) = 58/9 = 6.4, texe(9, 4, 0) = 40/4 = 10,
texe(10, 4, 4) = 24/10 = 2.4

Before calculating makespan, we need to specify the time required to complete tasks on each processor
so that the longest ones can be considered as makespan. Hence, we obtain the time to complete tasks
on each processor using Equation (4.8):

tcomplete(j) =

∑
k∈Aj

Tk

SPj(vkj, fkj)
, 1 ≤ j ≤ m (4.8)

Where, A(j) is a set of task indices assigned to processor j. Now we can calculate makespan:

F2(X) = Makespan = Min {Max {tcomplete(j)}} 1 ≤ j ≤ m (4.9)

In Figure 7, for example, T6, T9 and T10 tasks are assigned to processor P4. Using Equation (4.9),
the time taken to complete tasks on the processor equals:

tcomplete(1) = 9 + 6.4 = 15.4

tcomplete(2) = 15

tcomplete(3) = 9.2 + 8.8 = 18

tcomplete(4) = 8.5 + 10 + 2.4 = 20.9

tcomplete(5) = 8 + 5.15 = 13.15

According to Equation (4.18), we obtain the makespan, the value of which is 20.9 in the previous
example.

Makespan = Max {15.4, 15, 18, 20.9, 13.15} = 20.9

One of the optimization objectives is to minimize Equation (4.9), i.e. to complete the tasks assigned
to the processors within the shortest possible time.

4.2.5.3. Price minimization . The third objective function is the total cost of executing the tasks
that must be minimized. Since the cloud-based payment service model is pay-as-you-go, Suppose
Prj is the unit price of processor j per second of usage. Therefore, the cost of executing ti on the Pj

is obtained through Equation (4.10), while the total cost for scheduling, which represents the cost of
executing a chromosome in the population, is obtained through Equation (4.11).

Price(j) = tcomplete(j)× Prj (4.10)

F3(X) = Total Cost =
m∑
j=1

Price(j) (4.11)

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2315

4.2.5.4. Maximization of load balance. Load balancing refers to a fair distribution of loads on data
center processors, maximizing efficiency and minimizing makespan. To achieve this, the distribution
of load on all processors must be equal, requiring that the load difference between a processor with the
heaviest and lightest loads should be minimized. In order to calculate the load balance, the expected
productivity of each processor is first calculated by dividing the time taken by each processor to
complete the task in accordance with Equation (4.12).

Procu(j) =
tcomplete(j)

Makespan
1 ≤ j ≤ m. (4.12)

The mean high processor efficiency does not always imply an optimal load balance [24]. Hence,
we need to calculate the mean processor efficiency according to Equation (4.13).

P =
(
∑m

j=1 Procu(j))

m
. (4.13)

By minimizing the squared deviations from the mean Pu(j), we can improve the load balancing
of processors through Equations (4.12) and (4.13) [24]. Hence, the fourth objective function serves
to maximize the load balance obtained by minimizing Equation (4.14).

F4(X) = Pmsd =

√∑m
j=1(Procu(j)− P)2

m
(4.14)

4.3. Fuzzy Genetic Operators

Based on the simulations, high mutation rate optimizes objectives with larger values more than
objectives with smaller values. Furthermore, the low mutation rate focuses more on the optimality
of objectives whose values are smaller than the others. Since the newly proposed method has four
objectives with different values of magnitude, it is a desired to optimize all objectives.

In this paper, we propose a fuzzy method to determine mutation rates, which include low mutation
rates for focusing on objectives with smaller magnitudes and high mutation rates for focusing on larger
magnitudes. Furthermore, the mutation rate must be directed not to undermine the quality of the
solutions. In addition to a useful and uniformly optimal concentration on all objective functions with
very different values, it will lead to rapid converge to the optimal Pareto solutions. We therefore
define functions whose values have a significant impact both on the convergence of the algorithm and
on the generation of higher quality, varied solutions.

Furthermore, the fuzzy crossover rate based on the variance of the number of processors involved
in scheduling can help optimize makespan to direct load balancing toward optimality and save more
on power consumption. In fact, when we optimize load balance indirectly, we need to search for
and discover new areas that, although not based on the three intended objectives, can provide load
balancing solutions that are better than in other points. We carried this out by proposing variance-
based functions for fuzzy system inputs and applying its output as crossover rate.

4.3.1. Fuzzy mutation operator

In this paper, we adopt a standard mutation with bit mutations of one solution based on the
probability of bit mutation. The probability of mutation in the population, i.e. the number of genes
selected for mutation as well as the probability of bit mutation, is obtained from the output of the
fuzzy system designed for that purpose.

Two functions are designed to calculate variance. The first function calculates the binary variance
between the values of genes on different chromosomes in order to enhance variation and consider all

2316 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

modes of task assignment to processors. This function captures the chromosomes on the Pareto front
as input, selects the best one for mean fitness, and then compares the genes of other chromosomes
against those of the best chromosome. Meanwhile, it generates the binary variance between the values
of chromosome genes as output within interval [0,1]. The second function inputs are also members
of the Pareto Front. This function calculates the variance of the mean fitness of chromosomes and
ensures variation among the members based on their objective values. This function also produces
an output within interval [0,1]. With these two inputs at hand, we design a fuzzy system that, based
on fuzzy rules, produces a suitable output to determine the probability of mutation in the number
of chromosome genes.

