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Tracking Control of an unknown switched nonlinear
system based on adaptive backstepping with
nonlinear disturbance observer

a

Abstract
In this paper, an adaptive control schemes to solve the output tracking control problem of a class of
nonlinear switched systems in presence of the disturbance is proposed. First, a nonlinear disturbance
observer (NDO) is designed and the backstepping scheme is constructed based on the standard
Lyapunov function method for tracking purpose. With the propose scheme, the existence of a
standard Lyapunov function for all subsystems with unknown parameters infers the global uniform
asymptotic stability of this more generic switched system the switching parameters used in the
switching system are defined differently for each subsystem. Analyzing the system’s stability proved
that the closed-loop signal boundedness under arbitrary switching is well ensured. It is shown that
the proposed adaptive anti-disturbance control scheme based on a nonlinear disturbance observer is
a suitable control approach for a class of nonlinear switched systems.
Keywords: nonlinear switched system, disturbance adaptive control, nonlinear system.
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With the progress of control techniques, a switched system under arbitrary switching is stable asymp-
totically, and common Lyapunov function exists for all subsystem [1, 2, 3]. A backstepping control
scheme was proposed to stabilize a class of switched nonlinear systems with unknown parameters
in strict-feedback form [4, 5]. Backstepping is a new-developed technique proposed to control un-
certain systems that have an internal and external disturbance. By applying this method for the
systems with mismatching conditions, the performance of a system is improved [6, 7]. In the past few
decades, the research main goal is to conquer the difficulties of internal and external disturbances
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and improve system performance. Disturbance uncertainty relation of the fin stabilizer system causes
uncertainties that may be modeled or repeated. Various linear and nonlinear control methodologies
have been proposed for strict feedback systems, including robust control [8], sliding mode control for
the nonlinear system [8, 9], a fuzzy neural technique based robust control [10, 11]; and automatic
disturbances rejection method of control [12] to eliminate or reduce such kind of uncertainties. A
variable structure disturbance estimation technique has been proposed for based sliding mode control
for PWM-based DC-DC buck power converter systems with mismatched disturbances [13]. and a not
linear disturbance observer propose a special kind of friction, i.e., Coulomb friction [14]. The systems
with high nonlinearity and coupled dynamics are not appropriate for applying the linear disturbance
observation method because of these restrictions. Researches developed studies and investigation
of NDO for nonlinear systems in the past years [15, 16, 17, 18, 19]. Considering the flexible air-
breathing hypersonic vehicle (FAHV) the Integrated Sliding Mode method, a backstepping approach
with disturbance observer (DO), has been proposed [20].

In this paper, the switching unknown parameters are different for each subsystem. The distur-
bance in all subsystems is considered identical.

The scheme is designed based on the common Lyapunov function approach for all subsystems,
as pointed out in [21, 22, 23, 24]. In this work, the designed nonlinear disturbance observer is es-
timated disturbance and switching unknown parameters are transformed into their common bound
via backstepping control design, and using the adaptive method. The transformed bound of switch-
ing parameters is then estimated online. With the scheme, a common Lyapunov function for all
subsystems is constructed successfully, and the boundedness of all signals in the closed-loop signal
under arbitrary switching is well guaranteed. The innovation of this article is the use of NDO with
observer gains for switched system with unknown function. Although the disturbance is the same for
all subsystems, but the nonetheless observer gains is different for every subsystems. The adaptive
control with backstepping technique based NDO is applied for solving the tracking problem and
estimation of the all disturbance with proposed disturbance observer is ensured.

This article content is organized as follow: In section 2 the nonlinear control problem is formu-
lated, the nonlinear disturbance observer is defined for system in section 3. In section 4, the adaptive
nonlinear control with backstepping method based NDO under arbitrary switching is designed. The
constructing of the proposed controller is based on common Lyapunov function, the stability analyz-
ing of the designed control is illustrated. according to the result of this section, and the closed-loop
signal boundness of switched system is ensured in this part. Section 5, is described the effective-
ness of the designed adaptive control based NDO through simulation. Finally, in the section 6 the
conclusion of all paper is illustrated.

