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Abstract

The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence
and common fixed points for three self mappings in b-metric spaces. Next, we obtain cone b-metric
version of these results by using a scalarization function. Our results extend and generalize several
well known comparable results in the existing literature.
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1. Introduction

Over the past two decades a considerable amount of research work for the development of fixed point
theory have executed by several mathematicians. There has been a number of generalizations of the
usual notion of a metric space. One such generalization is a b-metric space initiated by Bakhtin[5]
and Czerwik [8]. In [14], Huang and Zhang introduced the concept of cone metric spaces as a gen-
eralization of metric spaces and proved some important fixed point theorems in such spaces. After
that a series of articles have been dedicated to the improvement of fixed point theory. In most of
those articles, the authors used normality property of cones in their results. Recently, Hussain and
Shah[15] introduced the concept of cone b-metric spaces and studied some topological properties. In
this work, we shall establish sufficient conditions for existence of points of coincidence and common
fixed points for three self mappings in b-metric spaces. Finally, we prove cone b-metric version of
these results by employing a scalarization function.
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2. Preliminaries

In this section we need to recall some basic notations, definitions, and necessary results from existing
literature.

Definition 2.1. [8] Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X → R+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

Observe that if s = 1, then the ordinary triangle inequality in a metric space is satisfied, however
it does not hold true when s > 1. Thus the class of b-metric spaces is effectively larger than that of
the ordinary metric spaces. That is, every metric space is a b-metric space, but the converse need
not be true. The following example illustrates the above remarks.

Example 2.2. Let X = {−1, 0, 1}. Define d : X × X → R+ by d(x, y) = d(y, x) for all x, y ∈
X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1. Then (X, d) is a b-metric space, but
not a metric space since the triangle inequality is not satisfied. Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2
.

Example 2.3. [22] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is a real
number. Then ρ is a b-metric with s = 2p−1.

Definition 2.4. [7] Let (X, d) be a b-metric space, x ∈ X and (xn) be a sequence in X. Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by lim
n→∞

xn = x or xn →
x(n→∞).

(ii) (xn) is Cauchy if and only if lim
n,m→∞

d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 2.5. [7] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.

(ii) Each convergent sequence is Cauchy.

(iii) In general, a b-metric is not continuous.

The following example shows that a b-metric need not be continuous.
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Example 2.6. [17] Let X = N ∪∞ and let d : X ×X → R be defined by

d(m,n) =



0, if m = n,

| 1
m
− 1

n
|, if one of m, n is even and the other is even or ∞,

5, if one of m, n is odd and the other is odd (and m 6= n) or ∞,

2, otherwise.

Then considering all possible cases, it can be checked that for all m,n, p ∈ X, we have

d(m, p) ≤ 5

2
(d(m,n) + d(n, p)).

Then, (X, d) is a b-metric space (with s = 5
2
). Let xn = 2n for each n ∈ N. Then

d(2n,∞) =
1

2n
→ 0 as n→∞,

that is, xn →∞, but d(xn, 1) = 2 6→ 5 = d(∞, 1) as n→∞.

Theorem 2.7. [2] Let (X, d) be a b-metric space and suppose that (xn) and (yn) converge to x, y ∈
X, respectively. Then, we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then lim
n→∞

d(xn, yn) = 0.

Moreover, for each z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Definition 2.8. [4] Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X,
then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 2.9. [19] The mappings T, S : X → X are weakly compatible, if for every x ∈ X, the
following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.10. [3] Let X be a nonempty set and the mappings S, T, f : X → X have a unique
point of coincidence in X. If (S, f) and (T, f) are weakly compatible, then S, T and f have a unique
common fixed point.

Definition 2.11. Let (X, d) be a b-metric space with the coefficient s ≥ 1. A mapping T : X → X
is called expansive if there exists a real constant k > s such that

d(Tx, Ty) ≥ k d(x, y)

for all x, y ∈ X.
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3. Main Results

In this section, we prove some point of coincidence and common fixed point results in b-metric spaces.