An example of the mutation operator used in this paper has been illustrated in Figure 4. This
operator randomly selects a task from the task set (a gene from the set of chromosome genes), and
then randomly assigns a new processor and a pair of new active voltage voltages to the selected task.

Figure 4: An example of mutation operator

4.3.1.1. Binary variance function of gene values. In order to create more variation among members
of the population, as chromosomes move toward uniformity, mutation rates can be prevented by
increasing mutation rates. In contrast, when chromosome variation is high, large mutation rates may
decrease such variation. By reducing the mutation rate, high variation among population members
can be retained. To this end, we can control and direct mutation rates by defining a function that
represents the variance of gene values. The function designed in the new method receives members
of the Pareto front as inputs and gives as outputs the binary variance of the gene values. Therefore,
the best member must be selected in terms of mean fitness. Since the magnitudes of optimization
objectives are not identical, we first normalize them through Equations (4.15), (4.16), (4.17) and
(4.18). Where, PF represents the set of members in the Pareto Front.

NormalMakespan(k) =
Makespan(k)−Makespanmin

Makespanmax −Makespanmin
k ∈ PF (4.15)

NormalTotalEnergy(k) =
TotalEnergy(k)− TotalEnergymin

TotalEnergymax − TotalEnergymin
k ∈ PF (4.16)

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2317

NormalTotalCost(k) =
TotalCost(k)− TotalCostmin

TotalCostmax − TotalCostmin
k ∈ PF (4.17)

NormalPmsd(k) =
Pmsd(k)− Pmin

msd

Pmax
msd − Pmin

msd

k ∈ PF (4.18)

Then, we obtain their mean values through Equation (4.19). The chromosomes with the best mean
of objective values I AM HERE!!!!I AM HERE!!!!are selected and used to calculate the variance of
other samples (Equation (4.20)).

AvgObjectives(k) =

NormalMakespan(k)+NormalTotalEnergy(k)+NormalTotalCost(k)+NormalPmsd(k)

4
∀ k ∈ PF

(4.19)

BestMember = min {AvgObjectives(PF)} (4.20)

Then, for each member of the Pareto front, the number of genes with different values compared with
the corresponding gene value in the best member should be calculated. For this purpose, each gene
from each chromosome is compared against the genes in the best chromosome. The calculation is
done for the rest of the members in the Pareto front accordingly. Figure 5 shows that there are 6
unequal genes compared with the best chromosome.

Figure 5: An example of how binary variance is calculated for subject genes

After the C value is calculated for all chromosomes, according to Equation (4.21), the binary
variance of the gene values for each chromosome is obtained, which is between zero and one. The
closer this value is to one, the better the mean of objective values for the chromosome. Then,
according to Equation (4.22), the mean of these variances is calculated as the input of the fuzzy
system.

GeneBinV ariance(k) =
C(k)

n
(4.21)

MutFISinput1 =

∑
k∈PF GeneBinV ariance(k)

P − 1
(4.22)

2318 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

Where, n is the number of tasks or genes available in a chromosome, P-1 is the number of chromosomes
found in the Pareto front except for the best member, and C(k) is the number of genes in the kth
member whose value is different from the corresponding genes in the best member.

The large value for the correct variance indicates a high degree of variation between the chromo-
some genes belonging to the Pareto front, whereas the small value indicates low variation between
the chromosome genes and low variation between the chromosomes themselves. Therefore, there
is an inverse correlation between mutation rate and the value of binary. Since these concepts are
expressed in fuzzy terms, we employ a fuzzy system to control the mutation rate.

4.3.2. Mean variance function of objective values

This function similarly receives members of the Pareto front as input in each generation and
produces the mean variance of objective values as output. In this case, we first normalize the values
of the optimization objectives, and then obtain their mean values. There is now a vector where every
element is the mean of the corresponding objective values in each member of the Pareto front. In
order to calculate the variance, we need to obtain the mean value from those means. The variance of
mean values for the objectives of individual members are obtained by Equations (4.23) and (4.24).

µ =

∑
k∈PF AvgObjectives(k)

P
(4.23)

σ2 =

∑
k∈PF (AvgObjectives(k)− µ)2

P
. (4.24)

This variance indicates the difference between the mean of objective values in different members
of the Pareto front, so it has an inverse effect on the mutation rate, because when the mean variance
of the objective values is low, the variation in the objective values also low. Hence, the mutation
rate must be increased to enhance the variation of objective values.

Similarly, when the variance is high, it indicates good variation in the mean objective values
among the Pareto front members. As the mutation rate decreases, the variation is maintained at
a desirable level. In order for the output of this function to be used in the fuzzy system decision-
making, it must have specific upper and lower bounds. Using Equation (4.25), we normalize this
variance before insertion into the fuzzy system.

