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1. Introduction

Boundary value problems for nonlinear fractional differential equations belong to the important issues
for the theory of fractional differential equations and a lot of papers and books on fractional calculs are
devoted to the solvability of initial fractional differential equations, see [1− 3, 8, 10, 14, 16, ...] .

However, there are few papers that deal with the existence, uniqueness and positivity of solution to
nonlinear initial fractional differential equations by the use of techniques of nonlinear analysis ( fixed point
theorems, Leray-Schauder theory, etc...), see [1, 13, 17, 20, ...] .

In this paper, motivated by [5− 7, 11, 12, 15, 18...] we are concerned with the existence, uniqueness and
positivity of solution of the following fractional boundary value problem{

Dα
0+u (t) + f

(
t, u (t) , Dσ

0+u (t)
)
= 0, t ∈ (0, 1) .

u (0) = u′ (0) = 0, u (1) = βu (η) ,
(1.1)

where: (i) f ∈ C([0, 1]× R× R,R), β > 0, 0 < η < 1 and 0 < σ < 1.
(ii) Dα

0+ is the Riemann-Liouville differential operator, of order 2 < α ≤ 3.
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El-shahed [3] , considered the following nonlinear boundary value problem{
Dα

0+u (t) + λa (t) f (u (t)) = 0, t ∈ (0, 1) , 2 < α ≤ 3.
u (0) = u′ (0) = u′ (1) = 0,

where Dα
0+ is the Riemann-Liouville differential derivative. He used the Guo-Krasnosel’skii fixed point

theorem on cone expansion and compression to show the existence and non-existence of positive solutions
for the above fractional boundary value problem.

Li, Sun, Y. Li and P. Zhao, [12] , considered the fractional differential equation of the type

Dα
0+u (t) + f (t, u (t)) = 0, t ∈ (0, 1) , 1 < α ≤ 2,

where Dα
0+ is the Riemann-Liouville differential order derivative, subject to the boundary conditions

u (0) = 0, Dα
0+u (1) = aDβ

0+
u (ξ) , 0 ≤ β ≤ 1.

They obtained the existence and uniqueness of solution by using Leray-Schauder nonlinear alternative and
Banach contraction mapping principle.

The organization of the paper is as follows. In section 2, we will recall briefly some basic definitions
and preliminary facts which will be used throughout the following sections. In section 3, we establish
the existence and uniqueness of the solution, by using the Leray-Schauder nonlinear alternative and Banach
contraction theorem. In section 4, using the Guo-Krasnosel’skii fixed point theorem, we discuss the positivity
of solution. In section 5, examples are presented to illustrate the main results.

2. Preliminaries

In this section, we present the necesary definition and several important preliminary lemmas to prove
our results.

Denote by L1 ([0, 1] ,R) the Banach space of Lebesgue integrable functions from [0, 1] into R with the
norm ∥u∥L1 =

∫ 1
0 |u (t)| dt. Let E be the Banach space of all continuous functions from [0, 1] into R such

that Dσ
0+u (t) ∈ C ([0, 1] ,R) , 0 < σ < 1, endowed with the norm ∥u∥E = max

t∈[0,1]
|u (t)|+ max

t∈[0,1]

∣∣Dσ
0+u (t)

∣∣.
Now we provide some background definitions.

Definition 2.1. Let K be a set in a real or complex vector space. K is said to be convex if, for all x and
y in K and all t in the interval ]0, 1[, the point (1− t)x+ ty is in K. In other words, every point on the
line segment connecting x and y is in K.

Definition 2.2. Let E be a Banach space. A nonempty closed convex subset K ⊂ E is called a cone if it
satisfies the following two conditions

(i) x ∈ K and λ ≥ 0 implies λx ∈ K.
(ii) x ∈ K and −x ∈ K implies x = 0.

Every cone P ⊂ E induces an ordering in E which is given by x ≤ y if and only if y − x ∈ P.

Definition 2.3. The fractional integral

Iα0+f (t) =
1

Γ (α)

∫ t

0

f (s)

(t− s)1−αds,

where α > 0, is called Riemann-Liouville fractional integral of order α of a function f : (0,+∞) → R and
Γ (.) is the gamma function defined by

Γ (α) =

∫ +∞

0
tα−1e−sds.
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Definition 2.4. The Riemann-Liouville fractional derivative of order α > 0, of a continuous function
f : (0,+∞) → R is given by

Dα
0+f (t) =

1

Γ (n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1 f (s) ds.

Γ (.) is the gamma function, provided that the right side is point-wise defined on (0,+∞) and n = [α] + 1,
[α] stands for the greatest integer less than α.