2. Problem statement

This paper takes into account a class of switched nonlinear systems with uncertain parameters
and disturbance as follows:

ẋ1 = xi+1 + fn,δ(t)(xn) + φi(x1, x2, · · · , xi)

...
ẋn = gn,σ(t) + fn,δ(t)(xn) + T (x) + d

y = x1 (2.1)

Where fn,δ(t)(xn) = θTσ(t)φn(x), x = (x1, x2, · · · , xn)
T ∈ Ri, i = 1, 2, · · · , n is the system state u ∈ R

is control input and y ∈ R denotes system output. φi(x1, x2, · · · , xi) ∈ Rp for i = 1, 2, · · · , n, T (x)
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is known smooth nonlinear function θσ(t1 ∈ Rp) an unknown switching parameters with switching
signal σ; [0]uR+ −→ M = {1, 2, · · · , n} gn,σ(t) is positive constant.

d is the disturbance which is considered the same for all subsystems.
Assumption 1: The reference trajectory y(t) and disturbance (d) and their first n-order time

derivatives are known, smooth, and bounded.
In this paper adaptive tracking problem and disturbance rejection problem is studied for a class

of switched nonlinear system with completely unknown function. NDO is considered with different
gain value for any system .adaptive control scheme is designed based common Lyapunov function
and in this strategy switching parameters are firstly transformed in to their common bound and with
using adaptive law the transformed bound is estimated .respectively such that all the closed-loop
signals are guaranteed to be bounded and the reference signal is tracked by the output of system.

3. Nonlinear disturbance observes

The nonlinear disturbance observer for the system (2.1) is written by combining the internal
disturbance and external disturbance as follows:

dk = ẋn − f(n,δ(t))(xn)− g(n,σ(t))u(t)− T (x) (3.1)

Where k = σ(t) [0,∞] −→ M = [1, 2, · · · ,m] and the disturbance observer can be proposed as follow
in [10].

˙̂
dk = −Ld(x1, x2)d̂k + Ld(x1, x2)

(
ẋ2 − θTσw(xn)− gσu(t)− T (x)

)
(3.2)

Where Ld(x1, x2) = a, a > 0, consider for designing parameter Defining the variable zk = d̂k − p(x)
and inserting zk in to the above equation gives

żk + ṗ(x) = −Ldk(x)zk + Ldk(x)p(x) + Ldk(x) =
δpk(x)

σ(x)
(3.3)

Ld(x) is NDO gain value then:

ṗ(x) = −Ldk(x) (3.4)

The tracking error dynamics can be computed

ėdk = d̂dk − ḋ = ż + ṗk(x)− ḋ (3.5)

ėdk = d̂dk − ḋ = ż − Ldk(x)− ḋ (3.6)
= −Ldk(x)z − Ldk(x)

[
θTσw(xn)− gσ(t)u(t)− T (x) + p(x)

]
+ ṗ(x)− ḋ

= −Ldk(x)z − Ldk(x) [x
′ + (p(x)− d)] + ṗ(x)− ḋ

= −Ldk(x)z − Ldk(x) [ẋ+ edk − z] + ṗk(x)− ḋ

= −Ldk(x)edk − 1dk(x)ẋ+ ṗk(x)− ḋ

− Ldk(x)z − Ldk(x)
[
θTσw(x) + g(n,σ(t))(x)u+ T (x) + pk(x)

]
+ ṗk(x)− ḋ

= −Ldk(x)z − Ldk(x) [x
′ + g(pk(x)− d)] + ṗk(x)− ḋ
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Using (3.4) in (3.6), disturbance tracking error dynamics are governed by

ėdk = −Ldk(x)edk − ḋ (3.7)