MutFISinput2 =
σ2 − σ2

min

σ2
max − σ2

min

. (4.25)

In this equation, as in (4.15) to (4.18), we used maximum and minimum values for normalization.
Therefore, the output value of this function will eventually be between zero and one.

4.3.2.1. Designing a fuzzy system to determine fuzzy mutation rate. After calculating the fuzzy
system, two membership functions must be designed for these inputs. Table 5 shows the input
and output membership functions for mutation rate. Then, the set of fuzzy rules must be defined
for this purpose (Table 6). This fuzzy inference system produces values ranging from zero to 0.5 for
the mutation rate.

In order to calculate the output of fuzzy system, the Mamdani method and the center of gravity
technique are adopted. The output of the designed fuzzy system yields a fuzzy adaptive mutation
rate, which varies according to the features considered from the Pareto front solutions.

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2319

Table 5: Input and output membership functions for determining the mutation rate.

Variable Fuzzy values of membership functions Number of membership functions Type of variable

VGV
very low, low, medium, high,

5 Input
very high

VAOV low, medium, high 3 Input

PM
very low, low, medium, high,

5 Output
very high

Table 6: Fuzzy rule for the fuzzy mutation rate system

If GV is very low and VAOV is low then PM is very high
If GV is very low and VAOV is medium then PM is high
If GV is very low and VAOV is high then PM is medium
If GV is low and VAOV is low then PM is high
If GV is low and VAOV is medium then PM is medium
If GV is low and VAOV is high then PM is medium
If GV is medium and VAOV is low then PM is high
If GV is medium and VAOV is medium then PM is medium
If GV is medium and VAOV is high then PM is low
If GV is high and VAOV is low then PM is medium
If GV is high and VAOV is medium then PM is low
If GV is high and VAOV is high then PM is very high
If GV is very high and VAOV is low then PM is medium
If GV is very high and VAOV is medium then PM is medium
If GV is very high and VAOV is high then PM is very low

4.3.3. Fuzzy crossover operator

This operator has been designed to reduce computations in four-objective optimization so as
to indirectly solve the problem of load balancing in the computing cloud without any optimization
computation, and with only optimizing three other objectives.

The chosen parent chromosomes are provided by that crossover operator in order to produce the
offspring chromosomes. The chosen parent chromosomes are provided by that crossover operator in
order to produce the offspring chromosomes. This similarly belongs to a grouping crossover operator.
In this procedure the operator initially matches up all chromosome pairs in the population. On a
random basis, the k th (1 ≤ k ≤ m) node is selected by the operator as the crossover point.
The crossover operator copies the allocation information of every single task from the first parent
chromosome initially. Then, the allocation information of the task related to the latter km nodes
in the second parent is updated based on the second parent chromosome. The second offspring is
constructed accordingly so that the second parent is responsible for providing allocation information
of all tasks in second offspring and the allocation information of the tasks related to the former k
nodes in the first parent chromosome is copied from the first parent chromosome. An example of the
crossover operator has been illustrated in Figure 6.

The second offspring is constructed accordingly so that the second parent is responsible for pro-
viding allocation information of all tasks in second offspring and the allocation information of the
tasks related to the former k nodes in the first parent chromosome is copied from the first parent
chromosome. An example of the crossover operator has been illustrated in Figure 6.

2320 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

Figure 6: An example of crossover operator

The fuzzy system of this operator utilizes two effective inputs to create variation and load bal-
ancing, and ultimately determine the probability of crossover. Two functions are used to calculate
the variance. One is the mean variance function of the objective values and the other is the function
of calculating the correct variance of the number of processors involved in scheduling.

4.3.3.1. Correct variance function for the frequency of processors involved in scheduling. The inputs
of this function in each generation include Pareto front members. Since each processor is assigned
multiple tasks. In simulation of the newly proposed algorithm with four objectives considering load
balance indirectly, this function calculates the correct variance of the frequency of processors, designed
to distribute tasks to processors in an attempt to reduce makespan and achieve load balance.

The correct variance function of the frequency of processors involved in scheduling is defined
through dividing the number of tasks by the number of processors. This calculates the expected
mean value of the frequency of each processor in scheduling, which is denoted by . Then, the
frequency of each processor is calculated in the current scheduling. Given the data, we calculate the
correct variance of the frequency of processors. In this method, the sum of the absolute magnitude
of the difference between the data and the mean value is divided by the number of tasks. The output
will be a number between zero and one, so that values close to zero represent an almost equitable
distribution. Whereas the values close to one indicate extremely unequal distribution of tasks to
processors. Therefore, this value should have a direct impact on the crossover rate, so that large
level of this variance will increase the crossover rate, thus providing more search in the solution space
to discover better solutions.

On the other hand, the new algorithm optimizes the makespan, so the results of the two indirectly
satisfy the load balance. In other words, by minimizing the makespan as well as distributing tasks
to processors relatively evenly, the distribution of tasks will be such that tasks with smaller volumes
are given to processors with lower computing power, and vice versa. Equations (4.26) and (4.27) are
employed to calculate the variance, is the frequency of each processor in scheduling and n and m the
number of tasks and processors.