Lemma 2.5. [10] Let α, β ≥ 0, f ∈ L1 (0, 1) , then

Dα
0+I

α
0+f (t) = f (t) , Iα0+I

β
0+
f (t) = Iα+β

0+
f (t) .

The following two lemmas can be found in [10, 16] .

Lemma 2.6. Let α > 0 and u ∈ C (0, 1) ∩ L1 (0, 1) , then fractional differential equation

Dα
0+u (t) = 0,

has
u (t) = c1t

α−1 + c2t
α−2 + ...+ cnt

α

-n, ci ∈ R, i = 1, 2, ..., n; n = [α] + 1,as solution.

Lemma 2.7. Assume that u ∈ C (0, 1) ∩ L1 (0, 1) with a frational derivative of order α > 0 that belongs to
C (0, 1) ∩ L1 (0, 1) . Then

Iα0+D
α
0+u (t) = u (t) + c1t

α−1 + c2t
α−2 + ...+ cnt

α−n,

for some ci ∈ R, i = 1, 2, ..., n; n = [α] + 1.

Lemma 2.8. For Riemann-Liouville fractional derivatives, we have

Dβ
0+

∫ t

0
(t− s)α−1 f (s) ds =

Γ (α)

Γ (α− β)

∫ t

0
(t− s)α−β−1 f (s) ds,

where f ∈ C [0, 1] , α, β are two constants with α > β ≥ 0.

Proof . From

Dα
0+I

α
0+f (t) = f (t) , Iα0+I

β
0+
f (t) = Iα+β

0+
f (t) ,

we get

Dβ
0+

∫ t

0
(t− s)α−1 f (s) ds = Dβ

0+
Γ (α)

1

Γ (α)

∫ t

0
(t− s)α−1 f (s) ds,

= Dβ
0+
Γ (α) Iα0+f (t) = Γ (α)Dβ

0+
Iα0+f (t) ,

= Γ (α)Dβ
0+
Iβ
0+
Iα−β
0+

f (t) = Γ (α) Iα−β
0+

f (t)

= Γ (α)
1

Γ (α− β)

∫ t

0
(t− s)α−β−1 f (s) ds.

Then we obtain the result. □
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Lemma 2.9. Let 2 < α ≤ 3, β > 0, 0 < η < 1, βηα−1 ̸= 1 and y ∈ L1 [0, 1] , then the problem

Dα
0+u (t) + y (t) = 0, 0 < t < 1, (2.1)

u (0) = u′ (0) = 0, u (1) = βu (η) , (2.2)

has a unique solution

u (t) =

∫ 1

0
G (t, s) y (s) ds+

βtα−1

1− βηα−1

∫ 1

0
G (η, s) y (s) ds, (2.3)

where

G (t, s) =
1

Γ (α)

{
tα−1 (1− s)α−1 − (t− s)

α−1

, 0 ≤ s ≤ t ≤ 1,

t
α−1

(1− s)α−1 , 0 ≤ t ≤ s ≤ 1.
(2.4)

Proof . Integrating the equation (2.1) over the interval [0, t] for t ∈ [0, 1] , we have

u (t) = −Iα0+y (t) + C1t
α

-1+C2t
α−2 +C3t

α−3.From u (0) = u′ (0) = 0 we get C3 = C2 = 0. And, from u (1) = βu (η) , we deduce
that

C1 =
1

1− βηα−1
[Iα0+y (1)− βIα0+y (η)] .

Then

u (t) =
1

Γ (α)

∫ t

0

[
− (t− s)α−1 + tα−1 (t− s)α−1

]
y (s) ds+

tα−1

Γ (α)

∫ 1

t
(1− s)α−1 y (s) ds

+
tα−1β

Γ (α) (1− βηα−1)

∫ η

0

[
ηα−1 (

1-sα−1 − (η − s)α−1 y (s) ds

+
tα−1β

Γ (α) (1− βηα−1)

∫ 1

η
ηα−1 (1− s)α−1 y (s) ds.

And, that is equivalente to

u (t) =

∫ 1

0
G (t, s) y (s) ds+

βtα−1

1− βηα−1

∫ 1

0
G (η, s) y (s) ds, 0 ≤ t ≤ 1,

which implies the Lemma. □
We need some properties of functions G (t, s)and Dσ

0+G (t, s) .

Lemma 2.10. The function G (t, s) defined by (2.4) satisfies the following properties
(i) G (t, s) ≥ 0 and G (t, s) ∈ C([0, 1]× [0, 1] ,R+).
(ii) If t, s ∈ [τ, 1] , τ > 0, then

τα−1G1 (s) ≤ G (t, s) ≤ 1

τ
G1 (s) ,

where G1 (s) =
1

Γ(α)s (1− s)
α−1

.
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Proof . (i) The continuity of G is easily checked. For 0 ≤ t ≤ s ≤ 1, it is obvious that

G (t, s) =
(1− s)

α−1

tα−1

Γ (α)
≥ 0.

