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Abstract

Let A = (ang)ni>1 and B = (byx)nk>1 be two non-negative matrices. Denote by L, ,,5(A), the
supremum of those L, satisfying the following inequality:

| Az [lo,B()=> L | 2 [l0,5),

where x > 0 and z € [,(v, B) and also v = (v,,)5%, is an increasing, non-negative sequence of real
numbers. In this paper, we obtain a Hardy-type formula for L, ,, 5(H,), where H, is the Hausdorft
matrix and 0 < ¢ < p < 1. Also for the case p = 1, we obtain || A, p(1), and for the case p > 1, we
obtain Ly, p()(A).
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1. Introduction

Suppose that v = (v,)32; is an increasing, non-negative sequence of real numbers with v, = vy =1

and ) 7" % = co. For p € R\{0}, let [,(v) denotes the space of all real sequences z = {x;}72,, such
that

[e.9]

2 |vp = (ka|xk|p>p < 00.

k=1

[un
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Lashkaripour and Foroutannia in [10], defined the weighted block sequence space as follows. Assume
that F' = (F),) is a partition of positive integers where each F, is a finite interval of N and

max F,, < min F}, (n=1,2,...).
The weighted block sequence space [,,(v, F') is defined as
ly(v, F) = {x = (z,) : Zvn| <z F,>P< oo},
n=1
where, <z, F,, >= 3, x;. The norm on [,(v, F') is denoted by ||.|[,,.,r and is defined by

1

por = (Y vl <2 B> )7 (1.1)

n=1

|

Note that with the above-mentioned definition /,(v, F') is not a norm sequence space. Indeed, one
may consider z = (1,—1,0,0,...), Fy = {1,2}, F; = {3,4}, ... and v, = 1 then, ||z||,,r = 0 whereas

x # 0.
We reform definition [[.1] as

ly(v, F) = {x = (x,) : ivn( Z |xj|>p < oo},

and

|

o = (ivn< S my)p)’l’. (1.2)

n=1 JEF,

Of course, for non-negative sequences two definitions are coincide.

G. Bennett in [3] by a matrix A with non-negative entries and p > 0, defined the sequence space
p
lag) = {x = (z,) : Z (Zank|xk\> < oo}.
n k

For p > 1 with the norm

lellagy = (D2 (3 anslanl)) " (1.3)

lA(p) 1S a Nnorm sequence space.

hSA

By a partition F' = (F},), we correspond a matrix A = (a, ) such that a,, = 1, for k € F,, and
an = 0, otherwise. One may easily verifies that

2l a) = [[€]lp.7,

where,

I#lloa0) = (D2 en(Y anilaal)r) (1.4

S =
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For any partition, the corresponding matrix is a quasi-summability matrix, which is an upper trian-
gular matrix which has column-sums 1.

For a certain I, such as I, = {n}, I = (1,,), is a partition of positive integers, l,,(v, I) = ;) (v) = l,(v),
and [|zlvp1 = |2lo,10) = 1[0 p-

We write x > 0 if 2, > 0 for all k. For p,q € R\{0}, the lower bound involved hear is the number
Ly p.q.5(A), which is defined as the supremum of those L obeying the following inequality:

1Az ]|o,p@) = Lllllo.50),

where x > 0, z € Ipp)(v) and A = (apk)nk>1 is a non-negative matrix operator from lp(,)(v) into
Ip(g)(v). Also B = (byx)nk>1 is a non-negative matrix.

In this study, dp is a Borel probability measure on [0, 1] and H, = (hyk)n k>0 is the Hausdorff
matrix associated with dyu, defined by

B, = { (1) fy 0" (1 = )" *dp(0) (n > k),
" 0 (n < k).