F (k) =

∑m
i=1 |Li − α|

n
∀ k ∈ PF (4.26)

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2321

XoverFISinput1 =

∑
k∈PF F (k)

P
(4.27)

We first calculate the mean of total frequency of processors for each Pareto front member, and then
obtain the mean of these values through Equation (4.27) to determine the mean of the frequency of
processors on the entire Pareto front. Ranging from zero and one, this value will be used as the first
input of the crossover fuzzy system and second input is the mean variance of the objective values to
maintain the variability between the solutions (Equation (4.28)).

XoverFISinput2 = MutFISinput2 (4.28)

4.3.3.2. Designing a fuzzy system for crossover rate. Table 7 shows the two membership functions
designed for fuzzy system inputs and the output for determination of crossover rate. Then, a set
of rules are defined for the fuzzy crossover rate as shown in Table 8. This fuzzy inference system
produces values I AM HERE!!!!I AM HERE!!!!between 0.5 and 1 for the crossover rate.

Table 7: Input and output membership functions for determining the crossover rate

Variable Fuzzy values of membership functions Number of membership functions Type of variable

VFIP
very low, low, medium, high,

5 Input
very high

VAOV low, medium, high 3 Input

pXover
very low, low, medium, high,

5 Output
very high

Mamdani method and the center of gravity technique are adopted for output of fuzzy adaptive
crossover rate, which varies according to the features considered from the Pareto front solutions.
This fuzzy system is designed so that, after numerous iterations, the makespan objective optimiza-
tion process can help achieve a proper load balance between the processors in all optimal solutions
generated through three-objective optimization.

Table 8: Fuzzy rule database for the fuzzy crossover rate system

If VFIP is very low and VAOV is low then pXover is medium
If VFIP is very low and VAOV is medium then pXover is low
If VFIP is very low and VAOV is high then pXover is very low
If VFIP is low and VAOV is low then pXover is medium
If VFIP is low and VAOV is medium then pXover is low
If VFIP is low and VAOV is high then pXover is very low
If VFIP is medium and VAOV is low then pXover is high
If VFIP is medium and VAOV is medium then pXover is medium
If VFIP is medium and VAOV is high then pXover is low
If VFIP is high and VAOV is low then pXover is very high
If VFIP is high and VAOV is medium then pXover is high
If VFIP is high and VAOV is high then pXover is medium
If VFIP is very high and VAOV is low then pXover is very high
If VFIP is very high and VAOV is medium then pXover is high
If VFIP is very high and VAOV is high then pXover is medium

2322 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

5. Efficiency analysis with simulation

In this section, we simulate and evaluate the efficiency of the proposed green scheduling algorithm
in an economic cloud. The proposed method schedules independent tasks on the cloud processors.
After optimizing the problem objectives, it will offer several solutions to the user. Each optimal
solution has a good load balance but has a specific feature. For example, a solution may have low
makespan but high energy consumption and cost, or vice versa. There are also solutions that are
ideal in every aspect. In this case, the users decide on their own terms. If the user finds price or
energy insignificant, they can choose a solution with the least amount of makespan to get the tasks
done as quickly as possible. We installed and used MATLAB on a PC with Intel Core i7-A540UP
2.4 GHz processor with 8 cores and 4 GB of memory. Then, we simulated task scheduling in the
economic cloud computing and evaluated the results of the proposed method.

5.1. Simulation of NSGA-II optimization algorithm with fuzzy crossover and mutation operators in-
volving three objectives of energy, makespan and price through indirect load balance optimization

In the simulations, we explored the effect of mutation rate on the Pareto front belonging to
large and small objectives as well as the effect of crossover rate on the search into the solution
space to satisfy certain objectives indirectly via another objective. In the first case, we adopted a
fuzzy mutation rate to resolve one defect where the small mutation rate places the optimal focus
on objectives with larger magnitudes while the large mutation rate places the optimal focus on
the larger magnitude objectives. In fact, we create a focus on all objectives so that all objectives
with different values were optimized. In the second case, we managed to indirectly satisfy the load
balancing objective through fuzzy crossover rate together with makespan optimality and apply it to
all solutions and user choices. With four-objective optimization, however, only a few of the solutions
achieved good load balancing and the user might, regardless of this objective, have chosen one of the
solutions with good price, energy consumption and makespan, but undesirable load balancing.

In the proposed green approach, we intend to solve the task scheduling problem on cloud data
centers by integrating the fuzzy crossover and mutation rates, direct optimization of makespan,
energy and price objectives. We also expect to discover a Pareto front delivering the best solution
in terms of each objective against fixed crossover and mutation rates. We employed the functions
defined in the previous section to simulate the NSGA-II equipped with fuzzy operators and compare
it against a conventional algorithm. In particular, the two functions of correct frequency variance of
processors involved in scheduling and the mean variance of objective values are used to generate fuzzy
system inputs and produce a fuzzy adaptive crossover rate. Furthermore, two functions of binary
variance of gene values and mean variance of objective values are used to generate fuzzy mutation
system inputs and produce mutation rates. The settings of simulation parameters have been shown
in Tables 9 and 10.