In the case, 0 ≤ s ≤ t ≤ 1, we have

G (t, s) =
1

Γ (α)

[
(1− s)

α−1

tα−1 − (t− s)
α−1

]
=

(t− ts)
α−1

− (t− s)
α−1

Γ (α)
≥ 0.

(ii)
If 0 ≤ t ≤ s ≤ 1,

G (t, s) =
1

Γ (α)
(1− s)α−1 tα−1 ≤ G1 (s) .

If 0 ≤ s ≤ t ≤ 1, we have

G (t, s) =
1

Γ (α)

[
(1− s)α−1 tα−1 − (t− s)α−1

]
,

then

G (t, s) ≤ 1

s
G1 (s) , ∀s, t ∈ [0, 1] .

Consequently

G (t, s) ≤ 1

τ
G1 (s) , ∀s ∈ [τ, 1] , t ∈ [0, 1] .

Now we look for lower bounds of G (t, s) . If 0 ≤ t ≤ s ≤ 1,

G (t, s) =
1

Γ (α)
tα−1 (1− s)α−1 ≥ 1

Γ (α)
tα−1s (1− s)α−1 ,

then
G (t, s) ≥ tα−1G1 (s) , ∀s, t ∈ [0, 1] .

If 0 ≤ s ≤ t ≤ 1, we have

G (t, s) =
1

Γ (α)

[
(1− s)α−1 tα−1 − (t− s)α−1

]
≥ 0,and

(1− s)α−1 tα−1 (1− s)− (

t-sα−1 ≥ 0,
G (t, s) ≥ tα−1G1 (s) , ∀s, t ∈ [0, 1] .

Consequently
G (t, s) ≥ τα−1G1 (s) , for t, s ∈ [τ, 1] .

The proof is complete. □

Lemma 2.11. The function Dσ
0+G (t, s) , 0 ≤ t ≤ 1 prossesses the following properties:

(1) Dσ
0+G (t, s) ∈ C ([0, 1]× [0, 1]) and Dσ

0+G (t, s) ≥ 0 for t, s ∈ ]0, 1[ .
(2)

Dσ
0+G (t, s) =


(1−s)

α−1
tα−σ−1−(t−s)

α−σ−1

Γ(α−σ) , 0 ≤ s ≤ t ≤ 1,

(1−s)
α−1

tα−σ−1

Γ(α−σ) , 0 ≤ t ≤ s ≤ 1.
(2.5)

(3) For, t, s ∈ [τ, 1], τ > 0, we have

τα−σ−1G2 (s) ≤ Dσ
0+G (t, s) ≤ 1

τα−σ−1
G2 (

s,where G2 (s) =
1

Γ(α−σ) (1− s)
α−1

s
α−σ−1

.
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Proof . (1) The continuity and positivity of Dσ
0+G (t, s) is easily checked.

(2) Applying the relation Dσ
0+t

α−1 = Γ(α)
Γ(α−σ

tα−σ−1, we get ∫ 1

0
G (t, s) y (s) ds =

1

Γ (α)

∫ t

0

[
tα−1 (1− s)α−1 − (t− s)α−1

]
y (s) ds

+
1

Γ (α)

∫ 1

t
tα−1 (

1-sα−1y (s) ds =
∫ 1
0

tα−1(1−s)α−1

Γ(α) y (s) ds−
∫ t
0

(t−s)α−1

Γ(α) y (s) ds.Then

Dσ
0+

∫ 1

0
G (t, s) y (s) ds = Dσ

0+
[
tα−1Iα0+y (1)− Iα0+y (t)

]
,

= Iα0+y (1)D
σ
0+t

α−1 −Dσ
0+I

α
0+y (t) = Iα0+y (1)D

σ
0+t

α−1 −Dσ
0+I

α
0+y (t) ,

=

∫ 1

0

(1− s)α−1 tα−σ−1

Γ (α− σ)
y (s) ds−

∫ t

0

(t− s)α−σ−1

Γ (α− σ)
y (s) ds,

=

∫ 1

0
Dσ

0+G (t, s) y (s) ds,

which implies that propertie (2) holds.
(3)
If 0 ≤ t ≤ s ≤ 1,

Dσ
0+G (t, s) =

1

Γ (α− σ

(1− s)
α−1

tα−σ−1 ≤
G2 (s) .
If 0 ≤ s ≤ t ≤ 1, we have

Dσ
0+G (t, s) =

1

Γ (α− σ[
(1− s)

α−1

tα−σ

-1-(t− s)
α−σ−1

,

≤ 1

Γ (α− σ)
(1− s)

α−1

tα−σ−1 ≤ 1

sα−σ−1
G2 (s) .

