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Abstract

Let A = (an,k)n,k≥1 and B = (bn,k)n,k≥1 be two non-negative matrices. Denote by Lv,p,q,B(A), the
supremum of those L, satisfying the following inequality:

‖ Ax ‖v,B(q)≥ L ‖ x ‖v,B(p),

where x ≥ 0 and x ∈ lp(v,B) and also v = (vn)∞n=1 is an increasing, non-negative sequence of real
numbers. In this paper, we obtain a Hardy-type formula for Lv,p,q,B(Hµ), where Hµ is the Hausdorff
matrix and 0 < q ≤ p ≤ 1. Also for the case p = 1, we obtain ‖A‖w,B(1), and for the case p ≥ 1, we
obtain Lw,B(p)(A).
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1. Introduction

Suppose that v = (vn)∞n=1 is an increasing, non-negative sequence of real numbers with v1 = v2 = 1
and

∑∞
1

vn
n

=∞. For p ∈ R\{0}, let lp(v) denotes the space of all real sequences x = {xk}∞k=1, such
that

‖x‖v,p :=
( ∞∑
k=1

vk|xk|p
) 1

p
<∞.
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Lashkaripour and Foroutannia in [10], defined the weighted block sequence space as follows. Assume
that F = (Fn) is a partition of positive integers where each Fn is a finite interval of N and

maxFn < minFn+1 (n = 1, 2, ...).

The weighted block sequence space lp(v, F ) is defined as

lp(v, F ) :=
{
x = (xn) :

∞∑
n=1

vn| < x, Fn > |p <∞
}
,

where, < x, Fn >=
∑

j∈Fn
xj. The norm on lp(v, F ) is denoted by ‖.‖p,v,F and is defined by

‖x‖p,v,F :=
( ∞∑
n=1

vn| < x, Fn > |p
) 1

p
. (1.1)

Note that with the above-mentioned definition lp(v, F ) is not a norm sequence space. Indeed, one
may consider x = (1,−1, 0, 0, ...), F1 = {1, 2}, F2 = {3, 4}, ... and vn = 1 then, ‖x‖p,v,F = 0 whereas
x 6= 0.
We reform definition 1.1 as

lp(v, F ) :=
{
x = (xn) :

∞∑
n=1

vn

(∑
j∈Fn

|xj|
)p

<∞
}
,

and

‖x‖p,v,F :=
( ∞∑
n=1

vn

(∑
j∈Fn

|xj|
)p) 1

p

. (1.2)

Of course, for non-negative sequences two definitions are coincide.

G. Bennett in [3] by a matrix A with non-negative entries and p > 0, defined the sequence space

lA(p) =
{
x = (xn) :

∑
n

(∑
k

an,k|xk|
)p
<∞

}
.

For p ≥ 1 with the norm

‖x‖A(p) =
(∑

n

(∑
k

an,k|xk|
)p) 1

p

, (1.3)

lA(p) is a norm sequence space.

By a partition F = (Fn), we correspond a matrix A = (an,k) such that an,k = 1, for k ∈ Fn and
an,k = 0, otherwise. One may easily verifies that

‖x‖v,A(p) = ‖x‖p,v,F ,

where,

‖x‖v,A(p) =
(∑

n

vn(
∑
k

an,k|xk|)p
) 1

p
. (1.4)
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For any partition, the corresponding matrix is a quasi-summability matrix, which is an upper trian-
gular matrix which has column-sums 1.
For a certain In such as In = {n}, I = (In), is a partition of positive integers, lp(v, I) = lI(p)(v) = lp(v),
and ‖x‖v,p,I = ‖x‖v,I(p) = ‖x‖v,p.

We write x ≥ 0 if xk ≥ 0 for all k. For p, q ∈ R\{0}, the lower bound involved hear is the number
Lv,p,q,B(A), which is defined as the supremum of those L obeying the following inequality:

‖Ax‖v,B(q) ≥ L‖x‖v,B(p),

where x ≥ 0, x ∈ lB(p)(v) and A = (an,k)n,k≥1 is a non-negative matrix operator from lB(p)(v) into
lB(q)(v). Also B = (bn,k)n,k≥1 is a non-negative matrix.