The quality of Pareto optimal solutions obtained from NSGA-II with fuzzy crossover and mutation
rates as well as NSGA-II with fixed rate have been shown in Tables 11 to 18. In addition, we analyzed
the proposed method and compared it against fixed rates for the problem objectives separately.
Evidently, the quality of Pareto optimal solutions obtained by the fuzzy method is almost better
than all other fixed rates. The ranges of crossover and mutation probability change in the fuzzy
system are [0.5 to 1] and [0.1 to 0.5], respectively. In the fixed-rate systems of [0.5 to 1] and [0.1
to 0.5], the steps are 0.1 and 0.05, respectively. In order to precisely determine the effect of fuzzy
genetic operators on the quality of solutions, as shown in Table 11, we implemented the algorithm
and compared the results for different but fixed rates over the same intervals, with steps 0.1 and 0.05
for crossover and mutation. The results demonstrated that the quality of Pareto optimal solutions

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2323

Table 9: Simulation parameters

Parameter Vale (fixed) - (variable)
Population size 100
Number of generations 100
Number of tasks 1000
Task size ([7200, 144000])-([0, 2400], [2400, 7200],

[7200, 144000]) (MI)
Number of processors 128 – (16, 32, 48, 64, 96, 128)
Type of processors 5
Price range of processors 1-5 (G$PS)
Speed range of AMD Athlon-64 4000-10000 (MIPS)
Speed range of AMD Turion MT-64 3000-7000 (MIPS)

Speed range of AMD optero 2218 4000-8000 (MIPS)
Speed range of Intel core i3-540 4000-10000 (MIPS)
Speed range of Synthetic 2000-7000 (MIPS)
Power consumption range of AMD Athlon-64 2.03, 3.85, 4.84, 5.95, 6.35, 7.2, 8.4(wat)
Power consumption range of AMD Turion MT-64 0.97, 1.64, 2.05, 3.29, 5 (wat)
Power consumption range of AMD optero 2218 1.3, 1.9, 3.5, 4.2, 5.3 (wat)
Power consumption range of Intel core i3-540 0.08, 0.17, 0.4, 0.9, 1.6 (wat)
Power consumption range of Synthetic 2.03, 3, 3.85, 4.84, 5.95, 7.2 (wat)
Number of simulation tests 10
Number of optimization objectives 4
Number of direct optimization objectives 3
Number of indirect optimization objectives 1

Table 10: Genetic operators for comparison of Pareto front

Parameters Algorithms NSGA-II with fixed rate NSGA-II with fuzzy operate rate
Probability of crossover 0.5 - 1 (with step 0.1) pXover Table 7
Probability of mutation 0.15 - 0.4 (with step 0.05) PM Table 5

Probability of mutation in genes 0.15 - 0.4 (with step 0.05) PM Table 5

obtained from NSGA-II in fuzzy system method for crossover rate and mutation rate is better than
that of the fixed-rate method for all problem objectives have been shown in Table 19. Evidently, the
quality of solutions obtained by the fuzzy method is almost better than all other fixed rates.

As the results of simulation suggested, we managed to solve the defect of fixed rates in genetic
operators using the proposed method. In the first phase of testing, despite the optimized solutions
that were minimal in price, energy, and makespan but did not achieve good load balance, it was
difficult for the user to make an optimal choice. The user may choose a solution desirable in terms
of price, energy and makespan regardless of the load balancing on the cloud data processors, while
the selected solution does not provide the appropriate load balance. By indirectly satisfying the
load balance, we intend to indirectly create an optimal 3D Pareto front that can only meet the user’s
objectives, while all possible choices may have a proper load balance as well. In fact, the user satisfies
the load balance no matter what optimal solution is chosen from the Pareto front. Since the Pareto
front at this stage was not of good quality due to the fixed rate of mutation, the optimum focus was

2324 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

shifted to a specific objective. At this stage, by employing fuzzy genetic operators, we achieved a
three-dimensional optimized Pareto front better than the others and also an appropriate load balance
across this Pareto front.

Table 11: Best makespan values in testing fuzzy genetic rates

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 125 125 125 125 125 125 125
20 112 122 113 121 122 119 123
40 118 121 113 113 121 116 120
60 107 121 113 112 121 116 119
80 107 119 113.5 113 121 115 111
100 106 116 113 113 119 115.5 111

Table 12: Mean of makespan values for Pareto Front members in testing fuzzy genetic rates

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 363 355 365 346 354 398 356
20 310 302 332 315 322 365 311
40 265 256 275 292 307 341 271
60 227 218 229 271 288 312 245
80 212 209 221 258 271 301 232
100 209 206 217 229 252 275 221