Consequently

Dσ
0+G (t, s) ≤ 1

τα−σ−1
G2 (s) , ∀s, t ∈ [τ, 1] .

Now we look for lower bounds of G (t, s) . If 0 ≤ t ≤ s ≤ 1,

Dσ
0+G (t, s) =

1

Γ (α− σ

tα−σ−1 (1− s)α−1 ≥ tα−σ−1G2 (s) .If 0 ≤ s ≤ t ≤ 1, we have

Dσ
0+G (t, s) =

1

Γ (α− σ[
(1− s)α−1 tα−σ−1 − (
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t-sα−σ−1 ≥ 0,

≥ 1

Γ (α− σ)

[
(1− s)α−1 tα−σ−1 (1− s)− (t− s)α−σ−1

]
≥ 0,

then

Dσ
0+G (t, s) ≥ 1

Γ (α− σ)

[
sα−σ−1 (1− s)α−1 tα−σ−1

]
,

Dσ
0+G (t, s) ≥ tα−σ−1G2 (

s, ∀s, t ∈ [0, 1] .Consequently,
Dσ

0+G (t, s) ≥ τα−σ

-1G2 (s) , ∀t ∈ [τ, 1] ,
s∈ [0, 1] .
This completes the proof of the Lemma. □

Definition 2.12. We define the operator T : E −→ E by

Tu (t) =

∫ 1

0
G (t, s) f (s, u (s) , Dσ

0+u (s)) ds

+
βtα−1

1− βηα−1

∫ 1

0
G (

η, sf
(
s, u (s) , Dσ

0+u (s)
)
ds, t ∈ [0, 1] .(2.1)The function u ∈ E is a solution of the BV P (1.1) if and

only if Tu = u; (u is a fixed point of T ) .

Definition 2.13. An operator is called completely continuous if it is continuous and maps bounded sets
into precompact sets.

3. Existence and uniqueness results

Now we give some results to prove the existence and uniqueness of a solution for the fractional boundary
value broblem (1.1) .

Theorem 3.1. Assume that there exists a nonnegative function k, h ∈ L1 ([0, 1] ,R+) , such that

|f (t, x, y)− f (t, u, v)| ≤ k (t) |x− u|+ h (t) |y − v| , (3.7)

∀x, y, u, v ∈ R, t ∈ [0, 1] ,

such that

C = γ

(
1 +

β

1− βηα−1

)
∫ 1
0 (G1 (s) +G2 (s)) (k (s) + h (s)) ds < 1.Where, γ = max

{
1
τ ,

1
τα−σ−1

}
, 0 < τ < 1.

Then the fractional boundary value broblem (1.1) , has a unique solution in E

Proof . We shall use the Banach contraction principle to prove that the operator T defined by (2.6) has a
fixed point. We shall show that T is a contraction. Let u, v ∈ E, we have

|Tu (t)− Tv (t)| ≤
∫ 1

0
G (t, s) |f (s, u (s) , Dσ

0+u (s))− f (s, v (s) , Dσ
0+v (s))| ds

+
β

1− βηα−1

∫ 1

0
G (η, s)
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s, u (s) , Dσ

0+u (s)
)
− f

(
s, v (s) , Dσ

0+v (s)
)∣∣ ds.So, we can obtain

|Tu (t)− Tv (t)| ≤

1

τ

(
1 +

β

1− βηα−1

)
∫ 1
0 G1 (s)

[
k (s) |u (s)− v (s)|+ h (s)

∣∣Dσ
0+u (s)−Dσ

0+v (s)
∣∣] ds,then

|Tu (t)− Tv (t)| ≤ 1

τ

(
1 +

β

1− βηα−1

)
∥u− v∥E

∫ 1

0
G1 (s) [k (s) + h (s)] ds.

And

|Dσ
0+Tu (t)−Dσ

0+Tv (t)| ≤ 1

τα−σ−1

(
1 +

β

1− βηα−1

)
×∥u− v∥E

∫ 1

0
G2 (s) [k (s) + h (s)] ds.

By using

C = γ

(
1 +

β

1− βηα−1

)
∫ 1
0 (G1 (s) +G2 (s)) (k (s) + h (s)) ds < 1,where γ = max

{
1
τ ,

1
τα−σ−1

}
, 0 < τ < 1. Obviously, we have

∥Tu− Tv∥E ≤ C ∥u− v∥E .