In this study, dµ is a Borel probability measure on [0, 1] and Hµ = (hn,k)n,k≥0 is the Hausdorff
matrix associated with dµ, defined by

hn,k =

{ (
n
k

) ∫ 1

0
θk(1− θ)n−kdµ(θ) (n ≥ k),

0 (n < k).

Clearly, hn,k =
(
n
k

)
∆n−kµk for n ≥ k ≥ 0, where

µk =

∫ 1

0

θkdµ(θ) (k = 0, 1, · · ·),

and ∆µk = µk − µk+1.

The Hausdorff matrix contains some famous classes of matrices. These classes are as follows:
i) Choosing dµ(θ) = α(1− θ)α−1dθ gives the Cesàro matrix of order α;
ii) Choosing dµ(θ) =point evaluation at θ = α gives the Euler matrix of order α;
iii) Choosing dµ(θ) = | log θ|α−1/Γ(α)dθ gives the Hölder matrix of order α;
iv) Choosing dµ(θ) = αθα−1dθ gives the Gamma matrix of order α.

The Cesàro, Hölder and Gamma matrices have non-negative entries whenever α > 0, and also
the Euler matrix has non-negative entries when 0 ≤ α ≤ 1.

The study of Lp,q(A) goes back to the work of Copson. In [7](see also[[8] Theorem 344]) he proved
that Lp,q(C

t(1)) = p for 0 < p ≤ 1, where C(1) = (an,k)n,k≥0 is the Cesàro matrix defined by

an,k =

{
1

n+1
(0 ≤ k ≤ n),

0 (k > n).

These results extended by Bennett in many ways (cf, [1],[2],[3],[4]). In particular, in ([3], Theorem
7.18), he proved that

Lp,p(Hµ
t) =

∫ 1

0

θ−
1
p∗ dµ(θ) (0 < p ≤ 1), (1.5)

where 1
p

+ 1
p∗

= 1. According to [[3], Proposition 7.9], 1.5 also gives

Lp,p(Hµ) =

∫ 1

0

θ−
1
pdµ(θ) (−∞ < p < 0). (1.6)
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This is a Hardy-type formula (cf. [[4], Eq. (1-8)]). The difference between them is that (1.6) is about
Lp,p(Hµ), while Eq. (1-8) in [4] is about ‖Hµ‖p,p.

Chen and Wang in [5] proved that Lp,p(Hµ) = µ({1}) and Lp,p(Hµ
t) =

(
(µ({0})q + ((µ({1})q

) 1
q
,

where 1 < q ≤ p ≤ ∞. The case 0 < q ≤ 1 ≤ p ≤ ∞ is also examined there. Also in [6], they
computed the exact values of Lp,p(Hµ) (0 < p < 1) and Lp,p(Hµ)t (−∞ < p < 0) as follows:

Lp,q(Hµ) ≥
∫

(0,1]

θ−
1
q dµ(θ) (0 < q ≤ p ≤ 1) (1.7)

and

Lp,q(Hµ
t) ≥

∫
(0,1]

θ−
1
p∗ dµ(θ) (−∞ < q ≤ p < 1).

Lashkaripour and G. talebi in [11] proved the following theorem.

Theorem 1.1. ( [11], Theorem 2.4.) For the Hausdorff matrix Hµ and partition F = (Fn) we have

Lv,p,q,F (Hµ) ≥
∫

(0,1]

θ−
1
q dµ(θ) (0 < q ≤ p ≤ 1). (1.8)

Moreover, the following statements are true:
i) For p = q = 1, (1.8) is an equality.
ii) For 0 < q < p ≤ 1 and Fn = In, (1.8) is an equality if and only if µ({0}) + µ({1}) = 1 or the
right-hand side of (1.8) is infinity.

In this paper, we improve and generalize the above-mentioned theorem. Also,we generalize some
theorems on lp(w,F ),which have proved by Lashkaripour and Foroutannia to the space lw,B(p).