Theorem 3.1. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Suppose the mappings
f, g, T : X → X satisfy

d(Tx, fy) ≤ α d(gx, gy) + β d(gx, Tx) + γ d(gy, fy) (3.1)

for all x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s
. If T (X) ∪ f(X) ⊆ g(X) and g(X) is a

complete subspace of X, then f, g and T have a unique point of coincidence in X. Moreover, if the
pairs (T, g) and (f, g) are weakly compatible, then f, g and T have a unique common fixed point in
X.

Proof . Let x0 ∈ X be arbitrary and choose a point x1 ∈ X such that gx1 = Tx0. This is possible
since T (X) ⊆ g(X). Similarly, choose a point x2 ∈ X such that gx2 = fx1. Continuing this process,
we can construct a sequence (xn) in X such that gx2k+1 = Tx2k, gx2k+2 = fx2k+1 for k ≥ 0.
By (3.1), we have

d(gx2k+1, gx2k+2) = d(Tx2k, fx2k+1)

≤ αd(gx2k, gx2k+1) + βd(gx2k, Tx2k) + γd(gx2k+1, fx2k+1)

= αd(gx2k, gx2k+1) + βd(gx2k, gx2k+1) + γd(gx2k+1, gx2k+2)

which gives that,

d(gx2k+1, gx2k+2) ≤
α + β

1− γ
d(gx2k, gx2k+1). (3.2)

Again,

d(gx2k+2, gx2k+3) = d(fx2k+1, Tx2k+2) = d(Tx2k+2, fx2k+1)

≤ αd(gx2k+2, gx2k+1) + βd(gx2k+2, Tx2k+2) + γd(gx2k+1, fx2k+1)

= αd(gx2k+2, gx2k+1) + βd(gx2k+2, gx2k+3) + γd(gx2k+1, gx2k+2)

which gives that,

d(gx2k+2, gx2k+3) ≤
α + γ

1− β
d(gx2k+1, gx2k+2). (3.3)

Let λ = max
(
α+β
1−γ ,

α+γ
1−β

)
. It is easy to see that λ ∈ [0, 1

s
).

Combining (3.2) and (3.3), we get

d(gxn, gxn+1) ≤ λ d(gxn−1, gxn) for all n ≥ 1. (3.4)

By repeated application of (3.4), we obtain

d(gxn, gxn+1) ≤ λn d(gx0, gx1). (3.5)
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For m,n ∈ N with m > n, we have by repeated use of (3.5)

d(gxn, gxm) ≤ s [d(gxn, gxn+1) + d(gxn+1, gxm)]

≤ sd(gxn, gxn+1) + s2d(gxn+1, gxn+2) + · · ·
+sm−n−1 [d(gxm−2, gxm−1) + d(gxm−1, gxm)]

≤
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−n−1λm−1

]
d(gx0, gx1)

≤
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−nλm−1

]
d(gx0, gx1)

= sλn
[
1 + sλ+ (sλ)2 + · · ·+ (sλ)m−n−2 + (sλ)m−n−1

]
d(gx0, gx1)

≤ sλn

1− sλ
d(gx0, gx1).

So (gxn) is a Cauchy sequence in g(X). Since g(X) is a complete subspace of X, then there exists
y ∈ g(X) such that gxn → y as n −→∞. Consequently, there is an u ∈ X such that gu = y.

Now,

d(gu, fu) ≤ s[d(gu, gx2n+1) + d(gx2n+1, fu)]

= s[d(gu, gx2n+1) + d(Tx2n, fu)]

≤ s[d(gu, gx2n+1) + αd(gx2n, gu) + βd(gx2n, Tx2n) + γd(gu, fu)]

≤ s[d(gu, gx2n+1) + αd(gx2n, gu) + sβd(gx2n, gu)

+sβd(gu, Tx2n) + γd(gu, fu)]

= s[d(gu, gx2n+1) + αd(gx2n, gu) + sβd(gx2n, gu)

+sβd(gu, gx2n+1) + γd(gu, fu)]

which gives that

d(gu, fu) ≤ s+ βs2

1− γs
d(gu, gx2n+1) +

αs+ βs2

1− γs
d(gx2n, gu).