Clearly, hpr = (P)A™ %, for n > k > 0, where
: k

1
iy = / 0 dyu(0) (k=0,1,--),
0
and Apg = ik — frt-

The Hausdorff matrix contains some famous classes of matrices. These classes are as follows:
i) Choosing du(6) = a(1 — 0)*~1df gives the Cesaro matrix of order «;
ii) Choosing du(f) =point evaluation at § = « gives the Euler matrix of order «;
iii) Choosing du(6) = |log0|*~/T'(a)df gives the Holder matrix of order «;
iv) Choosing du(f) = a#* 'df gives the Gamma matrix of order a.

The Cesaro, Holder and Gamma matrices have non-negative entries whenever o > 0, and also
the Euler matrix has non-negative entries when 0 < o < 1.

The study of L, ,(A) goes back to the work of Copson. In [7](see also[[8] Theorem 344]) he proved
that L, ,(C*(1)) = p for 0 < p <1, where C(1) = (an)ni>o is the Cesaro matrix defined by

L (0<k<n)
— n+1 — — ’
fink { 0 (k > n).

These results extended by Bennett in many ways (cf, [1],[2],[3],[4]). In particular, in ([3], Theorem
7.18), he proved that

1
1
Ly(H,') = [ 67 du(o) O<p<), (15)
0
where % + ]% = 1. According to [[3], Proposition 7.9], also gives

L,,(H,) = /0 0% dp(6) (=00 < p<0). (1.6)
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This is a Hardy-type formula (cf. [[4], Eq. (1-8)]). The difference between them is that (1.6 is about
L,,(H,), while Eq. (1-8) in [4] is about ||H,||, -

Q=

Chen and Wang in [5] proved that L, ,(H,) = u({1}) and L, ,(H,') = ((u({O})q + ((u({1})q) ,

where 1 < ¢ < p < oo. The case 0 < ¢ < 1 < p < 0 is also examined there. Also in [6], they
computed the exact values of L,,(H,) (0 < p < 1) and L,,(H,)" (—oco < p < 0) as follows:

Lyo(H,) > /( i) O<g<p<1) (1.7
0,1
and
Lyq(H,') = / H_pi*du(ﬁ) (-oo<g<p<l).
(0,1]

Lashkaripour and G. talebi in [11] proved the following theorem.

Theorem 1.1. ( [I1], Theorem 2.4.) For the Hausdorff matriz H, and partition F' = (F,) we have

Lypqr(H,) > / eiéd#(e) (0<g<p<l). (1.8)
(0,1]

Moreover, the following statements are true:

i) Forp=q=1, (1.§) is an equality.

i) For 0 < ¢ <p <1 and F, = I,, {1.§) is an equality if and only if ({0}) + pn({1}) = 1 or the
right-hand side of @ 18 infinity.

In this paper, we improve and generalize the above-mentioned theorem. Also,we generalize some
theorems on I, (w, F),which have proved by Lashkaripour and Foroutannia to the space I, p(p)-
2. New results

Proposition 2.1. Suppose that 0 < p < 1, and let A = (an ) and B = (b, ) be two matrices with
non-negative entries. If we take

o [o¢]
sup E QAn ke = RAa }inf § QAn k. = Ca
b >1 b
= = =1
and
o0 o0
sup E biyj = RB, mf bm’ = CB
i>1 = Jj214
= ]:1 =1

then for x > 0, we have
| Az [lo.pm= L || @ [lop
with

L > (C5Ca)7(RARE)¥.
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Proof . By taking y; = (Ax); = > ;- a;,x; and applying Holder’s inequality, we have

o0 oo 1

Z Un kVRYp, = Z ai;gp(an,kvé} Yr)”

k=1 k=1

[e.9]

< (Zan k)l p(Zan,kvéyky

k=1
1— - S \?
<R, p(Z%,W;ﬁ?Jk) :
k=1
By similar way
wa% J < Ry p(zbw viY. ) '

Since v is increasing, we have

RPRy | Al gy = R PRE (S i Zb”y] )

=1

3

> CpCy Z VR,

k=1

and this leads us to the desired inequality. [J

Remark 2.2. By taking B = I and v, = 1 in above statement we obtain the following conclusion
due Bennett ([3] Proposition 7.4. ):

Fiz p, 0 < p < 1, and suppose that A is a matriz with non-negative entries. If sup, > po anp = R
and inf, Y > any, = C, then L, ,(A) > R#C'r.