2. New results

Proposition 2.1. Suppose that 0 < p < 1, and let A = (an,k) and B = (bn,k) be two matrices with
non-negative entries. If we take

sup
n≥1

∞∑
k=1

an,k = RA, inf
k≥1

∞∑
n=1

an,k = CA

and

sup
i≥1

∞∑
j=1

bi,j = RB, inf
j≥1

∞∑
i=1

bi,j = CB

then for x ≥ 0, we have

‖ Ax ‖v,B(p)≥ L ‖ x ‖v,p

with

L ≥ (CBCA)
1
p (RARB)

1
p∗ .
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Proof . By taking yj = (Ax)j =
∑∞

k=1 aj,kxk and applying Hölder’s inequality, we have

∞∑
k=1

an,kvky
p
k =

∞∑
k=1

a1−p
n,k (an,kv

1
p

k yk)
p

≤
( ∞∑
k=1

an,k

)1−p( ∞∑
k=1

an,kv
1
p

k yk

)p

≤ R1−p
A

( ∞∑
k=1

an,kv
1
p

k yk

)p
.

By similar way

∞∑
j=1

bi,jvjy
p
j ≤ R1−p

B

( ∞∑
j=1

bi,jv
1
p

j yj

)p
.

Since v is increasing, we have

R1−p
A R1−p

B ‖Ax‖
p
v,B(p) = R1−p

A R1−p
B

( ∞∑
i=1

vi(
∞∑
j=1

bi,jyj)
p
)

≥ R1−p
A R1−p

B

( ∞∑
i=1

(
∞∑
j=1

bi,jv
1
p

j yj)
p
)

≥
∞∑
i=1

∞∑
j=1

bi,j(
∞∑
k=1

aj,kvkx
p
k)

=
∞∑
k=1

( ∞∑
j=1

aj,k(
∞∑
i=1

bi,j)
)
vkx

p
k

≥ CBCA

∞∑
k=1

vkx
p
k,

and this leads us to the desired inequality. �

Remark 2.2. By taking B = I and vn = 1 in above statement we obtain the following conclusion
due Bennett ([3] Proposition 7.4. ):
Fix p, 0 < p < 1, and suppose that A is a matrix with non-negative entries. If supn

∑∞
k=1 an,k = R

and infk
∑∞

n=1 an,k = C, then Lp,q(A) ≥ R
1
p∗C

1
p .

For α ≥ 0, let E(α) = (en,k(α))n,k≥1 denotes the Euler matrix, defined by

en,k(α) =

{ (
n−1
k−1

)
αk(1− α)n−k (n ≥ k),

0 (n < k).



50 Moazzen, Lashkaripour

(cf. [6]). For Ω ⊂ (0, 1], we have∫
Ω

en,k(θ)dµ(θ) = µ(Ω)×
∫ 1

0

en,k(θ)dλ(θ),

where, dλ = χΩ

µ(Ω)
dµ is a Borel probability measure on [0, 1] with λ({0}) = 0. Hence the second part

of ([3], Proposition 19.2) can be generalized in the following way.

Proposition 2.3. Suppose that 0 < p ≤ 1,Ω ⊆ [0, 1] and dµ is any Borel probability measure on

[0, 1]. If µ({0}) = 0 or Ω ⊂ (0, 1], then the sequence
∥∥∥{ ∫Ω

en,k(θ)dµ(θ)
}∞
n=k

∥∥∥
v,p

increase with respect

to k.

Proposition 2.4. Suppose that 0 < p ≤ 1 and B is a matrix with non-negative entries, then for
0 < α ≤ 1, we have

Lv,B(p)(E(α)) ≥ C
1
p

BR
1
p∗

B α
−1
p .

Proof . One may easily verifies that
∑∞

k=1 en,k(α) = 1(n ≥ 1) and
∑∞

n=1 en,k(α) = α−1(k ≥ 1).
Applying Proposition 2.1 to case that RA = 1 and CA = α−1,for 0 < p < 1, we deduce that

Lv,B(p)(E(α)) ≥ C
1
p

BR
1
p∗

B α
−1
p .