Then T is a contraction, so it has a unique fixed point which is the unique solution of the fractional boundary
value broblem (1.1) . □

We will employ the following Leray-Schauder nonlinear alternative [17].

Lemma 3.2. Let F be Banach space and Ω be a bounded open subset of F , 0 ∈ Ω. T : Ω → F be a
completely continuous operator. Then, either there exists x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there
exists a fixed point x∗ ∈ Ω

Theorem 3.3. We assume that f (t, 0, 0) ̸= 0, there exist nonnegative functions k, l, h ∈ L1 ([0, 1] ,R+) and
ϕ1, ϕ2 ∈ C(R+,R+) nondecreasing, such that

|f (t, u, v)| ≤ k (t)ϕ1 (|u|) + h (t)ϕ2 (|v|) + l (t) , ∀u, v ∈ R, t ∈ [0, 1] , (3.8)

and there exists m > 0 such that

M1max {ϕ1 (∥u∥E) , ϕ2 (∥u∥E)}+M2 < m.

Where,

M1 = γ

(
1 +

β

1− βηα−1

)
∫ 1
0 (G1 (s) +G2 (s)) (k (s) + h (s)) ds, (3.1)

M2 = γ

(
1 +

β

1− βηα−1

)
∫ 1
0 (G1 (s) +G2 (s)) l (s) ds.(3.2)Then the fractional boundary value problem (1.1) has at least one non-

trivial solution u∗ ∈ E.
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Proof . To prove this Theorem, we apply Lemma 3.2. First, we need to prove that T is completely
continuous

1) T is continuous.
From the continuity of f and G, we conclude that T is continous operator
2) Let Br = {u ∈ E : ∥u∥E ≤ r} a bounded subset in E. We will prove that T (Ω ∩Br) is relatively

compact:
(i) T (Ω ∩Br) is uniformly bounded. For some u ∈ Ω ∩Br, we have:

|Tu (t)| ≤ γ

(
1 +

β

1− βηα−1

)
×
∫ 1

0
G1 (s) [k (s)ϕ1 (u (s)) + h (s)ϕ2 (D

σ
0+u (s)) + l (s)] ds.

And

|Dσ
0+Tu (t)| ≤ γ

(
1 +

β

1− βηα−1

)
×
∫ 1

0
G2 (s) [k (s)ϕ1 (u (s)) + h (s)ϕ2 (D

σ
0+u (s)) + l (s)] ds.

Then,

∥Tu∥E ≤ γ

(
1 +

β

1− βηα−1

)
[M1max {ϕ1 (∥u∥E) , ϕ2 (∥u∥E)}+M2] ,

then, T (Ω ∩Br) is uniformly bounded.
(ii) T (Ω ∩Br) is equicontinuous.
Let u ∈ Ω ∩Br, t1, t2 ∈ [0, 1] ; t1 < t2, we have:

|Tu (t2)− Tu (t1)| ≤
∫ 1

0
|[G (t2, s)−G (t1, s)] f (s, u (s) , Dσ

0+u (s))| ds

+

(
tα−1
2 − tα−1

1

)
β

1− βηα−1

∫ 1

0
G (η, s) |f (s, u (s) , Dσ

0+u (s))| ds.

|Tu (t2)− Tu (t1)| ≤
L
(
tα−1
2 − tα−1

1

)
Γ (α)

×
[∫ 1

0
(1− s)α−1 ds+

β

1− βηα−1

∫ 1

0
G (η, s) ds

]
.

where, L = max
0 < s < 1
∥u∥E ≤ r

|f (s, u (s) , Dσ
0+u (s))| ,

and

|Dσ
0+Tu (t2)−Dσ

0+

Tu(t1) ≤
L(tα−σ−1

2 −tα−σ−1
1 )

Γ(α−σ

×
[∫ 1

0 (1− s)α−1 ds+ β
1−βηα−1

∫ 1
0 G (η, s) ds

]
,when t1 → t1 : |Tu (t2)− Tu (t1)| and

∣∣Dσ
0+Tu (t2)−Dσ

0+Tu (t1)
∣∣

tend to 0.
Consequently, T (Ω ∩Br) is equicontinuous. From Arzela-Ascoli theorem, we deduce that T is a com-

pletely continuous operator.
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Let Ω = {u ∈ E : ∥u∥E < m} . We assume that u ∈ ∂Ω, λ > 1 such that Tu = λu, then

λm = λ ∥u∥E = ∥Tu∥E = ∥Tu∥∞ + ∥Dσ
0+Tu∥∞ ,

since ∥Tu∥∞ = max
t∈[0,1]

|Tu (t)| , we have

∥Tu∥∞ ≤ 1

τ

∫ 1

0
G1 (s)

[
k (s)ϕ1 (∥u∥∞) + h (s)ϕ2

(
∥Dσ

0+u∥∞
)
+ l (s)

]
ds

+
β

1− βηα−1

∫ 1

0

1

τ
G1 (s)

[
k (s)ϕ1 (∥u∥∞) + h (s)ϕ2

(
∥Dσ

0+u∥∞
)
+ l (s)

]
ds.