Table 13: Best price values in testing fuzzy genetic rates

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 48562 48750 48855 48530 48785 48980 48590
20 31875 46756 39785 43564 45643 43575 41252
40 28657 44560 38223 38523 41255 36450 37560
60 27510 41565 36451 33565 37258 34520 35895
80 27012 37525 35675 34565 35565 32525 35678
100 26565 35452 33860 33878 32592 32138 32834

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2325

Table 14: Mean of price values for Pareto front members in testing fuzzy genetic rates

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 123565 123875 123750 123559 123255 123855 123455
20 101525 112569 107565 105567 104565 102455 102457
40 91454 102850 100455 98455 92258 92358 92255
60 85250 96557 94455 94565 86675 87253 88515
80 76510 92478 89175 92195 79653 83457 84251
100 73560 92585 88575 83254 80347 83289 82595

Table 15: Best energy consumption values in testing fuzzy genetic rates

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 98016 97564 97875 96578 97489 97835 96985
20 86016 93696 86921 92928 93696 91392 94464
40 90624 92928 86884 86784 92764 89088 92160
60 83187 92928 86784 86016 92345 89712 91392
80 82176 91392 86951 86893 92142 88320 86278
100 81408 89088 86784 85182 91392 84572 85248

Table 16: Mean of energy consumption values in testing fuzzy genetic rates

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 162624 159040 159488 178304 158592 155008 159488
20 138880 135296 139328 163520 144256 141120 148736
40 118720 114688 121408 152768 137536 130816 123200
60 101696 97664 109760 139776 129024 121408 102592
80 94976 93632 103936 134848 121408 115584 99008
100 93632 92288 99008 123200 112896 102592 97216

Table 17: Best squared deviations from the mean for resource efficiency

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 0.031 0.0325 0.0335 0.0351 0.0312 0.0325 0.0351
20 0.0291 0.0312 0.0315 0.0301 0.0289 0.0315 0.0289
40 0.0215 0.03 0.0265 0.0281 0.0275 0.031 0.0265
60 0.0196 0.0281 0.0255 0.0261 0.025 0.0256 0.0245
80 0.0193 0.0251 0.025 0.0245 0.0245 0.0245 0.0238
100 0.0191 0.022 0.023 0.0228 0.0233 0.0228 0.0237

2326 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

Table 18: Mean of squared deviations from the mean for resource efficiency

Mutation/Crossover Rate
Fuzzy

Number of iterations
(Proposed 0.15/0.5 0.2/0.6 0.25/0.7 0.3/0.8 0.35/0.9 0.4/1
method)

0 0.0382 0.0341 0.0367 0.0357 0.0315 0.0336 0.0367
20 0.0351 0.0325 0.0361 0.0309 0.0385 0.0328 0.0332
40 0.0265 0.0315 0.0345 0.0387 0.0376 0.0316 0.0315
60 0.0236 0.0296 0.0325 0.0271 0.0261 0.0257 0.03295
80 0.0215 0.0275 0.0321 0.0265 0.0254 0.0257 0.0288
100 0.0196 0.028 0.032 0.0257 0.0239 0.027 0.026