For p = 1,by the Fubini’s theorem and monotonicity of (vn), we deduce that

‖E(α)x‖v,B(1) =
∞∑
i=1

vi

( ∞∑
j=1

bi,jyj

)

≥
∞∑
j=1

vjyj

( ∞∑
i=1

bi,j

)

≥ CB

∞∑
j=1

vj

( ∞∑
k=1

ej,k(α)xk

)

≥ CB

∞∑
k=1

vkxk

( ∞∑
j=1

ej,k(α)
)

= CBα
−1‖x‖v,1,

which gives the desired inequality. This completes the proof.
�

Theorem 2.5. By the previous assumptions on B and v, we have

Lv,p,q,B(Hµ) ≥ C
1
q

BR
1
q∗

B

∫
(0,1]

θ−
1
q dµ(θ) (0 < q ≤ p ≤ 1). (2.1)

Moreover, the following statements are true:
(i) For p = q = 1, (2.1) is an equality, if B is a quasi-summability matrix.
(ii) For 0 < q < p ≤ 1 or B = I(the identity matrix), (2.1) is an equality if and only if µ({0}) +
µ({1}) = 1 or the right-hand side of 2.1 is infinity.
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Proof . Suppose that x ≥ 0 with ‖x‖v,B(p) = 1, then ‖x‖v,B(q) ≥ ‖x‖v,B(p) = 1. Applying Minkowski’s
inequality and Proposition 2.3, we have

‖Hµ(x)‖v,B(q) =
( ∞∑
n=1

vn(
∞∑
k=1

bn,k(Hµ(x))k)
q
) 1

q

=

( ∞∑
n=1

vn

( ∞∑
k=1

bn,k

( ∞∑
j=1

(
k − 1

j − 1

)∫ 1

0

θj−1(1− θ)k−jdµ(θ)xk

))q) 1
q

=

( ∞∑
n=1

vn

(∫ 1

0

∞∑
k=1

∞∑
j=1

bn,kej,k(θ)xkdµ(θ)
)q) 1

q

≥
∫ 1

0

( ∞∑
n=1

vn

( ∞∑
k=1

∞∑
j=1

bn,kej,k(θ)xk

)q) 1
q

dµ(θ)

=

∫ 1

0

‖E(θ)x‖v,B(q)dµ(θ)

≥ C
1
q

BR
1
q∗

B ‖x‖v,B(q)

∫ 1

0

θ−
1
q dµ(θ)

≥ C
1
q

BR
1
q∗

B

∫ 1

0

θ−
1
q dµ(θ).

Now, consider (i). Let e2 = (0, 1, 0, ...), then e2 ≥ 0 and ‖e2‖v,B(1) = v1b2,1 + v2b2,2 = 1.

‖Hµe2‖v,B(1) =
∞∑
n=1

vn(
∞∑
k=1

bn,khk,2(θ))

≥
∫ 1

0

∞∑
n=1

en,2(θ)dµ(θ)

=

∫
(0,1]

θ−1dµ(θ).

≥ CB

∫
(0,1]

θ−1dµ(θ).

Hence

Lv,B(1)(Hµ) ≤ CB

∫
(0,1]

θ−1dµ(θ).

Combining this with (2.1), we obtain (i). Now, consider (ii). Obviously, (2.1) is an equality if its
right-hand side is infinity. For the case that µ({0}) + µ({1}) = 1, we have

‖Hµe2‖v,B(q) =
( ∞∑
n=1

vn(
∞∑
k=1

bn,khk,2(θ))q
) 1

q
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=
( ∞∑
n=2

vn(
∞∑
k=1

hk,2(θ))q
) 1

q

≥
( ∞∑
n=2

vn(
∞∑
k=1

hqk,2(θ))
) 1

q

≥
( ∞∑
n=2

vnh
q
n,2(θ)

) 1
q

=
( ∞∑
n=2

vn

((n− 1

1

)∫ 1

0

θ(1− θ)n−2dµ(θ)
)q) 1

q

= µ({1}) =

∫
(0,1]

θ−
1
q dµ(θ).