Taking limit as n→∞, we have d(gu, fu) = 0, i.e., gu = fu.
Again, by using (3.1)

d(Tu, fu) ≤ αd(gu, gu) + βd(gu, Tu) + γd(gu, fu)

= βd(fu, Tu).

This implies that d(Tu, fu) = 0 and so, fu = Tu. Therefore, fu = gu = Tu = y and hence y is a
common point of coincidence of f, g and T in X.

For uniqueness, assume that there exists another point of coincidence v in X such that gx =
fx = Tx = v for some x ∈ X. Then,

d(v, y) = d(Tx, fu) ≤ α d(gx, gu) + β d(gx, Tx) + γ d(gu, fu)

= α d(v, y) + β d(v, v) + γ d(y, y)

= α d(v, y).

This gives that d(v, y) = 0 i.e., v = y.
Therefore, f, g and T have a unique point of coincidence in X.

If the pairs (f, g) and (T, g) are weakly compatible, then by Proposition 2.10 , f, g and T have
a unique common fixed point in X. �
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Corollary 3.2. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Suppose the mappings
f, g : X → X satisfy

d(fx, fy) ≤ α d(gx, gy) + β d(gx, fx) + γ d(gy, fy)

for all x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s
. If f(X) ⊆ g(X) and g(X) is a complete

subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in X.

Proof . The proof follows from Theorem 3.1 by taking T = f .
�

Corollary 3.3. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Suppose the
mapping f : X → X satisfies

d(fx, fy) ≤ α d(x, y) + β d(x, fx) + γ d(y, fy)

for all x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s
. Then f has a unique fixed point in X.

Proof . Taking T = f and g = I, the identity map on X in Theorem 3.1, we obtain the desired
result.
�

Corollary 3.4. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Suppose g : X →
X is onto and satisfies

d(gx, gy) ≥ k d(x, y))

for all x, y ∈ X, where k > s is a constant. Then g has a unique fixed point in X.

Proof . Taking T = f = I and β = γ = 0 in Theorem 3.1, we obtain the desired result.
�

Remark 3.5. Corollary 3.4 gives a sufficient condition for the existence of unique fixed point of an
expansive mapping in b-metric spaces.

Theorem 3.6. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Suppose the mappings
f, g, T : X → X satisfy

d(Tx, fy) ≤ β d(Tx, gy) + γ d(fy, gx) (3.6)

for all x, y ∈ X, where β, γ ≥ 0 with max {β, γ} < 1
s(1+s)

. If T (X) ∪ f(X) ⊆ g(X) and g(X) is a
complete subspace of X, then f, g and T have a unique point of coincidence in X. Moreover, if the
pairs (T, g) and (f, g) are weakly compatible, then f, g and T have a unique common fixed point in
X.

Proof . Let x0 ∈ X be arbitrary. Following similar arguments to those given in Theorem 3.1, we
can construct a sequence (xn) in X such that gx2k+1 = Tx2k, gx2k+2 = fx2k+1 for k ≥ 0.
Using (3.6), we have

d(gx2k+1, gx2k+2) = d(Tx2k, fx2k+1)

≤ βd(Tx2k, gx2k+1) + γd(fx2k+1, gx2k)

= βd(gx2k+1, gx2k+1) + γd(gx2k+2, gx2k)

≤ γ s[d(gx2k+2, gx2k+1) + d(gx2k+1, gx2k)]
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which gives that,

d(gx2k+1, gx2k+2) ≤
γ s

1− γ s
d(gx2k, gx2k+1). (3.7)

