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Abstract

Recently Hamed H Alsulami et al introduced the notion of (α-ψ)-rational type contractive mappings.
They have been establish some fixed point theorems for the mappings in complete generalized met-
ric spaces. In this paper, we introduce the notion of some fixed points theorems for α∗-ψ-common
rational type mappings on generalized metric spaces with application to fractional integral equations
and give a common fixed point result about fixed points of the set-valued mappings.
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1. Introduction

You know, fixed point theory has many applications and was extended by several authors
from different views (see for example [1]-[23]). Recently Hamed H Alsulami et al introduced the
notion of (α − ψ)−rational type contractive mappings ([2]). Denote with Ψ the family of upper
semi-continuous, strictly increasing functions ψ : [0,∞) → [0,∞) such that {ψn(t)}n∈N converges to
0 as n→ ∞ and ψ(t) < t for all t > 0 where ψn is the n-th iterate of ψ and ψ ∈ Ψ ([2]). Let (X, d)
be a generalized metric space, T a self-map on X, ψ ∈ Ψ and α : X×X → [0,∞) a function. Then
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T is called a (α-ψ)-rational type-I contraction mapping whenever α(x, y)d(Tx, Ty) ≤ ψ(MI(x, y))
for all x, y ∈ X where

MI(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Tx)d(y, Ty)
1 + d(x, y)

,
d(x, Tx)d(y, Ty)

1 + d(Tx, Ty)
}, (1.1)

for all x, y ∈ X. Also, we say that T is α-admissible whenever α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1. Also,
we say that X has the property α-regular generalized metric space if {xn} is a sequence in X such
that α(xn, xn+1) ≥ 1 for all n ≥ 1 and xn → x, there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x) ≥ 1 for all k ≥ 1. Let (X, d) be a generalized complete metric space, T a α-admissible
and (α-ψ)-rational type contractive mappings on X. Suppose that there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1, α(x0, T

2x0) ≥ 1. If T is continuous or X has the property α-regular generalized
metric space, then T has a fixed point (see [2]; Theorems (2.1) and (2.2)). The aim of this paper is
to introduce the notion of some fixed points theorems for α∗-ψ-common rational type mappings on
generalized metric spaces with application to fractional integral equations. Let 2X denote the family
of all nonempty subsets of X.

2. Preliminaries

In this section, we list some fundamental definitions that are useful tool in consequent analysis.

Definition 2.1. [9] Let X be a nonempty set and d : X ×X → [0,∞) satisfy the following condi-
tions, for all x, y ∈ X and all distinct u, v ∈ X each of which is different from x and y:
(GMS1) d(x, y) = 0 if and if x = y
(GMS2) d(x, y) = d(y, x)
(GMS3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then the map d is called a generalized metric and abbreviated as GM . Here, the pair (X, d) is called
a generalized metric space and abbreviated as GMS.
In the abave definition, if d satisfies only GMS1 and GMS2, then it is called a semi-metric (see,

e.g. [23]).
A sequence {xn} in a GMS (X, d) is GMS convergent to a limit x if and only if d(xn, x) → 0 as

n→ ∞.
A sequence {xn} in a GMS (X, d) is GMS Cauchy if and if for every ϵ > 0 there exists a positive

integer N(ϵ) such that d(xn, xm) < ϵ, for all n > m > N(ϵ).
A GMS (X, d) is called complete if every GMS Cauchy sequence in X is GMS convergent.
A mapping T : (X, d) → (X, d) is continuous if for any sequence {xn} in X such that d(xn, x) → 0

as n→ ∞, we have d(Txn, Tx) → 0 as n→ ∞.
The following assumption was suggested by Wlilson ([23]) to replace the triangle inequality with the

weakened condition.
(W ) For each pair of (distinct) points u, v there is number ru,v > 0 such that for every z ∈ X, ru,v <

d(u, z) + d(z, v).

Proposition 2.2. [19] Suppose that {xn} is a Cauchy sequence in a GMS (X, d) with limn→∞ d(xn, u) =
0 where u ∈ X. Then limn→∞ d(xn, z) = d(u, z) for all z ∈ X. In particular, the sequence {xn} dose
not converge to z if z ̸= u.

Definition 2.3. Let 𭟋 the family of functions f : [0,∞) → R satisfy:
(i) f(0) = 0 and f(t) > 0 for all t ∈ (0,+∞);
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(ii) f is continuous;
(iii) f is nondecreasing on [0,+∞);
(iv) f(t1 + t2) ≤ f(t1) + f(t2) for all t1, t2 ∈ (0,+∞).

Definition 2.4. Let (X, d) be a (GMS) and T, S : X → 2X with given multi-valued, α : X ×X →
[0,+∞),α∗ : 2X × 2X → [0,+∞), α∗(A,B) = inf{α(a, b) : a ∈ A, b ∈ B}, f ∈ 𭟋, ψ ∈ Ψ,
D(s, Ts) = inf{d(s, z)/z ∈ Ts}, H is the Hausdorff metric and let

MI(Ax,By) = max{d(x, y), D(x,Ax), D(y,By),
D(x,Ax)D(y,By)

1 + d(x, y)
,
D(x,Ax)D(y,By)

1 +H(Ax,By)
}, (2.1)

H(Ax,By) = max{ sup
a∈Ax

D(a,By), sup
b∈By

D(Ax, b)}.

One says that T, S are α∗-ψ-common rational type-I contractive set-valued mappings whenever

α∗(Ax,By)f(H(Ax,By)) ≤ ψ(f(MI(Ax,By))), (2.2)

A,B = T or S for all x, y ∈ X.

Definition 2.5. Let T, S : X → 2X and α : X × X → [0,+∞). One says that T, S are an
α∗-common admissible if α(x, y) ≥ 1 ⇒ α∗(Ax,By) ≥ 1, A,B = T or S for all x, y ∈ X.

Definition 2.6. A subset B ⊆ X is said to be an approximation if for each given y ∈ X, there
exists z ∈ B such that D(B, y) = d(z, y).

Definition 2.7. A set-valued mapping T : X −→ 2X is said to have an approximate values in X if
Tx is an approximation for each x ∈ X.