With assuming the observer gain Ldk(x) has been designed to satisfy

eTdkLdk(x)edk ≤ −α |edk |
2 (3.8)

To analyze how the NDO in (3.1) approaches disturbance tracking the Lyapunov candidate function
for any k ∈ M V di =

∑i
k=1

(
1
2

)
e2dk is considered taking the derivative of Vd along trajectories of

(3.7) yield.

v̇di =
i∑

j=1

−eTdkLdk(x)edkd− eTdk ḋ (3.9)

Assuming that there exists a positive real constant w such that |ḋ(t)| ≤ w for all t ≥ 0, considering
(3.8) and (3.9) it results in

v̇di ≤ −
i∑

j=1

αd|ed|2 ≤ −ζd|ed|2 (3.10)

Where ζ is positive constant.

4. Adaptive control scheme

The adaptive backstepping technique will be considered to design an adaptive control scheme
that can guarantee a common Lyapunov function (CLF) for all subsystems. Firstly, we define the
error variable.

Z1 = y − yr (4.1)

zi = xi − ai−1 − y(i−r)
r , i = 1, 2, · · · , n (4.2)

Where for 1 ≤ i ≤ n− 1, αi is the common virtual control to be constructed at the ith step that

α1 = −λ1z1 −
z1
2
− 1

2a21
z1θ̂w

T
1 w1 (4.3)

αi =− λizi −
zi
2
− zi−1 −

1

2a2i
ziθ̂w

T
i wi + r

i−1∑
j=1

[
δαi − 1

δxi

xj+1 +
δαi−1

δ
y
(y−1)
r

y(j)r +
δαi−1

δy
(j−1)
r

g(j)r

]
(4.4)

+
δαi−1

δθ̂

(
i−1∑
j=1

r

2a2i
zj2wT

j wj

)
+

r

2a2i

i∑
j=2

zj
δαj−1

δθ̂
wT

i wi −
δαi−1

δθ̂
σ · θ̂ (4.5)

for i = n, vi and ai is required to be the following form:

αi =
1

gn,k
(vi + d̂k) (4.6)
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where

vi =− λizi −
zi
2
− zi−1 −

1

2a2i
ziθ̂w

T
i wi + r

i−1∑
j=1

[
δαi − 1

δxi

xj+1 +
δαi−1

δ
y
(y−1)
r

y(j)r +
δαi−1

δy
(j−1)
r

g(j)r

]

+
δαi−1

δθ̂

(
i−1∑
j=1

r

2a2i
zj2wT

j wj

)
+

r

2a2i

i∑
j=2

zj
δαj−1

δθ̂
wT

i wi −
δαi−1

δθ̂
σ · θ̂ (4.7)

Where, ci, ai and r, are positive design parameters, λi = ci + gi,max, gi,max = max{gi,k : k ∈ M}
θ̂ = max i ∈ M {∥θi∥2}. θ̂ denotes the estimate of the unknown constant θ and the function wi,
i = 1, 2, · · · , n are given by

w1 = φ1, wi = φi −
i−1∑
j=1

δαi−1

σaj
φj, i = 1, 2, · · · , n (4.8)

The parameter update law and adaptive control law are chosen as

˙̂
θ =

n∑
i=1

r

2a2i
z2iw

Tw − σ0θ̂ (4.9)

uk =
1

gn,k
(vn + d̂k) (4.10)

Where, σ0 is the positive design parameter.
For showing the stability of the proposed method, the following Lyapunov function is considered:

v =
n∑

i=1

1

2
z2i +

1

2r
θ̃2 +

1

2
d̃2 (4.11)

Where θ̃ = θ − θ̂ and d̃ = d̂− d,

d

d(t)
=

(
n∑

i=1

1

2
z2i

)