Again,

d(gx2k+2, gx2k+3) = d(fx2k+1, Tx2k+2) = d(Tx2k+2, fx2k+1)

≤ βd(Tx2k+2, gx2k+1) + γd(fx2k+1, gx2k+2)

= βd(gx2k+3, gx2k+1) + γd(fx2k+1, fx2k+1)

≤ β s[d(gx2k+3, gx2k+2) + d(gx2k+2, gx2k+1)]

which gives that,

d(gx2k+2, gx2k+3) ≤
β s

1− β s
d(gx2k+1, gx2k+2). (3.8)

Let λ = max
(

γ s
1−γ s ,

β s
1−β s

)
. It is easy to see that λ ∈ [0, 1

s
).

Combining (3.7) and (3.8), we get

d(gxn, gxn+1) ≤ λ d(gxn−1, gxn) for all n ≥ 1. (3.9)

By repeated application of (3.9), we obtain

d(gxn, gxn+1) ≤ λn d(gx0, gx1).

By an argument similar to that used in Theorem 3.1, it follows that (gxn) is a Cauchy sequence
in g(X). Since g(X) is a complete subspace of X, there exists y ∈ g(X) such that gxn → y as
n −→∞. Consequently, there is an u ∈ X such that gu = y.

Now,

d(gu, fu) ≤ s[d(gu, gx2n+1) + d(gx2n+1, fu)]

= s[d(gu, gx2n+1) + d(Tx2n, fu)]

≤ s[d(gu, gx2n+1) + βd(Tx2n, gu) + γd(fu, gx2n)]

≤ s[d(gu, gx2n+1) + βd(gx2n+1, gu) + sγd(fu, gu) + sγd(gu, gx2n)]

which gives that

d(gu, fu) ≤ s+ βs

1− γs2
d(gu, gx2n+1) +

γs2

1− γs2
d(gu, gx2n).

Taking limit as n→∞, we have d(gu, fu) = 0, i.e., gu = fu.
Again, by using (3.6)

d(Tu, fu) ≤ βd(Tu, gu) + γd(fu, gu)

= βd(Tu, fu).

This implies that d(Tu, fu) = 0 and so, fu = Tu. Therefore, fu = gu = Tu = y and hence y is a
common point of coincidence of f, g and T in X.
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For uniqueness, assume that there exists another point of coincidence v in X such that gx =
fx = Tx = v for some x ∈ X. Then,

d(v, y) = d(Tx, fu) ≤ β d(Tx, gu) + γ d(fu, gx)

= β d(v, y) + γ d(y, v)

= (β + γ)d(v, y).

This gives that d(v, y) = 0 i.e., v = y.
Therefore, f, g and T have a unique point of coincidence in X.

If the pairs (f, g) and (T, g) are weakly compatible, then by Proposition 2.10 , f, g and T have
a unique common fixed point in X. �

Corollary 3.7. Let (X, d) be a b-metric space with the coefficient s ≥ 1. Suppose the mappings
f, g : X → X satisfy

d(fx, fy) ≤ β d(fx, gy) + γ d(fy, gx)

for all x, y ∈ X, where β, γ ≥ 0 with max {β, γ} < 1
s(1+s)

. If f(X) ⊆ g(X) and g(X) is a complete
subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are
weakly compatible, then f and g have a unique common fixed point in X.

Proof . Proof follows from Theorem 3.6 by taking T = f .
�

Corollary 3.8. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1. Suppose f : X →
X satisfies

d(fx, fy) ≤ β [d(x, fy) + d(y, fx)]

for all x, y ∈ X, where 0 ≤ β < 1
s(1+s)

. Then f has a unique fixed point in X.

Proof . Proof follows from Theorem 3.6 by taking T = f, g = I and γ = β.
�

Theorem 3.9. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and let T : X → X
be a mapping such that for each positive integer n,

d(T nx, T ny) ≤ an d(x, y) (3.10)

for all x, y ∈ X, where an > 0 is independent of x, y. If the series
∞∑
n=1

snan is convergent, then T

has a unique fixed point in X.