Definition 2.8. ([22]) A set-valued operator T : X → 2X is called order closed if for monotone
sequences xn ∈ X and yn ∈ Txn, with limn→∞ d(xn, x) = 0 and limn→∞ d(yn, y) = 0, implies y ∈ Tx.

Definition 2.9. Let (X, d) be a metric space. If T : X → 2X is a set-valued mapping, then x ∈ X
is called fixed point for T if and only if x ∈ F (x). The set Fix(T ) := {x ∈ X|x ∈ Tx} is called the
fixed point set of T .

Definition 2.10. We say that X has the property α−regular generalized metric space if, either
(i) {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n → ∞, then

there exists a subsequence {xnk
} of {xn} such that α(xnk

, x) ≥ 1 for all k. Or
(ii) {xn} is a sequence in X such that α(xn+1, xn) ≥ 1 for all n and xn → x ∈ X as n→ ∞, then

there exists a subsequence {xnk
} of {xn} such that α(x, xnk

) ≥ 1 for all k.

Throughout this paper we always assume that all set-valued operators have approximate values. We
have the following result. Finally, we should emphasize that throughout this paper we suppose that
all set-valued mappings on a metric space (X, d) have closed values.
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3. Main result

Now, we are ready to state and prove our main results. Fixed point theorems for order closed
set-valued mappings.

Lemma 3.1. Let (X, d) be a GMS and T, S : X → 2X are α∗-ψ-common rational type-I contractive
set-valued mappings. Then Fix(T ) = Fix(S).

Proof . We first show that any fixed point of T is also a fixed point of S and conversely. Define
α(x, y) = 1 for all x, y ∈ X. Since Fix(T ) ̸= Fix(S), we may assume there exists x∗ ∈ X such that
x∗ ∈ Fix(T ), but x∗ /∈ Fix(S). Since D(x∗, Sx∗) > 0, we have

MI(Tx
∗, Sx∗) = max{d(x∗, x∗), D(x∗, Tx∗), D(x∗, Sx∗)

, D(x∗,Tx∗)D(x∗,Sx∗)
1+d(x∗,x∗)

, D(x∗,Tx∗)D(x∗,Sx∗)
1+H(Tx∗,Sx∗)

}
= D(x∗, Sx∗)

(3.1)

and
f(D(x∗, Sx∗)) ≤ f(H(Tx∗, Sx∗))

≤ α∗(Tx
∗, Sx∗)f(H(Tx∗, Sx∗))

≤ ψ(f(MI(Tx
∗, Sx∗)))

≤ ψ(f(D(x∗, Sx∗)))
< f(D(x∗, Sx∗)).

(3.2)

This contradiction establishes that Fix(T ) ⊆ Fix(S). A similar argument establishes the reverse
containment, and therefore Fix(T ) = Fix(S). □

Theorem 3.2. Let (X, d) be a complete GMS, T, S : X → 2X be a α∗-ψ-common rational type-
Icontractive set-valued mappings and satisfies the following conditions:
(i) T, S are α∗-common admissible;
(ii) there exists x0 ∈ X such that

α∗({x0}, Tx0) ≥ 1, α∗({x0}, STx0) ≥ 1;

(iii) X has the property α−regular generalized metric space
Then T, S have common fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn}
with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T, S.

Proof . By lemma (3.1), we have Fix(T ) = Fix(S). Let x0 ∈ X such that α∗({x0}, Tx0) ≥ 1 and
α∗({x0}, STx0) ≥ 1. Define the sequence {xn} in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all
n ∈ N0. If xn0 = xn0+1 for some n0 > 1, then x∗ = xn0 are a common fixed point for T, S. So, we can
assume that x2n /∈ Tx2n and x2n+1 /∈ Sx2n+1 for all n ∈ N0. Since T, S are α∗-common admissible,
we have

α(x0, x1) ≥ α∗({x0}, Tx0) ≥ 1 ⇒ α∗(Tx0, Sx1) ≥ 1; (3.3)

α(x1, x2) ≥ α∗(Tx0, Sx1) ≥ 1 ⇒ α∗(Sx1, Tx2) ≥ 1. (3.4)

Inductively, we have α(xn, xn+1) ≥ 1 for all n ∈ N0. By similar arguments, since α∗({x0}, STx0) ≥ 1,
we have

α(x0, x2) ≥ α∗({x0}, STx0) ≥ 1 ⇒ α∗(Tx0, Tx2) ≥ 1; (3.5)

α(x1, x3) ≥ α∗(Tx0, Tx2) ≥ 1 ⇒ α∗(Sx1, Sx3) ≥ 1. (3.6)
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Inductively, we have α(xn, xn+2) ≥ 1 for all n ∈ N0. Without loss of generality, we may assume
that T, S : X → 2X be a α∗-ψ-common rational type-I contractive set-valued mappings. Consider
equation (2.1), (2.2) with x = x2n+1 and y = x2n+2. Clearly, we have

f(d(x2n+1, x2n+2)) ≤ f(H(Tx2n, Sx2n+1))
≤ α∗(Tx2n, Sx2n+1)f(H(Tx2n, Sx2n+1))
≤ ψ(f(MI(Tx2n, Sx2n+1))),

(3.7)

where
MI(Tx2n, Sx2n+1) = max{d(x2n, x2n+1), D(x2n, Tx2n), D(x2n+1, Sx2n+1),

D(x2n,Tx2n)D(x2n+1,Sx2n+1)
1+d(x2n,x2n+1)

, D(x2n,Tx2n)D(x2n+1,Sx2n+1)
1+D(Tx2n,Sx2n+1)

}
= max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2),
d(x2n,x2n+1)d(x2n+1,x2n+2)

1+d(x2n,x2n+1)
, d(x2n,x2n+1)d(x2n+1,x2n+2)

1+d(x2n+1,x2n+2)
}

= max{d(x2n, x2n+1), d(x2n+1, x2n+2)},

(3.8)

since
d(x2n,x2n+1)d(x2n+1,x2n+2)

1+d(x2n,x2n+1)
= d(x2n,x2n+1)

1+d(x2n,x2n+1)
× d(x2n+1, x2n+2) ≤ d(x2n+1, x2n+2) (3.9)

and
d(x2n,x2n+1)d(x2n+1,x2n+2)