For a >0, let E(a) = (enk(a)), 1>, denotes the Euler matriz, defined by

B Zj k(1 — ) F (n > k),
en k(@) = { (g ) (n < k).
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(cf. [6]). For Q C (0,1], we have

[ ens®)dn(0) = @) x [ e,n(0)a0)

where, dX = =Gsdy is a Borel probability measure on 0,1] with A({0}) = 0. Hence the second part
of ([3], Proposition 19.2) can be generalized in the following way.

Proposition 2.3. Suppose that 0 < p < 1,9 C [0,1] and du is any Borel probability measure on
0,1]. If u({0}) =0 or Q C (0, 1], then the sequence { o en,k(e)du(ﬁ)} k‘
to k. -

increase with respect
v)p

Proposition 2.4. Suppose that 0 < p < 1 and B is a matriz with non-negative entries, then for
0<a<l1, wehave

I Y
Lyp)(E()) 2 CpRp av.

Proof . One may easily verifies that Y ;- e, (@) = 1(n > 1) and Y 2 e p(a) = a ™t (k > 1).
Applying Proposition to case that Ry = 1 and Cy = o 1.for 0 < p < 1, we deduce that

Lo =L
Ly ) (E(a)) 2 CxRE a7
For p = 1,by the Fubini’s theorem and monotonicity of (v,), we deduce that

B @l = 3 o 3 b

i=1 j=1
> Z UjY; < Z biu’)
j=1 i=1
> OBZUJ(Zeﬂk >
j=1 =1

> Cp Z Uk ( Z ej,k(a)>
k=1 j=1

= CBOé_1||90||v,17

which gives the desired inequality. This completes the proof.

O
Theorem 2.5. By the previous assumptions on B and v, we have
L L _1
Ly,ye5(H,) > CLR] 0~ adu(0) 0<g<p<l). (2.1)
(0,1]

Moreover, the following statements are true:

(i) Forp=q =1, 18 an equality, if B is a quasi-summability matriz.

(i) For 0 < q < p <1 or B = I(the identity matriz), is an equality if and only if n({0}) +
1({1}) = 1 or the right-hand side of[2.1] is infinity.



Some Inequalities Involving Lower Bounds of...3 (2012) No. 1,45-54 51
Proof . Suppose that > 0 with ||z ||, @) = 1, then ||z, > [|2|lv,5) = 1. Applying Minkowski’s
inequality and Proposition we have

o0 o

@i = (D2 0al D bk (Halw))?)*

=1

1

- / | EB)l]o 500y d1s(0)
11 Ly

> CARE ellos / 0=t du(o)

1 o1l
> R [ 675du(0)
0
Now, consider (i). Let e; = (0,1,0,...), then es > 0 and ||eg||v, 1) = viba,1 + vobo 2 = 1.

1Heollo.m0) = Y va( Y bushia(0))
k=1

n=1

> / > ena0)du0)

_ / 0 dyu(0).
(0,1]

> CB/ «9_1d,u(9).
(0,1]
Hence

Losy(H,) < Cs / 0 dju(0).