∥Tu∥∞ ≤ γ

(
1 +

β

1− βηα−1

)
×∫ 1

0
G1 (s)

[
k (s)ϕ1 (∥u∥∞) + h (s)ϕ2

(
∥Dσ

0+u∥∞
)
+ l (

sds.

∥Tu∥∞ ≤ γ

(
1 +

β

1− βηα−1

)[
ϕ1 (∥u∥E)

∫ 1

0
G1 (s) k (s) ds

+ϕ2 (∥u∥E)
∫ 1

0
G1 (s)h (s) ds+

∫ 1

0
G1 (s) l (s) ds

]
,

and

∥Dσ
0+Tu∥∞ ≤ γ

(
1 +

β

1− βηα−1

)[
ϕ1 (∥u∥E)

∫ 1

0
G2 (s) k (s) ds

+ϕ2 (∥u∥E)
∫ 1

0
G2 (s)h (s) ds+

∫ 1

0
G2 (s) l (s) ds

]
.

Then, we get
∥Tu∥E ≤ M1max {ϕ1 (∥u∥E) , ϕ2 (∥u∥E)}+M2,

and we have
λm = λ ∥u∥E = ∥Tu∥E ≤ M1max {ϕ1 (∥u∥E) , ϕ (∥u∥E)}+M2 ≤ m.

Consequently λ < 1. This contradicts λ > 1. By applying Lemma 3.2, T has a fixed point u∗ ∈ Ω and then
the fractional boundary value broblem (1.1) , has a nontrivial solution u∗ ∈ E. The proof is complete. □

4. Positivity of the solution

In this section, we discuss the existence of positive solution for fractional boundary value problem (1.1).
We make the following additional assumptions.

(Q1 ) f(t, u, v) = a(t)f1(u, v) where a ∈ C((0, 1),R+) and f1 ∈ C(R+ × R,R+).
(Q2 ) 0 <

∫ 1
0 [G1 (s) +G2 (

sa(s)ds < ∞.

Definition 4.1. A function u (t) is called positive solution for the fractional boundary value problem (1.1)
if u (t) ≥ 0, ∀t ∈ [0, 1] and satisfies the B.V.P..(1.1)
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Lemma 4.2. Let u ∈ E, the solution of the fractional boundary value problem (1.1) is nonnegative and
satisfies

min
t∈[0,1]

(u (t) +Dσ
0+u (t)) ≥

µ

γ
||u||E ,

where γ is defined in theorem 3.1 and µ = min
{
τα−1, τα−σ−1

}
.

Proof . Let u ∈ E, it is obvious that u (t) is nonnegative, t ∈ [0, 1] . From Lemma 2.10 and 2.11 , we have

u (t) ≤ 1

τ

(
1 +

β

1− βηα−1

)∫ 1

0
G1 (s) a (s) f1 (u (s) , D

σ
0+u (s)) ds,

and

Dσ
0+u (t) ≤

1

τα−σ−1

(
1 +

β

1− βηα−1

)
∫ 1
0 G2 (s) a (s) f1

(
u (s) , Dσ

0+u (s)
)
ds.Then

∥u∥E ≤ γ

(
1 +

β

1− βηα−1

)∫ 1

0
(G1 (s) +G2 (

sa (s) f1
(
u (s) , Dσ

0+u (s)
)
ds.Hence

γ−1

(
1 +

β

1− βηα−1

)
−1 ∥u∥E ≤

∫ 1
0 (G1 (s) +G2 (s)) a (s) f1

(
u (s) , Dσ

0+u (s)
)
ds.On the other hand, for all t ∈ [τ, 1] , we obtain

u (t) ≥ τα−1

(
1 +

β

1− βηα−1

)∫ 1

0
G1 (s) a (s) f1 (u (s) , D

σ
0+u (s)) ds,

and

Dσ
0+u (t) ≥ τα−σ−1

(
1 +

β

1− βηα−1

)∫ 1

0
G2 (s) a (s) f1 (u (s) , D

σ
0+

u(s) ds.Therefore, we have

min
t∈[τ,1]

(u (t) +Dσ
0+u (t)) ≥ µ

(
1 +

β

1− βηα−1

)
×∫ 1

0
(G1 (s) +G2 (s)) a (s) f1 (u (s) , D

σ
0+u (s)) ds.

min
t∈[τ,1]

(u (t) +Dσ
0+u (t)) ≥ µ

(
1 +

β

1− βηα−1

)
γ−1

(
1 +

β

1− βηα−1

)−1

∥u∥E .

min
t∈[0,1]

(u (t) +Dσ
0+u (t)) ≥

µ

γ
||u||E .