1+d(x2n+1,x2n+2)
= d(x2n+1,x2n+2)

1+d(x2n+1,x2n+2)
× d(x2n, x2n+1) ≤ d(x2n, x2n+1). (3.10)

If
max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2). (3.11)

So, in general,

f(d(x2n+1, x2n+2)) ≤ ψ(f(d(x2n+1, x2n+2))) < f(d(x2n+1, x2n+2)), (3.12)

which is contradiction since d(x2n+1, x2n+2) > 0. Thus

f(d(x2n+1, x2n+2)) ≤ ψ(f(d(x2n, x2n+1))). (3.13)

Similarly,
f(d(x2n, x2n+1)) ≤ ψ(f(d(x2n−1, x2n))), (3.14)

we have
f(d(xn+1, xn+2)) ≤ ψ(f(d(xn, xn+1))) ≤ . . . ≤ ψn(f(d(x0, x1))), (3.15)

for all n ∈ N. From the property of ψ, we conclude that

d(xn, xn+1) < d(xn−1, xn), (3.16)

for all n ∈ N, it is clear that
lim
n→∞

d(xn+1, xn+2) = 0. (3.17)

Consider equation (2.1), (2.2) with x = x2n−1 and y = x2n+1. Clearly, we have

f(d(x2n, x2n+2)) ≤ f(H(Sx2n−1, Sx2n+1))
≤ α∗(Sx2n−1, Sx2n+1)f(H(Sx2n−1, Sx2n+1))
≤ ψ(f(MI(Sx2n−1, Sx2n+1))).

(3.18)
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where

MI(Sx2n−1, Sx2n+1) = max{d(x2n−1, x2n+1), D(x2n−1, Sx2n−1), D(x2n+1, Sx2n+1),
D(x2n−1,Sx2n−1)D(x2n+1,Sx2n+1)

1+d(x2n−1,x2n+1)
, D(x2n−1,Sx2n−1)D(x2n+1,Sx2n+1)

1+H(Sx2n−1,Sx2n+1)
}

= max{d(x2n−1, x2n+1), d(x2n−1, x2n), d(x2n+1, x2n+2),
d(x2n−1,x2n)d(x2n+1,x2n+2)

1+d(x2n−1,x2n+1)
, d(x2n−1,x2n)d(x2n+1,x2n+2)

1+d(x2n,x2n+2)
}.

(3.19)

From (3.16) we have
d(x2n+1, x2n+2) < d(x2n−1, x2n). (3.20)

Define a2n = d(x2n, x2n+2) and b2n = d(x2n, x2n+1). Then

MI(Sx2n−1, Sx2n+1) = max{a2n−1, b2n−1,
b2n−1b2n+1

1 + a2n−1

,
b2n−1b2n+1

1 + a2n
}. (3.21)

If MI(Sx2n−1, Sx2n+1) = b2n−1, or
b2n−1b2n+1

1+a2n−1
or b2n−1b2n+1

1+a2n
then taking lim sup as n→ ∞ in (3.16) and

using (3.17) and upper semi-continuity of ψ we get

0 ≤ lim supn→∞ a2n ≤ lim supn→∞ ψ(MI(Sx2n−1, Sx2n+1))
= ψ(lim supn→∞MI(Sx2n−1, Sx2n+1))
= ψ(0) = 0

(3.22)

and hence,
lim
n→∞

a2n = lim
n→∞

d(x2n, x2n+2) = 0.

If MI(Sx2n−1, Sx2n+1) = a2n−1, then (3.17) implies a2n ≤ ψ(a2n−1) < a2n−1 and similarly a2n+1 ≤
ψ(a2n) < a2n. By induction, we get an ≤ ψ(an−1) < an−1, due to the property of ψ. In other words,
the sequence an is positive monotone decreasing, and hence, it converges to some t ≥ 0. Assume
that t > 0. Now, by (3.17), we get

t = lim sup
n→∞

an = lim sup
n→∞

ψ(an) = ψ(lim sup
n→∞

an−1) = ψ(t) < t. (3.23)

which is a contradiction. Therefore,

lim
n→∞

an = lim
n→∞

d(xn, xn+2) = 0. (3.24)

Now, we shall prove that xn ̸= xm for all n ̸= m. Assume on the contrary that xn = xm for some
m,n ∈ N with n ̸= m. Since d(xp, xp+1) > 0 for each p ∈ N, without loss of generality, we may assume
that m > n+1,m = 2k and n = 2l for k, l ∈ N. Substitute again x = x2l = x2k and y = x2l+1 = x2k+1

in (2.1), (2.2) which yields

f(d(x2l, x2l+1)) = f(d(x2k, x2k+1)) ≤ f(H(Sx2k−1, Tx2k))
≤ α∗(Sx2k−1, Tx2k)f(H(Sx2k−1, Tx2k))
≤ ψ(f(MI(Sx2k−1, Tx2k))).

(3.25)

where
MI(Sx2k−1, Tx2k) = max{d(x2k−1, x2k), D(x2k−1, Sx2k−1), D(x2k, Tx2k),

D(x2k−1,Sx2k−1)D(x2k,Tx2k)

1+d(x2k−1,x2k)
, D(x2k−1,Sx2k−1)D(x2k,Tx2k)

1+H(Sx2k−1,Tx2k)
}

= max{d(x2k−1, x2k), d(x2k−1, x2k), d(x2k, x2k+1),
d(x2k−1,x2k)d(x2k,x2k+1)

1+d(x2k−1,x2k)
, d(x2k−1,x2k)d(x2k,x2k+1)

1+d(x2k,x2k+1)
}

= max{d(x2k−1, x2k), d(x2k, x2k+1)}.