(0,1]

Combining this with (2.1)), we obtain (i). Now, consider (ii). Obviously, (2.1) is an equality if its
right-hand side is infinity. For the case that pu({0}) + u({1}) = 1, we have

|Hyeallusw = (3 vn( 3 bushia(0))")”
k=1

n=1
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= (imghm(e»ﬂ;

> (gvnéhzz(e)))é

> (3 nita0)’

- (n((" 1) [ ooy

this follows that
Lypqn(Hy) < / 0~ adu(0),
(0,1]

so (2.1)) is an equality.
Conversely, let 0 < ¢ < p <1, B =1 and assume that u({0}) + u({1}) # 1 and also

/ G_éd,u(ﬁ) < 00,
(0,1]

then p((0,1)) # 0. Since 0 < ¢ < 1, we have

o

(1-0)" < iu —0)". (0 (0,1)) (2.2)

n=0

Applying (2.2)), Minkowski’s inequality and monotonicity of v we have

/M 0= du(0) = /(] (nfjlu —0)") " du(e)
</ (gu — 0y “aulo)

<[{ ], a-orwo}

q

g” / 1—oydue)) || . 2.3
{ (1 . (2.3)
From [2.3] we can find 0 < § < 1 such that
/ i du(9) < 5H{ / (1- 0)”du(¢9)} R (2.4)
(0,1] (0,1] n=1llv,q
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q} (2.5)

Let x > 0, with [|z||s,5p) = 1. We divide the proof into two cases: xy, > 3 for some kg or x;, < /3 for
all k. For the first case, applying Proposition [2.3] it follows that

[ Hu oo = (D2 onl D bus(Hu(@)e)*)*

n=1
q
Up, <Hux> )

We claim that

Lopant) = min {55 [ o tauo) pl{ [ 0 -orauo)”

n=1

Q=

L

> (3,

- | /(] cun @)} ||
> | { /( H enr(@)an(0)} ||
=ol{ [, a-oram} ],

As for the second case,we have
q q-p,.p
xk Z B xk?

SO

> 1 B 00 B
el = (o wiet)" 2 6% (Somat) " = 5"

k=1 k=1
Applying (2.1)), for the case B = I, we deduce that

oot 2 (| 07500 lelung

~( /( KalZO) [
_ 5?’(/(0’1} 0’5@(9))-

Hence, ||H,x||,,B(q) is always grater than or equal to the minimum stated at the right-hand side of

1D It is clear that 8@ > 1. Considering 1} and 1) together, (ii) is obtained.
0
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Corollary 2.6. If F' = (F),) is a partition of natural numbers which N is the largest cardinal numbers
of F,,’s. Then

So,

1 _1
Lopgr(H,) > N& / 0=+ dpu(6) (0<q<p<1).

(0,1]

Theorem is improved.

References

G. Bennett, Lower bounds for matrices, Linear Algebra and Appl., 82 (1986) 81-98.

G. Bennett, Some elemantary inequalities IT, Q. J. Math. Oxford, 39 (2) (1988) 385-400.

G. Bennett, Factorizing the classical inequalities, Mem. Amer. Soc., 120 (576) (1996) 1-130.

G. Bennett, Inequalities complimentary to Hardy, Q. J. Math. Oxford, 49 (2) (1998) 395-432.

C. -P. Chen and K.-Z. Wang, Lower bounds of Copson type for Hausdorff matrices, Linear Algebra and Appl.,
420 (2007) 208-217.

C. -P. Chen and K.-Z. Wang, Lower bounds of Copson type for Hausdorff matrices II, Linear Algebra and Appl.,
422 (2007) 563-573.

E. T. Copson, Note on series of positive terms, J. London Math. Soc., 3 (1928) 49-51.

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambrdge University Press, Cambridge, 1952.

G. J. O. Jameson and R. Lashkaripour, Norms of certain operators on weighted l, spaces and Lorentz sequence
spaces, Journal of Inequalities in Pure and Applied Math., 3 (1) (2002) Article 6.

R. Lashkaripour and D. Foroutannia, Norm and lower bounds for matrices on block weighted sequence spaces I,
Czechoslovak Math. J., 59 (134) (2009) 81-94.

R. Lashkaripour and G. Talebi, Lower bound and upper bound of operators on block weighted sequence spaces,
Czech. Math. Journal, (to appear).



	 Introduction
	 New results 