Therefore, The proof is complete. □

Definition 4.3. We define the cone K by

K =

{
u ∈ E, u (t) ≥ 0, min

t∈[τ,1]
(u (t) +Dσ

0+

u(t) ≥ µ
γ ||u||E .

K is a non-empty closed and convex subset of E.
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Lemma 4.4. [7]The operator defined in (2.6) is completely continuous and satisfies T (K) ⊆ K.

To establish the existence of positive solutions for problem (1.1) , we will employ the following Guo–
Krasnosel’skii fixed point theorem [8]

Theorem 4.5. Let E be a Banach space, and let K ⊂ E, be a cone. Assume Ω1,Ω2 are open subsets of E
with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩
(
Ω2\Ω1

)
→ K,

be a completely continuous operator. In addition suppose either
(i) ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω2; or
(ii) ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω2,
holds. Then A has a fixed point in K ∩

(
Ω2\Ω1

)
.

The main result of this section is the following

Theorem 4.6. Let (Q1) and (Q2) hold, 0 < βηα−1 < 1 and assume that

f0 = lim
(|u|+|v|)→0

f1 (u, v)

|u|+ |v|
, f∞ = lim

(|u|+|v|)→∞

f1 (u, v)

|u|+ |v|
exists.

Then the problem (1.1) has at least one positive solution in the case
(i) f0 = 0 and f∞ = ∞ (superlinear) or
(ii) f0 = ∞ and f∞ = 0 (sublinear) .

Proof . We shall prove that the problem BVP (1.1) has at least one positive solution in both cases, superlinear
and sublinear. For this we use Theorem 4.5. We prove the superlinear case. Since f0 = 0, then for any
ε > 0, ∃δ1 > 0, such that f1 (u, v) ≤ ε (|u|+ |v|) , for |u|+ |v| < δ1. Let Ω1 be an open set in E defined by

Ω1 = {y ∈ E / ||y||E < δ1} ,

then, for any u ∈ K ∩ ∂Ω1, it yields

Tu (t) ≤ 1

τ

(
1 +

β

1− βηα−1

)∫ 1

0
G1 (s) a (s) f1 (u (s) , D

σ
0+u (s)) ds.

Therefore

∥Tu∥∞ ≤ ε
1

τ
∥u∥E

(
1 +

β

1− βηα−1

)∫ 1

0
G1 (s) a (s) ds,

and

Dσ
0+Tu (t) ≤

1

τα−σ−1

(
1 +

β

1− βηα−1

)
∫ 1
0 G2 (s) a (s) f1

(
u (s) , Dσ

0+u (s)
)
ds.So

∥Dσ
0+Tu∥∞ ≤ ε

1

τα−σ−1
∥u∥E

(
1 +

β

1− βηα−1

)
∫ 1
0 G1 (s) a (s) dsIf we choose ε =

[
γ
(
1 + β

1−βηα−1

) ∫ 1
0 [G1 (s) +G2 (s)] a (s) ds

]−1
, then it yields

∥Tu∥E ≤ ∥u∥E , ∀u ∈ K ∩ ∂Ω1.

Now from f∞ = ∞,we conclude that for any M > 0, there exists H > 0, such that f1 (u, v) ≥ M (|u|+ |v|)
for |u|+ |v| ≥ H. Let

H1 = max

{
2δ1,

γ

µ
H

}
.
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Denote by Ω2 the open set
Ω2 = {y ∈ E / ∥y∥E < H1} .

For any u ∈ K ∩ ∂Ω2, we have

min
t∈[τ,1]

(u (t) +Dσ
0+u (t)) ≥

µ

γ
||u||E ,

=
µ

γ
H1 ≥ H,

let u ∈ K ∩ ∂Ω2 then

Tu (t) ≥ τα−1

∫ 1

0

(
1 +

β

1− βηα−1

)
G1 (s) a (s) f1 (u (s) , D

σ
0+u (s)) ds,

Tu (t) ≥ τα−1

(
1 +

β

1− βηα−1

)
M

∫ 1

0
G1 (s) a (s) ds ∥u∥E ,

and
Dσ

0+Tu (t) ≥ τα−σ

-1
∫ 1
0 G2 (s) a (s) f1

(
u (s) , Dσ

0+u (s)
)
ds

Dσ
0+Tu (t) ≥ Mτα−σ

-1∥u∥E
∫ 1
0 G2 (s) a (s) ds,and choosing M =

[
µ
∫ 1
0 [G1 (s) +G2 (s)] a (s) ds

]−1
, we get

∥Tu∥E ≥ ∥u∥E , ∀u ∈ K ∩ ∂Ω2.