(3.26)
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If MI(Sx2k−1, Tx2k) = d(x2k−1, x2k), then from (3.26), implies

f(d(x2l, x2l+1)) ≤ ψ(f(d(x2k−1, x2k))) ≤ ψ2k−2l(f(d(x2l, x2l+1))). (3.27)

If on the other hand MI(Sx2k−1, Tx2k) = d(x2k, x2k+1), then from (18) we have

f(d(x2l, x2l+1)) ≤ ψ(f(d(x2k, x2k+1))) ≤ ψ2k−2l+1(f(d(x2l, x2l+1))). (3.28)

Using the property of ψ, the two inequalities (3.27) and (3.28) imply

d(x2l, x2l+1) < d(x2l, x2l+1),

which is impossible. Now, we shall prove that {xn} is a Cauchy sequence, that is,

lim
n→∞

d(xn, xn+k) = 0,

for all k ∈ N.We have already proved the cases for k = 1 and k = 2 in (3.16) and (3.19), respectively.
Take arbitrary k ≥ 3. We discuss two cases.
Case 1. Suppose that k = 2m + 1, where m ≥ 1. Using the quadrilateral inequality (GMS3), we

have
f(d(xn, xn+1)) ≤ ψ(f(d(xn−1, xn))) ≤ ... ≤ ψn(f(d(x0, x1))), for all n ∈ N0. (3.29)

And
f(d(xn, xn+2m+1)) ≤ f(d(xn, xn+1)) + f(d(xn, xn+2)) + .....

+f(d(xn+2m, xn+2m+1))

≤
∑n+2m

p=n ψp(f(d(x0, x1)))

≤
∑+∞

p=n ψ
p(f(d(x0, x1))) → 0

(3.30)

as n→ ∞.
Case 2. Suppose that k = 2m, where m ≥ 2. Using the quadrilateral inequality (GMS3), we have

f(d(xn, xn+2m)) ≤ f(d(xn, xn+2)) + f(d(xn+2, xn+3)) + .....
+f(d(xn+2m−1, xn+2m))

≤ d(xn, xn+2) +
∑n+2m−1

p=n+2 ψp(f(d(x0, x1)))

≤ d(xn, xn+2) +
∑+∞

p=n ψ
p(f(d(x0, x1))) → 0

(3.31)

as n→ ∞. In both of the abave cases, we have

lim
n→∞

d(xn, xn+k) = 0,

for all k ≥ 3. Fix ϵ > 0 and let n(ϵ) ∈ N0 such that

∞∑
n=n(ϵ)

ψn(f(d(x0, x1))) < ϵ. (3.32)

Let n,m ∈ N0 with m > n > n(ϵ). Using the quadrilateral inequality (GMS3), we obtain

f(d(xn, xm)) ≤ f(d(xn, xn+1)) + f(d(xn+1, xn+2)) + f(d(xn+2, xm))
≤ f(d(xn, xn+1)) + f(d(xn+1, xn+2)) + f(d(xn+2, xn+3))
+f(d(xn+3, xn+4)) + f(d(xn+4, xm))
≤ f(d(xn, xn+1)) + ......+ f(d(xm−1, xm))

=
∑m−1

k=n f(d(xk, xk+1))

≤
∑m−1

k=n ψ
k(f(d(x0, x1)))

≤
∑∞

n=n(ϵ) ψ
n(f(d(x0, x1))) < ϵ.

(3.33)
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Thus we proved that {xn} is a Cauchy sequence in the metric space (X, d). Since (X, d) is complete
metric space, there exists x∗ ∈ X such that

lim
n→∞

d(xn, x
∗) = 0

and condition (iii), there exists a subsequence {xnk
} of {xn} such that

α∗({x2nk+1}, {x∗}) ≥ α∗(Tx2nk
, Sx∗) ≥ 1 for all k. (3.34)

Thus
f(D(x∗, Sx∗)) ≤ f(d(x∗, x2nk+1)) + f(D(x2nk+1, Sx

∗))
≤ f(d(x∗, x2nk+1)) + α∗(Tx2nk

, Sx∗)f(H(Tx2nk
, Sx∗))

≤ f(d(x∗, x2nk+1)) + ψ(f(max{d(x2nk
, x∗), D(x2nk

, Tx2nk
),

D(x∗, Sx∗),
D(x2nk

,Tx2nk
)D(x∗,Sx∗)

1+d(x2nk
,x∗)

,
D(x2nk

,Tx2nk
)D(x∗,Sx∗)

1+H(Tx2nk
,Sx∗)

}
≤ f(d(x∗, x2nk+1)) + ψ(f(max{d(x2nk

, x∗), d(x2nk
, x2nk+1),

d(x∗, Sx∗),
d(x2nk

,x2nk+1)d(x∗,Sx∗)

1+d(x2nk
,x∗)

,
d(x2nk

,x2nk+1)D(x∗,Sx∗)

1+D(x2nk+1,Sx∗)
} = 0

(3.35)

for all k. Hence, D(x∗, Sx∗) = 0 and so x∗ ∈ Sx∗. By Lemma (3.1) we have x∗ common fixed point
of T, S. □

Corollary 3.3. Let (X, d) be a complete GMS, T : X → 2X be a α∗-ψ-rational type−I contractive
set-valued mappings and satisfies the following conditions:
(i) T are α∗−admissible;
(ii) there exists x0 ∈ X such that

α∗({x0}, Tx0) ≥ 1, α∗({x0}, T 2x0) ≥ 1;

(iii) if X has the property α-regular generalized metric space.
Then T has fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn} with xn+1 ∈ Txn
converges to the fixed point of T .

Example 3.4. Let X be a finite set defined as X = {1, 2, 3, 4}. Define d : X ×X → [0,∞) as:
d(1, 1) = d(2, 2) = d(3, 3) = d(4, 4) = 0,
d(1, 2) = d(2, 1) = 3,
d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = 1 and
d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = 1

2
.

The function d is not a metric on X. Indeed, note

3 = d(1, 2) ≤ d(1, 3) + d(3, 2) = 1 + 1 = 2,

that is, the triangle inequality is not satisfied. However, d is a generalized metric on X and moreover
(X, d) is a complete generalized metric space. Define T, S : X → 2X as: T1 = T2 = T3 =
{2, 4}, T4 = {1, 3} and S1 = S2 = S4 = {2, 3}, S3 = {1, 2}, α : X × X → [0,+∞), α∗ = inf α as
α(x, y) = 1, ψ(t) = 2

3
t and f(t) =

√
t. Clearly, T, S satisfies the conditions of Theorem (3.2) and has

a common fixed point x = 2.
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4. Fixed point theorems for weakly increasing set-valued mappings without order closed

In the following we provide set-valued versions of the preceding theorem. The results are related
to those in ([22]). Let X be a topological space and ⪯ be a partial order on X.