this follows that

Lv,p,q,B(Hµ) ≤
∫

(0,1]

θ−
1
q dµ(θ),

so (2.1) is an equality.
Conversely, let 0 < q < p ≤ 1, B = I and assume that µ({0}) + µ({1}) 6= 1 and also∫

(0,1]

θ−
1
q dµ(θ) <∞,

then µ((0, 1)) 6= 0. Since 0 < q < 1, we have

∞∑
n=0

(1− θ)n <
∞∑
n=0

(1− θ)nq. (θ ∈ (0, 1)) (2.2)

Applying (2.2), Minkowski’s inequality and monotonicity of v we have∫
(0,1]

θ−
1
q dµ(θ) =

∫
(0,1]

( ∞∑
n=1

(1− θ)n
) 1

q
dµ(θ)

<

∫
(0,1]

( ∞∑
n=1

(1− θ)nq
) 1

q
dµ(θ)

≤
∥∥∥{∫

(0,1]

(1− θ)ndµ(θ)
}∞
n=1

∥∥∥
q

≤
∥∥∥{∫

(0,1]

(1− θ)ndµ(θ)
}∞
n=1

∥∥∥
v,q
. (2.3)

From 2.3 we can find 0 < β < 1 such that∫
(0,1]

θ−
1
q dµ(θ) < β

∥∥∥{∫
(0,1]

(1− θ)ndµ(θ)
}∞
n=1

∥∥∥
v,q
. (2.4)
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We claim that

Lv,p,q,B(Hµ) ≥ min

{
β

q−p
q

∫
(0,1]

θ−
1
q dµ(θ), β

∥∥∥{∫
(0,1]

(1− θ)ndµ(θ)
}∞
n=1

∥∥∥
v,q

}
. (2.5)

Let x ≥ 0, with ‖x‖v,B(p) = 1. We divide the proof into two cases: xk0 ≥ β for some k0 or xk < β for
all k. For the first case, applying Proposition 2.3, it follows that

‖Hµx‖v,B(q) =
( ∞∑
n=1

vn(
∞∑
k=1

bn,k(Hµ(x))k)
q
) 1

q

=
( ∞∑
n=1

vn

(
Hµx

)q
n

) 1
q

=
( ∞∑
n=1

vn

( ∞∑
k=1

hn,kxk

)q) 1
q

≥ xk0

( ∞∑
n=1

vnh
q
n,k0

) 1
q

≥ β
∥∥∥{∫

(0,1]

en,k0(θ)dµ(θ)
}∞
n=k0

∥∥∥
v,q

≥ β
∥∥∥{∫

(0,1]

en,1(θ)dµ(θ)
}∞
n=1

∥∥∥
v,q

= β
∥∥∥{∫

(0,1]

(1− θ)ndµ(θ)
}∞
n=1

∥∥∥
v,q
.

As for the second case,we have

xqk ≥ βq−pxpk,

so

‖x‖v,q =
( ∞∑
k=1

vkx
q
k

) 1
q ≥ β

q−p
q

( ∞∑
k=1

vkx
p
k

) 1
q

= β
q−p
q .

Applying (2.1), for the case B = I, we deduce that

‖Hµx‖v,B(q) ≥
(∫

(0,1]

θ−
1
q dµ(θ)

)
‖x‖v,B(q)

=
(∫

(0,1]

θ−
1
q dµ(θ)

)
‖x‖v,q

= β
q−p
q

(∫
(0,1]

θ−
1
q dµ(θ)

)
.

Hence, ‖Hµx‖v,B(q) is always grater than or equal to the minimum stated at the right-hand side of

(2.5). It is clear that β
q−p
q > 1. Considering (2.4) and (2.5) together, (ii) is obtained.

�
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Corollary 2.6. If F = (Fn) is a partition of natural numbers which N is the largest cardinal numbers
of Fn’s. Then

Lv,p,q,F (Hµ) ≥ N
1
q∗

∫
(0,1]

θ−
1
q dµ(θ) (0 < q ≤ p ≤ 1).

So, Theorem 1.1 is improved.
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