=
n−1∑
i=1

zizi+1 +
n∑

i=1

θσwizi −
n∑

i=2

zi

(
i−1∑
j=1

δαi−1

δg
(j−1)
r

g(i)r +
i−1∑
j=1

δαi−1

δxj

xj+1

)

+
n∑

i=1

ziαi − zn(d̃)−
n∑

i=2

zi
δαi−1

δθ̂
θ̂ (4.12)

By applying the Cauchy – Schwarz inequality [25], we obtain that
n∑

i=1

θTδ wizi ≤
n∑

i=1

1

2a2i,min

z2i θw
T
i wi +

n∑
i=1

1

2
α2
i (4.13)

Substituting the virtual control function given by (4.3)-(4.10) and (4.12), the below statement ob-
tains.

d

dt

(
n∑

i=1

1

2
z2i

)
≤ −

n∑
i=1

ciz
2
i +

n∑
i=1

1

2ai,min

z2i θ̃w
T
i wi − znd̃+

n∑
i=1

1

2
a2i + vr (4.14)
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Vr =−
n∑

i=1

zi
δαi−1

δθ̂
θ̂ +

n∑
i=2

zi
δai−1

δθ̂

i−1∑
j=1

r

2aj,min

z2jw
T
j wj

+
n∑

i=2

r

2aj,min

z2i

n∑
j=2

zj
δαj−1

δθ̂
wT

i wi −
n∑

i=2

z1
δαi−1

δθ̂
σ0θ̂ (4.15)

Next, we further prove Vr = 0 using the parameter update law ˙̂
θ designed in (4.9) the first term on

the right side of (4.15) can be expanded and rearranged as

−
n∑

i=2

zi
δαi−1

δθ̂
θ̂ = −

n∑
i=2

zi
δαi−1

δθ̂

(
i−1∑
j=1

r

2aj,min

z2jw
T
j wj +

n∑
j=1

r

2aj,min

z2jw
T
j u

)
+

n∑
i=2

zi
δαi−1

δθ̂
σ0θ̂

= −
n∑

i=2

zi
δαi−1

δθ̂

i−1∑
j=1

r

2aj,min

z2jw
T
j wj +

n∑
i=1

zi
δαi−1

δθ̂
σ0θ̂ −

n∑
i=2

r

2a2j,min

i∑
j=2

zj
δαj−1

δθ̂
wT

i wi

(4.16)

Substituting (4.8) into (4.7), it follows that Vf = 0.
According to the assumption and using that fact

−z2d̃ ≤ 1

2
z22 +

1

2
d̃2 (4.17)

And by computing the time derivative of the second and third term on the right side of (4.15)

d

dt

(
1

2r
θ2
)

= −1

r
θ̃
˙̂
θ ≤ −

n∑
i=1

r

2ai,min

z2iw
T
i w ≤ −1

2
θ̃2σ +

1

2
θ2i (4.18)

d

(
1

2
d̃

)2

= d̃
˙̂
d ≤ −ζd|ed|2 (4.19)

So, the following theorem can be obtained.

Theorem 4.1. Consider the switched nonlinear system (2.1) under arbitrary switching, the stability
of a switched system under an arbitrary switching signal is well ensured if the adaptive control scheme
(4.3)-(4.9) is applied

Therefore, the closed-loop system satisfies the following desired properties

• All the closed-loop signals of the system are globally bounded

• The ultimate bound for the steady-state performance of tracking error is limt→∞ |z1(t)| ≤
√

2b0
a0

where

a0 = min {2cj, σ0 1 ≤ j ≤ n} (4.20)

b0 =
σ0

2r
θ2 +

1

2
d2 +

n∑
j=1

1

2
aj (4.21)
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Proof . By substituting Vr in to (4.14) and combining with adaptive law (4.3)-(4.9), we have

v̇ ≤ −
n∑

i=1

ciz
2
i +

σ0

r
θ̃θ̂ + d̃d̂+

n∑
i=1

1

2
a2i ≤ −av + b (4.22)

According to the comparison principle, one gets

Vn(t) ≤
(
Vn(0)−

b0
a0

)
e−a0t +

b0
a0

∀ t ≥ 0 (4.23)

□

5. Simulation results

The model system, which we study, is a gyroscope, which has attributes of great potential to
navigational aeronautical and space engineering.