Definition 4.1. ([5]). Let A,B be two nonempty subsets of X, the relations between A and B are
definers follows:
(r1) If for every a ∈ A, there exists b ∈ B such that a ⪯ b, then A ≺1 B.
(r2) If for every b ∈ B there exists a ∈ A, such that a ⪯ b, then A ≺2 B.
(r3) If A ≺1 B and A ≺2 B, then A ≺ B.

Definition 4.2. ([20], [10]). Let (X,⪯) be a partially ordered set. Two mappings f, g : X → X
are said to be weakly increasing if fx ⪯ gfx and gx ⪯ fgx hold for all x ∈ X.

Definition 4.3. ([3]) Let (X,⪯) be a partially ordered set. Two mapping F,G : X → 2X are said
to be weakly increasing with respect to ≺1 if for any x ∈ X we have Fx ≺1 Gy for all y ∈ Fx and
Gx ≺1 Fy for all y ∈ Gx. Similarly two maps F,G : X → 2X are said to be weakly increasing with
respect to ≺2 if for any x ∈ X we have Gy ≺2 Fx for all y ∈ Fx and Fy ≺2 Gx for all y ∈ Gx.

Now we give some examples.

Example 4.4. ([3]) Let X = [1,∞) and ≤ be usual order on X. Consider two mappings F,G : X →
2X defined by Fx = [1, x2] and Gx = [1, 2x] for all x ∈ X. Then the pair of mappings F and G are
weakly increasing with respect to ≺2 but not ≺1 . Indeed, since

Gy = [1, 2y] ≺2 [1, x
2] = Fx for all y ∈ Fx

and
Fy = [1, y2] ≺2 [1, 2x] = Gx for all y ∈ Gx

so F and G are weakly increasing with respect to ≺2 but F2 = [1, 4] ⊀1 [1, 2] = G1 for 1 ∈ F2, so F
and G are not weakly increasing with respect to ≺1 .

Example 4.5. ([3]) Let X = [1,∞) and ≤ be usual order on X. Consider two mappings F,G : X →
2X defined by Fx = [0, 1] and Gx = [x, 1] for all x ∈ X. Then the pair of mappings F and G are
weakly increasing with respect to ≺1 but not ≺2 . Indeed, since

Fx = [0, 1] ≺1 [y, 1] = Gy for all y ∈ Fx

and
Gx = [x, 1] ≺1 [0, 1] = Fy for all y ∈ Gx

so F and G are weakly increasing with respect to ≺1 but G1 = 1 ⊀2 0, 1 = F1 for 1 ∈ F1, so F and
G are not weakly increasing with respect to ≺2 .

Theorem 4.6. Let (X,⪯, d) be a partially ordered complete GMS. Suppose that T, S : X → 2X are
set-valued mappings and satisfies the following conditions:
(i) f(H(Ax,By)) ≤ ψ(f(MI(Ax,By))) for all A,B = T or S;
(ii) T and S be a weakly increasing pair on X w.r.t ≺1;
(iii) there exists x0 ∈ X such that {x0} ≺1 Tx0 and {x0} ≺1 STx0;
(iv) X has the property α−regular generalized metric space

Then T, S have common fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn}
with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T, S.
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Proof . Define the sequence xn in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈ N0. If
xn = xn+1 for some n ∈ N0, then x

∗ = xn is a common fixed point for T, S. Using that the pair of
set-valued mappings T and S is weakly increasing and by define α : X ×X → [0,+∞)

α(x, y) =

{
1 ifx ⪯ y
0 ifx ≻ y.

It can be easily shown that the sequence xn is nondecreasing w.r.t, ⪯ i.e; and

α∗({x0}, Tx0) ≥ 1 ⇒ ∃x1 ∈ Tx0, such that α(x0, x1) ≥ 1 ⇒ x0 ⪯ x1.

Now since T and S are weakly increasing with respect to ≺1, we have x1 ∈ Tx0 ≺1 Sx1. Thus
there exist some x2 ∈ Sx1 such that x1 ⪯ x2. Again since T and S are weakly increasing with
respect to ≺1, we have x2 ∈ Sx1 ≺1 Tx2. Thus there exist some x3 ∈ Tx2 such that x2 ⪯ x3.
Continue this process, we will get a nondecreasing sequence {xn}∞n=1 which satisfies x2n+1 ∈ Tx2n
and x2n+2 ∈ Sx2n=1, n = 0, 1, 2, 3, · · · We get

x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ x2n ⪯ x2n+1 ⪯ x2n+2 ⪯ · · ·

In particular xn, xn+k are comparable for all k ∈ N. α(xn, xn+k) ≥ 1 for all n ∈ N0 and by equation
(2.1) and (2.2) we have limn→∞ d(xn, xn+k) = 0. Following the proof of Theorem (3.2), we know that
{xn} is a Cauchy sequence in the partially ordered complete GMS (X,⪯, d). There exists x∗ ∈ X
such that limn→+∞ d(xn, x

∗) = 0. and condition (iv), there exists a subsequence {xnk
} of {xn} such

that α(x2nk+1, x
∗) ≥ α∗(Tx2nk

, Sx∗) ≥ 1 for all k. Thus,

f(D(x∗, Sx∗)) ≤ f(d(x∗, x2nk+1)) + f(D(x2nk+1, Sx
∗))

≤ f(d(x∗, x2nk+1)) + α∗(Tx2nk
, Sx∗)f(H(Tx2nk

, Sx∗))
≤ f(d(x∗, x2nk+1)) + ψ(f(max{d(x2nk

, x∗), D(x2nk
, Tx2nk

),

D(x∗, Sx∗),
D(x2nk

,Tx2nk
)D(x∗,Sx∗)

1+d(x2nk
,x∗)

,
D(x2nk

,Tx2nk
)D(x∗,Sx∗)

1+H(Tx2nk
,Sx∗)

}))
≤ f(d(x∗, x2nk+1)) + ψ(f(max{d(x2nk

, x∗), d(x2nk
, x2nk+1,

D(x∗, Sx∗),
d(xn2k

,x2nk+1)D(x∗,Sx∗)

1+d(xn2k
,x∗)

,
d(x2nk

,x2nk
)d(x∗,Sx∗)

1+D(x2nk+1,Sx∗)
}))

< f(D(x∗, Sx∗))

(4.1)

for all k. Hence, D(x∗, Sx∗) = 0 and so x∗ ∈ Sx∗. □

Theorem 4.7. Let (X,⪯, d) be a partially ordered complete GMS. Suppose that T, S : X → 2X are
set-valued mappings and satisfies the following conditions:
(i) f(H(Ax,By)) ≤ ψ(f(MI(Ax,By))) for all A,B = T or S;
(ii)F and G be a weakly increasing pair on X w.r.t ≺2;
(iii) there exists x0 ∈ X such that Tx0 ≺2 {x0} and STx0 ≺2 {x0};
(iv)if X has the property α−regular generalized metric space

Then T, S have common fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn}
with x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 converges to the common fixed point of T, S.