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2327

T
ab

le
1
9
:
P
a
re
to

o
p
ti
m
a
l
so
lu
ti
o
n
s
fo
r
d
iff
er
en
t
ch
o
ic
es

B
es
t

B
es
t
m
ak
es
p
an

B
es
t
p
ri
ce

B
es
t
en

er
g
y

B
es
t
lo
a
d

O
b
je
ct
iv
e

b
a
la
n
ce

O
b
je
ct
iv
es

P
ri
ce

E
n
er
gy

P
ri
ce

E
n
er
gy

P
ri
ce

E
n
er
g
y

S
q
u
ar
ed

S
q
u
ar
ed

S
q
u
a
re
d

S
q
u
a
re
d

M
ak
e-

d
ev
ia
ti
on

M
ak
e-

d
ev
ia
ti
on

M
ak
e-

d
ev
ia
ti
o
n

d
ev
ia
ti
o
n

sp
an

fr
om

th
e

sp
an

fr
om

th
e

sp
an

fr
o
m

th
e

fr
o
m

th
e

m
ea
n
fo
r

m
ea
n
fo
r

m
ea
n
fo
r

m
ea
n
fo
r

effi
ci
en

cy
effi

ci
en

cy
effi

ci
en

cy
effi

ci
en

cy
R
at
e

O
p
er
at
or
s

F
u
zz
y

op
er
at
or

10
6

35
56

4
18

17
33

0.
01

92
30

9
26

56
5

19
07

33
0.
01

96
31

2
4
9
5
1
7

8
1
4
0
8

0
.0
1
9
7

0
.0
1
9
1

ra
te

0.
15

&
0.
5

11
6

35
68

0
18

37
33

0.
02

4
31

6
35

45
2

19
47

45
0.
02

8
32

1
5
5
3
1
6

8
9
0
8
8

0
.0
2
9

0
.0
2
2

0.
2
&

0.
6

11
3

40
19

4
19

27
32

0.
02

6
31

7
33

86
0

19
27

45
0.
03

30
9

5
3
6
5
0

8
6
7
8
4

0
.0
3
2

0
.0
2
3

0.
25

&
0.
7

11
3

42
54

2
19

47
87

0.
02

31
32

9
33

87
8

19
23

45
0.
02

5
32

5
5
3
6
5
4

8
5
1
8
2

0
.0
2
4
5

0
.0
2
2
8

0.
3
&

0.
8

11
9

38
21

4
18

57
37

0.
02

49
35

2
32

59
2

19
11

45
0.
02

38
32

8
5
2
9
3
2

9
1
3
9
2

0
.0
2
7

0
.0
2
3
3

0.
35

&
0.
9

11
5.
5

36
78

1
18

49
84

0.
03

37
5

32
13

8
19

18
76

0.
02

7
36

7
5
2
2
3
7

8
4
5
7
2

0
.0
2
6
5

0
.0
2
2
8

0.
4
&

1
11

1
39

23
4

19
07

22
0.
02

9
32

1
32

83
4

19
18

54
0.
02

6
31

8
5
2
3
4
5

8
5
2
4
8

0
.0
2
8

0
.0
2
3
7

2328 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

5.2. Simulation of the new fuzzy NSGA-II algorithm with different parameters

This section investigates the measurement criteria on the proposed method. The values in the
following tables are the mean values of non-dominant solution objectives in the simulations.

5.2.1. Effect of the number of processors on simulation objectives

The effect of increasing the number of processors from 16 to 128 on objectives are investigated in
Table 20 and Figure 7. The calculated results in Table 20 and Figure 7 confirm that as the number of
processors increases, the total energy consumption and the price/cost increases, while the makespan
of tasks decrease.

Table 20: The test results for the effect of the number of processors on the objective functions

Number of
F1 F2 F3 F4processors

16 195440 1793 39875 0.0186
32 193720 867 40150 0.0187
48 192520 598 41245 0.0189
64 190480 439 42895 0.0193
96 188720 289 43652 0.0195
128 183760 209 44560 0.0196

(a) Number of processors Vs. energy consumption (b) Number of processors Vs. makespan of tasks

(c) Number of processors Vs. cost (d) Number of processors Vs. load balancing

Figure 7: Effect of the number of processors on simulation objectives (energy consumption, makespan, cost, load
balance)

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2329

5.2.2. Effect of the number of tasks on simulation objectives

Table 21 categorizes the task size into three groups namely; small, medium, and large. Figure 8
shows how application of the proposed method improves the measurement criteria so that makespan
of tasks and cost/price increase when the size of tasks becomes larger than the total energy con-
sumption. In contrast, the load balancing rate of tasks for small and large tasks decrease compared
to medium tasks.

Table 21: Testing results for the effect of task size on the mean of objective function values

Task size F1 F2 F3 F4

Small 39851 62 23521 0.0192
Medium 186752 227 87168 0.0194
Large 298680 437 151781 0.0193

(a) total energy consumption (b) makespan of tasks

(c) price/cost (d) load balancing

Figure 8: Effect of task size on simulation objectives (energy consumption, makespan, cost, load balance)

6. Conclusions and future work

This paper proposed a multi-objective optimization method to solve task scheduling on a market-
based green cloud with DVFS-enabled processors. Thus, fuzzy NSGA-II is proposed with the aim of
both maximizing and minimizing conflicting objectives. Extensive experimental results have clearly
demonstrated the superiority of proposed fuzzy NSGA-II than NSGA-II with fixed rates, and three
considered scheduling strategies – GOSS, TOSS and COSS. Moreover, it was shown how increasing

2330 Fatehi, Motameni, Barzegar, Golsorkhtabaramiri

the number of processors affects objectives. For future works we intend to handle the task scheduling
on a green cloud data center system partially powered by the renewable energy.

References

[1] B. Barzegar, H. Motameni and, A. Movaghar, EATSDCD: A green energy-aware scheduling algorithm for parallel
task-based application using clustering, duplication and DVFS technique in cloud datacenters, J. Intel. Fuzzy Syst.
36(6) (2019) 5135–5152.

[2] L. Wang, K. Su, D. Chen, J. Kolodziej, R. Ranjan, C.Z. Xu and A. Zomaya, Energy-aware parallel task scheduling
in a cluster, Future Gener. Comput. Syst. 29(7) (2013) 1661—1670.

[3] H. Lei, R. Wang, T. Zhang, Y. Liu and Y. Zha, A multi-objective co-evolutionary algorithm for energy-efficient
scheduling on a green data center, Comput. Oper. Res. 75 (2016) 103–117.

[4] X. Zhang, T. Wu, M. Chen, T. Wei, J. Zhou, S. Hu and R. Buyya, Energy-aware virtual machine allocation for
cloudwith resource reservation, J. Syst. Softw. 147 (2019) 147-161.

[5] S. Mustafa, B. Nazir, A. Hayat and S.A. Madani, Resource management in cloud computing: taxonomy, prospects,
and challenges, Comput. Electr. Eng. 47 (2015) 186—203.