Proof . Let x0 ∈ X be arbitrary. We can construct a sequence (xn) in X such that xn = Txn−1 =
T nx0 for n = 1, 2, 3, · · ·.
Then by using (3.10), we get

d(xn, xn+1) = d(T nx0, T
nx1) ≤ an d(x0, x1). (3.11)
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For all m, n ∈ N with m > n, by repeated application of (3.11)

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + · · ·
+sm−n−1d(xm−2, xm−1) + sm−n−1d(xm−1, xm)

≤ [san + s2an+1 + · · ·+ sm−n−1am−2 + sm−nam−1]d(x0, x1)

≤ [snan + sn+1an+1 + · · ·+ sm−2am−2 + sm−1am−1]d(x0, x1)

=

(
m−1∑
r=n

srar

)
d(x0, x1). (3.12)

If x1 = x0, then a fixed point of T is obtained. So, we assume that x1 6= x0. Let k be a positive

integer with k > d(x0, x1). Since the series
∞∑
n=1

snan is convergent, for ε > 0, there exists a positive

integer n0 such that
m−1∑
r=n

srar <
ε

k
if m > n > n0.

It follows from (3.12) that for m > n > n0,

d(xn, xm) <
ε

k
d(x0, x1) < ε.

So, (xn) is a Cauchy sequence in X. Since X is complete there exists u ∈ X such that xn → u.
Now,

d(u, Tu) ≤ s[d(u, xn+1) + d(xn+1, Tu)]

= s[d(u, xn+1) + d(Txn, Tu)]

≤ s[d(u, xn+1) + a1d(xn, u)]

−→ 0 as n→∞,

which gives that, Tu = u and so, u becomes a fixed point of T .
For uniqueness, assume that there exists another fixed point v in X such that Tv = v. Then,

d(u, v) = d(T nu, T nv) ≤ an d(u, v).

If d(u, v) > 0, then an ≥ 1 for all n. Since s ≥ 1, it follows that snan 6−→ 0 as n → ∞. which

contradicts the fact that the series
∞∑
n=1

snan is convergent. Therefore, d(u, v) = 0 and so, u = v. �

As an application of Theorem 3.9, we have the following result.

Theorem 3.10. Let (X, d) be a complete b-metric space with the coefficient s ≥ 1 and let T : X → X
be a mapping such that

d(Tx, Ty) ≤ k d(x, y) (3.13)

for all x, y ∈ X, where k ∈ [0, 1
s
) is a constant. Then T has a unique fixed point in X.

Proof . For x, y ∈ X, we obtain by using (3.13) that

d(T 2x, T 2y) ≤ k d(Tx, Ty) ≤ k2d(x, y).
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By induction, we have
d(T nx, T ny) ≤ knd(x, y)

for all x, y ∈ X. Since k ∈ [0, 1
s
), it follows that the series

∞∑
n=1

snkn is convergent. So, Theorem 3.9

applies to obtain a unique fixed point of T . �

We conclude with an example.

Example 3.11. Let X = [0, 1] and d : X ×X → R+ be such that

d(x, y) =| x− y |p

for any x, y ∈ X, where p > 1 is a constant. Then (X, d) is a b-metric space with s = 2p−1. Let us
define T, f, g : X → X as

fx =
x

16
, for all x ∈

[
0,

1

2

)
=

x

12
, for all x ∈

[
1

2
, 1

]
;

Tx =
x

12
, for all x ∈

[
0,

1

2

)
=

x

16
, for all x ∈

[
1

2
, 1

]
and

gx =
x

2
, for all x ∈ X.

Now we verify that for every x, y ∈ X one has

d(Tx, fy) ≤ α d(gx, gy) + β d(gx, Tx) + γ d(gy, fy)

where α, β, γ ≥ 0 with α + β + γ < 1
s
.