Proof . Define the sequence xn in X by x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for all n ∈ N0. If
xn = xn+1 for some n ∈ N0, then x

∗ = xn is a common fixed point for T, S. Using that the pair of
multi-valued mappings T and S is weakly increasing and by define

α(x, y) =

{
1 ifx ⪯ y
0 ifx ≻ y
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It can be easily shown that the sequence xn is non-increasing w.r.t, ⪯ i.e; and

α∗(Tx0, {x0}) ≥ 1 ⇒ ∃x1 ∈ Tx0, such that α(x1, x0) ≥ 1 ⇒ x1 ⪯ x0;

Now since T and S are weakly increasing with respect to ≺2, we have Sx1 ≺2 Tx0. Thus there exist
some x2 ∈ Sx1 such that x2 ⪯ x1. Again since T and S are weakly increasing with respect to ≺2,
we have Tx2 ⪯2 Sx1. Thus there exist some x3 ∈ Tx2 such that x3 ⪯ x2. Continue this process,
we will get a non-increasing sequence {xn}∞n=1 which satisfies x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1,
n = 0, 1, 2, 3, · · · We get

x0 ⪰ x1 ⪰ x2 ⪰ · · · ⪰ x2n ⪰ x2n+1 ⪰ x2n+2 ⪰ · · ·

In particular xn+k, xn are comparable for all k ∈ N, α(xn+k, xn) ≥ 1 for all n ∈ N0 and by equation
(2.1) and (2.2) we have limn→∞ d(xn+k, xn) = 0. Following the proof of Theorem (3.2), we know
that {xn} is a Cauchy sequence in the partially ordered complete (GMS) (X,⪯, d). There exists
x∗ ∈ X such that limn→+∞ d(xn, x

∗) = 0. In the case, suppose that, for example, T is a order closed
multi-valued mappings then we have that limn→+∞ d(Txn, Tx

∗) = 0, which (taking n even) implies
that x∗ ∈ Tx∗. The proof is similar when S is a order closed multi-valued mappings. Then x∗ is a
common fixed point of T, S and condition (iv), there exists a subsequence {xnk

} of {xn} such that
α(x∗, {x2nk+1}) ≥ α∗(Sx

∗, Tx2nk
) ≥ 1 for all k. Thus,

f(D(Sx∗, x∗)) ≤ f(D(Sx∗, x2nk+1)) + f(d(x2nk+1, x
∗))

≤ α∗(Sx
∗, Tx2nk

)f(H(Sx∗, Tx2nk
)) + f(d(x2nk+1, x

∗))
≤ ψ(f(max{d(x∗, x2nk

), D(x∗, Sx∗), D(x2nk
, Tx2nk

),
D(x∗,Sx∗)D(x2nk

,Tx2nk
)

1+d(x∗,x2nk
)

,
D(x∗,Sx∗)D(x2nk

,Tx2nk
)

1+H(Sx∗,Tx2nk
)

})) + f(d(x2nk+1, x
∗))

D(x∗,Sx∗)d(x2nk
,x2nk+1)

1+d(x∗,x2nk
)

,
D(x∗,Sx∗)d(x2nk

,x2nk+1)

1+D(Sx∗,x2nk+1)
})) + f(d(x2nk+1, x

∗))

< f(D(Sx∗, x∗))

(4.2)

for all k. Hence, D(Sx∗, x∗) = 0 and so x∗ ∈ Sx∗. □

Corollary 4.8. Let (X,⪯, d) be a partially ordered complete (GMS). Suppose that T : X → 2X is
set-valued mapping and satisfies the following conditions:
(i) f(H(Tx, Ty)) ≤ ψ(f(MI(Tx, Ty)));
(ii) T and ix be a weakly increasing pair on X w.r.t ≺1;
(iii) there exists x0 ∈ X such that {x0} ≺1 Tx0 and {x0} ≺1 T

2x0;
(iv)X has the property α−regular generalized metric space

Then T has fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn} with xn+1 ∈ Txn
converges to the fixed point of T .

Corollary 4.9. Let (X,⪯, d) be a partially ordered complete (GMS). Suppose that T : X → 2X is
set-valued mappings and satisfies the following conditions:
(i) f(H(Tx, TBy)) ≤ ψ(f(MI(TAx, TBy)));
(ii)T and ix be a weakly increasing pair on X w.r.t ≺2;
(iii) there exists x0 ∈ X such that Tx0 ≺2 {x0} and STx0 ≺2 {x0};
(iv)if X has the property α−regular generalized metric space

Then T has fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn} with xn+1 ∈ Txn
converges to fixed point of T .
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5. Coupled fixed point theorem

Recall that a function η : R+ → R+ is said to be super-additive if η(s) + η(t) ≤ η(s + t) for all
s, t ∈ R+.
It is well-known that every nondecreasing, convex function η : R+ → R+ with η(0) = 0 is super-
additive; cf.Theorem in [4].

Definition 5.1. [21] Let F : X × X → X be a mapping, where (X, d) is a metric space. We say
that (x, y) ∈ X ×X is a coupled fixed point of F if

x = F (x, y), y = F (y, x).

Note that if (x, y) is a coupled fixed point of F then (y, x) are coupled fixed points of F too. Our
results are based on the following simple lemma.