The equation governing the motion of the gyro after necessary transformation is such that.

ẋ1 = x2

ẋ2 = T (x) +B sinx1 + f sinwt sinx1 + θσ(x2 − x3
2) + d(t) + g(n,σ(t))uσ(t) (5.1)

y = x1

Where T (x) = −α2 (1−cosx1)

sin3 x1

Dynamical behavior including the chaotic motion for the following parameters a2 = 1, w = 2,
f = 35.5, g2,1 = 1, g22 = 1.5 and u(0) = 0 two subsystems are considered in this example, σ(t) ∈ M =
{1, 2} for simulation we select θ1 = 0.4, θ2 = 0.1, c1 = 1.25, c2 = 2, r1 = 10, r2 = 5, a1 = a2 = 0.5,
θ̂(0) = 0.2, β1 = β2 = 0.025.

In this paper for any subsystem the time history of the chaotic gyro with initial conditions of
(a)(x1, y1) = (1,−1) and (b)(xd, yd) = (1,−1/2).

According to theorem 4.1, an adaptive law θ̂ and the control law

˙̂
θ =

n∑
i=1

r

2a2i
z2iw

Tw −Bθ̂ (5.2)

u1 = − 1

g2,1
(v2 + d̂1) (5.3)

u2 = − 1

g2,2
(v2 + d̂2) (5.4)

Where, λ2 = c1 + g2,1, λ1 = c1 + 1.
The nonlinear adaptive law θ̂ in (3.5) contains all system state in this case, the term −(δai−1/δθ̂)θ̂

generated at the ith step of backstepping based nonlinear disturbance procedure cannot be canceled
directly by virtual controller αi, as αi is only allowed to include x1, · · · , xi for the subsequent step
of back stepping with NDO design. As seen (4.11), such an issue is well considered via the use of
rearranging operation. The simulation results are illustrated in Figure 1 for ed = d̂−d and in Figure
2 for e1 = x1 − x1d and in Figure 3 e2 = x2 − x2d. Figure 4 illustrate the evolution of switching
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signal of system. In these figures, it can be seen that the NDO achieves good disturbance attenuation
ability and good tracking performance is achieved, also synchronization error will converge to zero.

This paper proposes an adaptive control scheme with a nonlinear disturbance observer (NDO).
The system has both uncertain and known parameters. The scheme estimates the bound on switching
parameters to construct a common Lyapunov function for all subsystems in the presence of distur-
bance. It is shown that by designing the nonlinear compensation appropriately. Gains Zrovo’s the
steady-state response of tracking error can be obtained on system output. Simulation studies of a
gyro switched system have been carried out to demonstrate the proposed NDO method’s validity.
The Result has shown that the proposed method obtains much better disturbance rejection ability
and tracking control against model uncertainties.

Figure 1: Estimation error (d− d̂)

Figure 2: The graph of error e1 between two chaotic gyros with active control.
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Figure 3: The graph of error e2 between two chaotic gyros with active control.

Figure 4: Arbitrary switching signal

6. Conclusion

This paper proposes an adaptive control scheme with a nonlinear disturbance observer (NDO).
The system has both un known parameters. The scheme estimates the bound on switching parameters
to construct a common Lyapunov function for all subsystems in the presence of disturbance. It is
shown that by designing the nonlinear compensation appropriately. Gains Zrovo’s the steady-state
response of tracking error can be obtained on system output. Simulation studies of a gyro switched
system have been carried out to demonstrate the proposed NDO method’s validity. The Result
has shown that the proposed method obtains much better disturbance rejection ability and tracking
control against model uncertainties.
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