Case-I If x, y ∈ [0, 1
2
), then

d(Tx, fy) = | Tx− fy |p=| x
12
− y

16
|p≤ 2p−1

(
(
x

12
)p + (

y

16
)p
)

=
2p−1

5p

(
(
5x

12
)p + (

5y

16
)p
)
≤ 2p−1

5p

(
(
5x

12
)p + (

7y

16
)p
)
.

Also,

d(Tx, gx) + d(fy, gy) = | Tx− gx |p + | fy − gy |p

= | x
12
− x

2
|p + | y

16
− y

2
|p

= (
5x

12
)p + (

7y

16
)p.
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Therefore,

d(Tx, fy) ≤ 2p−1

5p
[d(Tx, gx) + d(fy, gy)].

Case-II If x, y ∈ [1
2
, 1], then

d(Tx, fy) = | Tx− fy |p=| x
16
− y

12
|p≤ 2p−1

(
(
x

16
)p + (

y

12
)p
)

=
2p−1

5p

(
(
5x

16
)p + (

5y

12
)p
)
<

2p−1

5p

(
(
7x

16
)p + (

5y

12
)p
)
.

Also,

d(Tx, gx) + d(fy, gy) = | Tx− gx |p + | fy − gy |p

= | x
16
− x

2
|p + | y

12
− y

2
|p

= (
7x

16
)p + (

5y

12
)p.

Therefore,

d(Tx, fy) <
2p−1

5p
[d(Tx, gx) + d(fy, gy)].

Case-III If x ∈ [0, 1
2
) and y ∈ [1

2
, 1], then

d(Tx, fy) = | Tx− fy |p=| x
12
− y

12
|p≤ 2p−1

(
(
x

12
)p + (

y

12
)p
)

=
2p−1

12p
(xp + yp) =

2p−1

5p
.

5p

12p
(xp + yp) .

Also,

d(Tx, gx) + d(fy, gy) = | Tx− gx |p + | fy − gy |p

= | x
12
− x

2
|p + | y

12
− y

2
|p

= (
5x

12
)p + (

5y

12
)p

=
5p

12p
(xp + yp) .

Therefore,

d(Tx, fy) ≤ 2p−1

5p
[d(Tx, gx) + d(fy, gy)].

Case-IV If x ∈ [1
2
, 1] and y ∈ [0, 1

2
), then

d(Tx, fy) = | Tx− fy |p=| x
16
− y

16
|p≤ 2p−1

(
(
x

16
)p + (

y

16
)p
)

=
2p−1

16p
(xp + yp) =

2p−1

7p
.

7p

16p
(xp + yp) .

Also,

d(Tx, gx) + d(fy, gy) = | Tx− gx |p + | fy − gy |p

= | x
16
− x

2
|p + | y

16
− y

2
|p

= (
7x

16
)p + (

7y

16
)p

=
7p

16p
(xp + yp) .
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Therefore,

d(Tx, fy) ≤ 2p−1

7p
[d(Tx, gx) + d(fy, gy)] <

2p−1

5p
[d(Tx, gx) + d(fy, gy)].

Thus, we have
d(Tx, fy) ≤ α d(gx, gy) + β d(gx, Tx) + γ d(gy, fy)

for all x, y ∈ X, where α = β = γ = 2p−1

5p
with s(α + β + γ) = 3s.2

p−1

5p
< 4s.2

p−1

5p
= (4

5
)p < 1 since

s = 2p−1.
We see that T (X) ∪ f(X) ⊆ g(X), g(X) is complete, (T, g) and (f, g) are weakly compatible.
Therefore, all the conditions of Theorem 3.1 are satisfied and 0 ∈ X is the unique common fixed
point of f, g and T .