Lemma 5.2. [18] Let F : X×X → X be a given mapping. Define the mapping TF : X×X → X×X
by TF (x, y) = (F (x, y), F (y, x)) for all (x, y) ∈ X ×X. Then, (x, y) is a coupled fixed point of F if
and only if (x, y) is a fixed point of TF .

Theorem 5.3. Let (X, d) be a complete metric space and F : X × X → X be a given mapping.
Assume there are exist nondecreasing functions ψi : [0,+∞) → [0,+∞), i = 1, 2, such that ψ =
ψ1 + ψ2 is convex, ψ(0) = 0, limn→+∞ ψn(t) = 0 for all t > 0, a function α : X2 × X2 → [0,+∞)
and satisfies the following conditions:
(i) for all (x, y), (u, v) ∈ X ×X,

α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ ψ1(d(x, u)) + ψ2(d(y, v));

(ii) if for all (x, y), (u, v) ∈ X ×X,

α((x, y), (u, v)) ≥ 1 ⇒ α(TF (x, y), TF (u, v)) ≥ 1;

(iii) there exists (x0, y0) ∈ X ×X such that

α((x0, y0), TF (x0, y0)) ≥ 1 and α(TF (y0, x0), (y0, x0) ≥ 1; or

(iii)∗ there exists (x0, y0) ∈ X ×X such that

α(TF (x0, y0), (x0, y0)) ≥ 1 and α((y0, x0), TF (y0, x0)) ≥ 1;

(iv) if {xn} and {yn} are sequences in X such that α(xn, xn+1) ≥ 1, α(yn, yn+1) ≥ 1, for all n,
xn → x ∈ X, yn → y ∈ X as n → ∞, then there are exist subsequence {xnk

} of {xn} and {ynk
} of

{yn} such that α(xnk
, x) ≥ 1 and α(ynk

, y) ≥ 1 for all k; or
(iv)∗ if {xn} and {yn} are sequences in X such that α(xn+1, xn) ≥ 1, α(yn+1, yn) ≥ 1, for all n,

xn → x ∈ X, yn → y ∈ X as n → ∞, then there are exist subsequence {xnk
} of {xn} and {ynk

} of
{yn} such that α(x, xnk

) ≥ 1 and α(y, ynk
) ≥ 1 for all k.

Then, F has a coupled fixed point, that is, there exists (x∗, y∗) ∈ X ×X such that x∗ = F (x∗, y∗) and
y∗ = F (y∗, x∗).
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Proof . The idea consists in transporting the problem to the complete metric space (Y, δ), where
Y = X ×X and δ((x, y), (u, v)) = d(x, u)+ d(y, v), for all (x, y), (u, v) ∈ X ×X. From condition (i),
we have

α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ ψ1(d(x, u)) + ψ2(d(y, v)) (5.1)

and
α((v, u), (y, x))d(F (v, u), F (y, x)) ≤ ψ1(d(v, y)) + ψ2(d(u, x)) (5.2)

for all x, y, u, v ∈ X. Adding (5.1) to (5.2), we get (note that ψ is super-additive)

β(ξ, η)δ(TF ξ, TFη) ≤ ψ1(d(ξ1, η1)) + ψ2(d(ξ2, η2)) + ψ1(d(η2, ξ2)) + ψ2(d(η1, ξ1))
≤ ψ1(d(ξ1, η1) + d(η2, ξ2)) + ψ2(d(ξ2, η2) + d(η1, ξ1))
= ψ(d(ξ1, η1) + d(η2, ξ2))
= ψ(δ(ξ, η))

(5.3)

for all ξ = (ξ1, ξ2), η = (η1, η2) ∈ Y , where β : Y × Y → [0,+∞) is the function defined by

β((ξ1, ξ2), (η1, η2)) = min{α((ξ1, ξ2), (η1, η2)), α((η2, η1), (ξ2, ξ1))} (5.4)

and TF : Y → Y is given by lemma (5.2). Let {(xn, yn)} be a sequence in Y = X ×X such that

β((xn, yn), (xn+1, yn+1)) ≥ 1 and (xn, yn) → (x, y)

as n → +∞. Using the condition (iv), we obtain easily there exists a subsequence {(xnk
, ynk

)} of
{(xn, yn)} such that β((xnk

, ynk
), (x, y)) ≥ 1 for all k. Then all the hypotheses of Theorem (3.2)

are satisfied. We deduce the existence of a fixed point of TF that gives us from Lemma (5.2) the
existence of a coupled fixed point of F. □

6. Application

In this section, an existence result for a fractional integral equation

y(t) =
f(t, x(t), y(t))

Γ(α)

∫ t

0

h′(s)g(s, x(s), y(s))

(h(t)− h(s))1−α
ds, t ∈ [0, T ], (6.1)

where T > 0, α ∈ (0, 1) and h : [0, T ] → R. We suppose that the following conditions are satisfied.
(i) The function f : [0, T ]× R× R → R is continuous.
(ii)There exists an upper semi-continuous function ψi : [0,+∞) → [0,+∞), i = 1, 2, are nonde-

creasing functions such that ψ = ψ1 + ψ2 is convex, ψ(0) = 0, and limn→∞ ψn(t) = 0 for each t > 0,

|f(t, x(t), y(t))− f(t, u(t), v(t))| ≤ ψ1(x− u) + ψ2(y − v), (6.2)

for all (t, x(t), y(t)) and (t, u(t), v(t)) ∈ [0, T ]× R× R.
(iii)The function h : [0, T ] → R is C1 and nondecreasing.
(iv)The function g : [0, T ] × R × R → R is continuous and there exists a nondecreasing function

ω : [0,∞) → [0,∞) such that

|g(t, x(t), y(t))| ≤ ω(|(x(t), y(t))|) (t, x(t), y(t)) ∈ [0, T ]× R× R.
(v)There exists r0 > 0 such that

(ψ(r0) + F0)ω(r0)(g(T )− g(0)))α ≤ r0Γ(α + 1) and
ω(r0)

Γ(α + 1)
× (g(T )− g(0))α ≤ 1 (6.3)

where F0 = max{|f(t, 0, 0)| : t ∈ [0, T ]}.
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Theorem 6.1. Consider fractional integral equation (6.1) with g ∈ C([0, T ] × R × R,R) is C1 and
nondecreasing in the third variables. Suppose that for x ≥ u and y ≥ v, we have

0 ≤ g(t, x, y)− g(t, u, v) ≤ Γ(α + 1)

F0(h(t)− h(s))α
(ψ1(x− u) + ψ2(y − v)), (6.4)

Then the fractional integral equation (6.1) with the assumptions (i − v) has at least one solution
y∗ ∈ C([0, T ],R).