By the first part of Theorem 4.5, T has at least one fixed point in K ∩
(
Ω̄2⧹Ω1

)
, such that; H ≤ ||y|| ≤ H1.

This completes the superlinear case of Theorem 4.6. Case II Now, we assume that f0 = ∞ and f∞ = 0
(sublinear case). Proceding as above and by the second part of Theorem 4.5, we prove the sublinear case.
This achieves the proof of Theorem 4.6. □

5. Examples

In order to illustrate our result, we give the following examples:

Example 5.1. Consider the following fractional boundary value problem{
D

5
2

0+
u (t) + t3

4 u+ (1− t)2D
1
3

0+
u (t) = 0, 0 < t < 1,

u (0) = u′ (0) = 0, u (1) = βu (η) ,
(J1)

set

β =
1

3
, η =

1

4

and

f (t, u, v) =
t3

4
u+ (1− t)2 v.

One can choose {
k (t) = t3

4

h (t) = (1− t)2
, t ∈ [0, 1] ,

k, h ∈ L1 ([0, 1] ,R+) are nonnegative functions, where

|f (t, x, y)− f (t, u, v)| ≤ t3

4
|x− u|+ (1− t)2 |y − v|

≤ k (t) |x− u|+ h (t) |y − v| .
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and,

C = γ

(
1 +

β

1− βηα−1

)
∫ 1
0 (G1 (s) +G2 (s)) (k (s) + h (s)) ds < 1.Hence, by Theorem 3.1, the fractional boundary value problem

(J1) has a unique solution in E.

Example 5.2. Consider the following fractional boundary value problem{
D

5
2

0+
u (t) + t2

4 u+ (1 + t)2D
1
4

0+
u (t) + 1+t2

2 = 0, 0 < t < 1,
u (0) = u′ (0) = 0, u (1) = βu (η) ,

(J2)

set

β =
1

2
, η =

1

5
.

Where, α = 5
2 , σ = 1

4 and

f (t, u, v) =
t2

4
u+ (1 + t)2 v +

1 + t2

2
, ∀u, v ∈ R, t ∈ [0, 1] .

One can choose 
k (t) = t2

4

h (t) = (1 + t)2

l (t) = 1+t2

2

, t ∈ [0, 1] ,

k, h, l ∈ L1 ([0, 1] ,R+) are nonnegative functions, where

|f (t, u, v)| ≤ k (t)ϕ1 (|u|) + h (t)ϕ2 (|v|) + l (t) , ∀u, v ∈ R, t ∈ [0, 1] .

By Theorem 16, we can see that, there exists m > 0 such that

M1max {ϕ1 (∥u∥E) ,

ϕ2 (∥u∥E) +M2 < m,

where, M1 and M2 are given by the formulas (3.9) and (3.10), and the fractional boundary value problem
(J2) has at least one nontrivial solution in E.

Example 5.3. Consider the following fractional boundary value problem D
5
2

0+
u (t) + t2u2 + t2

4

(
D

1
3

0+
u (t)

)2

= 0, 0 < t < 1,

u (0) = u′ (0) = 0, u (1) = βu (η) ,

(J3)

where, 0 < βηα−1 < 1; and

f (t, u, v) = t2
(
u2 +

1

4
v2
)

= a (t) f1 (u, v) ,

a (t) = t2 ∈ C ((0, 1) ,R+) , f1 (u, v) ∈ C (R+ × R,R+) . Then

f0 = lim
(|u|+|v|)→0

f1 (u, v)

|u|+ |v|
= 0, and f∞ = lim

(|u|+|v|)→∞

f1 (u, v)

|u|+ |v|
= ∞.

By Theorem 4.6 (i) , the fractional boundary value problem (J3) has at least one positive solution.

In this paper, motivated by some recent papers, we studied the existence, uniqueness and positivity of
solution for a boundary value problem of nonlinear fractional differential equations, we established the exis-
tence and uniqueness of solution by applying, Leray-Schauder nonlinear alternative and Banach contraction
theorem, and we discussed the existence of positive solution by applying Guo-Krasnosel’skii theorem. In
the last, as applications, examples are presented to illustrate the main results.
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