[6] B. Barzegar, A.M. Rahmani and K. Zamanifar, Gravitational emulation local search algorithm for advanced
reservation and scheduling in grid computing systems, 2009 Fourth Int. Conf. Comput. Sci. Conver.gence Inf.
Tech. (2009) p.1240–1245.

[7] G. Subashini and M.C. Bhuvaneswari, NSGA - II with controlled elitism for scheduling tTasks in heterogeneous
computing systems, Int. J. Open Prob.lems Compt. Math. 4(1) (2011) 1998–6262.

[8] G. subashini, and M.C. Bhuvaneswari, Non dominated particle swarm optimization for scheduling independent
tasks on heterogeneous distributed environments, Int. J. Advance. Soft Comput. Appl. 3(1) (2011).

[9] H. PENG and Q. LI, One kind of improved load balancing algorithm in grid computing, Int. Conf. Network
Comput. Inf. Secur. 2011.

[10] Y. Li, Y. Yang, M. Ma and L. Zhou, A hybrid load balancing strategy of sequential tasks for grid computingenvi-
ronments, Future Gener. Comput. Syst. 25 (2009) 819–828.

[11] X. Jin, F. Zhang, L. Fan, Y. Song and Z. Liu, Scheduling for energy minimization on restricted parallel processors,
J. Parallel Distrib. Comput. 81 (2015) 36—46.

[12] W. Pitek, A. Oleksiak and G. Da Costa, Energy and thermal models for simulation of workload and resource
management in computing systems, Simul. Model.Pract. Theory 58 (2015) 40–54.

[13] Y. Ding, X. Qin, L. Liu and T. Wang, Energy efficient scheduling of virtual machines in cloud with deadline
constraint, Future Gener. Comput. Syst. 50 (2015) 62-–74.

[14] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A.A. Alelaiwi and F. Li, Minimizing SLA violation
and power consumption in Cloud data centers using adaptive energy-aware algorithms, Future Gener. Comput.
Syst. 86 (2018) 836–850.

[15] H. Lei, T. Zhang, Y. Liu, Y. Zha and X. Zhu, SGEESS: smart green energy-efficient scheduling strategy with
dynamic electricity price for data center, J. Syst. Softw. 108 (2015) 23—38.

[16] A. Sathya Sofia, P. GaneshKumar, Multi-objective task scheduling to minimize energy consumption and makespan
of cloud computing using NSGA-II, J. Netw. Syst. Manag. 26 (2018) 463—485.

[17] C.M. Wu, R.S. Chang and H.Y. Chan, A green energy-efficient scheduling algorithm using the DVFS technique
for cloud datacenters, Future Gener. Comput. Syst. 37 (2014) 141—147.

[18] Y. Hu, C. Liu, K. Li, X. Chen, K. Li, Slack allocation algorithm for energy minimization in cluster systems,
Future Gener. Comput. Syst. 74 (2017) 119-–131.

[19] M. Hosseini Shirvani, A.M. Rahmani and A. Sahafi, A survey study on virtual machine migration and server
consolidation techniques in DVFS-enabled cloud datacenter: taxonomy and challenges, J. King Saud University-
Computer Inf. Sci. 32(3) (2020) 267–286.

[20] M. Hosseini Shirvani, A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous dis-
tributed computing systems, Engin. Appl. Artif. Intel. 90 (2020) 1–20.

[21] A. Sathya Sofia and P. GaneshKumar, Multi-objective task scheduling to minimize energy consumption and
makespan of cloud computing using NSGA-II, J. Netw. Syst. Manag. 26 (2018) 463–0485.

[22] Z. Peng, B. Barzegar, M. Yarahmadi, H. Motameni, P. Pirouzmand, Energy-Aware Scheduling of Workflow Using
a Heuristic Method on Green Cloud, Scientific Programming, 2020.

[23] H. Kumar and S.P. Yadav, NSGA-II based fuzzy multi-objective reliability analysis, Int. J. Syst. Assur. Eng.
Manag. 8 (2017) 817-–825.

Energy aware multi objective algorithm 12 (2021) No. 2, 2303-2331 2331

[24] R. Salimi, H. Motameni and H. Omranpour, Task scheduling using NSGA II with fuzzy adaptive operators for
computational grids, J. Par. Distr. Comput. 74(5) (2014) 2333–2350.

	Introduction
	 Literature Review
	Problem description
	 Proposed Method Based on Fuzzy NSGA-II
	Solution Encoding
	Mathematical modeling of the system
	Proposed system architecture model
	Task model
	Computational Resource Model
	Energy model
	Multi-objective scheduling model

	Fuzzy Genetic Operators
	Fuzzy mutation operator
	Mean variance function of objective values
	Fuzzy crossover operator

	 Efficiency analysis with simulation
	Simulation of NSGA-II optimization algorithm with fuzzy crossover and mutation operators involving three objectives of energy, makespan and price through indirect load balance optimization
	Simulation of the new fuzzy NSGA-II algorithm with different parameters
	 Effect of the number of processors on simulation objectives
	 Effect of the number of tasks on simulation objectives

	Conclusions and future work