Proof . Let X = C([0, T ],R) is partially ordered if we define the following order relation in X:

x, y ∈ X, x ≤ y ⇔ x(t) ≤ y(t), for all t ∈ [0, T ].

It is well-known that (X, d) is a complete metric space with the metric

d(x, y) = sup
t∈[0,T ]

|x(t)− y(t)|, x, y ∈ C([0, T ],R).

Suppose {xn} is a nondecreasing sequence in X that converges to x ∈ X. Then for every t ∈ [0, T ],
the sequence of the real numbers

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · ,

converges to x(t). Therefore, for all t ∈ I and n ∈ N, we have xn(t) ≤ x(t). Hence xn ≤ x, for all
n ∈ N. Also, X ×X is a partially ordered set if we define the following order relation in X ×X :

(x, y) ≤r (u, v) ⇔ x(t) ≤ u(t) and y(t) ≤ v(t), for all t ∈ [0, T ],

for all (x, y), (u, v) ∈ X ×X. For any x, y ∈ X, max{x(t), u(t)} for all t ∈ [0, T ] is in X and is the
upper bound of x, u. Therefore, for every (x, y) and (u, v) ∈ X×X max{x(t), u(t)}, max{y(t), v(t)},
in X ×X for all t ∈ [0, T ] is comparable to (x, y) and (u, v).
Define F : X ×X → X by

F (x, y)(t) =
f(t, x(t), y(t))

Γ(α)

∫ t

0

h′(s)g(s, x(s), y(s))

(h(t)− h(s))1−α
ds, for all t ∈ [0, T ].

Since f is nondecreasing in the second and third of its variables then F is nondecreasing in each of
its variables.
Now, for x ≥ u, y ≥ v, that is, x(t) ≥ u(t), y(t) ≥ v(t) for all t ∈ [0, T ]. we have

d(F (x, y), F (u, v)) = supt∈[0,T ] |F (x, y)(t)− F (u, v)(t)|
= supt∈[0,T ]{

f(t,x(t),y(t))
Γ(α)

∫ t

0
h′(s)g(s,x(s),y(s))
(h(t)−h(s))1−α ds− f(t,u(t),v(t))

Γ(α)

∫ t

0
h′(s)g(s,u(s),v(s))
(h(t)−h(s))1−α ds}

≤ supt∈[0,T ]{ F1

Γ(α)

∫ t

0
h′(s)

(h(t)−h(s))1−α (g(s, x(s), y(s))− g(s, u(s), v(s))ds}
≤ supt∈[0,T ]{ F0

Γ(α)
× Γ(α+1)

F0(h(t)−h(s))α
(ψ1(x− u) + ψ2(y − v))

∫ t

0
h′(s)

(h(t)−h(s))1−αds}
≤ supt∈[0,T ]{ F0

Γ(α)
× Γ(α+1)

F1(h(t)−h(s))α
(ψ1(x− u) + ψ2(y − v)) (h(t)−h(0))α

α
}

≤ supt∈[0,T ]{ F0

Γ(α)
× Γ(α+1)

F1(h(t)−h(s))α
× (h(t)−h(0))α

α
(ψ1(x− u) + ψ2(y − v))}

≤ ψ1(d(x, u)) + ψ2(d(y, v)).

(6.5)

Thus F satisfies the condition of Theorem (5.3). Now, let (x∗, y∗) be a coupled lower solution of the
fractional integral equation problem (6.1) then we have x∗ ≤ F (x∗, y∗) and y∗ ≤ F (y∗, x∗). Then,
Theorem (5.3) gives that F has a unique coupled fixed point (x∗, y∗) with x∗ = y∗. Then x∗(t) is the
solution of the integral equation (6.1). □
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7. Open problem

Definition 7.1. [12] Let X ̸= ∅ and ⊥ ⊆ X ×X be a binary relation. If ⊥ satisfies the following
condition

∃x0 ∈ X; (∀y ∈ X, y⊥x0) ∨ (∀y ∈ X, x0⊥Y ),

it is called an orthogonal set (shortly O-set). And (X,⊥) is called O-set. And the element x0 is
called an orthogonal element.

Definition 7.2. [12] Let (X,⊥) be an orthogonal set (O-set). Any two elements x, y ∈ X are said
to be orthogonally relation if x⊥y.

Definition 7.3. [12] A sequence xn is called orthogonal sequence (Shortly O-sequence)if

(∀n ∈ N ;xn⊥xn+1) ∨ (∀n ∈ N ;xn+1⊥xn)

Let (X, d,⊥) be an orthogonal metric space ((X,⊥) is an O-set and (X, d) is a metric space). Now,
we consider following definitions.

Definition 7.4. [12] The space X is orthogonally complete (briefly O-complete)if every cauchy O-
sequence is convergent.

Definition 7.5. [12] A map d : X × X → [0,∞] is called a generalized metric on the orthogonal
set (X,⊥). If the following condition are satisfied:
1. d(x, y) = d(y, x) for any points x, y ∈ X such that x⊥y and y⊥x;
2. d(x, y) = 0 ⇔ x = y for any points x, y ∈ X such that x⊥y and y⊥x;
3. d(x, z) ≤ d(x, y)+d(y, z) for any points x, y, z ∈ X such that x⊥y, y⊥z and x⊥z considering that
if d(x, y) = ∞ or d(y, z) = ∞ then d(x, y) + d(y, z) = ∞.
In this case the orthogonal set X called generalized orthogonal metric space and is denoted by
(X, d,⊥).

Definition 7.6. [16] Suppose (X, d) is a metric space and R is a relation on X. Then the triple
(X, d,R) or in brief X is called R-metric space.

Open problem (I)- Some fixed point theorems for α∗-ψ-common rational type mappings on general-
ized orthogonal metric spaces
Open problem (II)- Some fixed point theorems for α∗-ψ-common rational type mappings on gener-
alized R-metric spaces
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