4. Fixed points via scalarization functions

Let E be a real Banach space and θ denote the zero element in E. A cone P is a subset of E such
that

(i) P is closed, nonempty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

For any cone P ⊆ E, we can define a partial ordering � on E with respect to P by x � y(equivalently,
y � x) if and only if y− x ∈ P . We shall write x ≺ y (equivalently, y � x) if x � y and x 6= y, while
x � y will stand for y − x ∈ int(P ), where int(P ) denotes the interior of P . The cone P is called
normal if there is a number k > 0 such that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ k ‖y‖.

The least positive number satisfying the above inequality is called the normal constant of P . Through-
out this section, we suppose that E is a real Banach space, P is a cone in E with int(P ) 6= ∅ and �
is a partial ordering on E with respect to P .

Definition 4.1. [14] Let X be a nonempty set. Suppose the mapping d : X ×X → E satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 4.2. [15] Let X be a nonempty set and E a real Banach space with cone P . A vector
valued function p : X ×X → E is said to be a cone b-metric function on X with the constant s ≥ 1
if the following conditions are satisfied:

(i) θ � p(x, y) for all x, y ∈ X and p(x, y) = θ if and only if x = y ;

(ii) p(x, y) = p(y, x) for all x, y ∈ X;

p(x, y) � s (p(x, z) + p(z, y)) for all x, y, z ∈ X.

The pair (X, p) is called a cone b-metric space.
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Definition 4.3. [10, 11, 12] The nonlinear scalarization function ξe : E → R, where e ∈ int (P ) is
defined as follows:

ξe(y) = inf{r ∈ R : y ∈ re− P} for all y ∈ E.

Lemma 4.4. [10, 11, 12] For each r ∈ R and y ∈ E, the following statements are satisfied:

(i) ξe(y) ≤ r ⇐⇒ y ∈ re− P ,

(ii) ξe(y) > r ⇐⇒ y 6∈ re− P ,

(iii) ξe(y) ≥ r ⇐⇒ y 6∈ re− int (P ),

(iv) ξe(y) < r ⇐⇒ y ∈ re− int (P ),

(v) ξe(·) is positively homogeneous and continuous on E,

(vi) if y1 ∈ y2 + P (i.e. y2 � y1), then ξe(y2) ≤ ξe(y1),

(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) for all y1, y2 ∈ E.

Remark 4.5. [11]

(a) Clearly ξe(θ) = 0.

(b) It is worth mentioning that the reverse statement of (vi) in Lemma 4.4 does not hold in general.

Theorem 4.6. [11] Let (X, p) be a cone b-metric space. Then, dp : X × X → [0,∞) defined by
dp = ξe ◦ p is a b-metric.

Definition 4.7. [15] Let (X, p) be a cone b-metric space, x ∈ X and (xn) be a sequence in X. Then

(i) (xn) converges to x whenever, for every c ∈ E with θ � c, there is a natural number n0 such
that for all n > n0, p(xn, x)� c. We denote this by lim

n→∞
xn = x or xn → x (n→∞);

(ii) (xn) is a Cauchy sequence whenever, for every c ∈ E with θ � c, there is a natural number n0

such that for all n,m > n0, p(xn, xm)� c;

(iii) (X, p) is a complete cone b-metric space if every Cauchy sequence is convergent.

Theorem 4.8. [11] Let (X, p) be a cone b-metric space, x ∈ X and (xn) be a sequence in X. Set
dp = ξe ◦ p. Then the following statements hold:

(i) (xn) converges to x in cone b-metric space (X, p) if and only if dp(xn, x)→ 0 as n→∞,

(ii) (xn) is a Cauchy sequence in cone b-metric space (X, p) if and only if (xn) is a Cauchy sequence
in (X, dp),

(iii) (X, p) is a complete cone b-metric space if and only if (X, dp) is a complete b-metric space.
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Theorem 4.9. Let (X, p) be a cone b-metric space with the coefficient s ≥ 1. Suppose the mappings
f, g, T : X → X satisfy

p(Tx, fy) � α p(gx, gy)) + β p(gx, Tx) + γ p(gy, fy) (4.1)

for all x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s
. If T (X) ∪ f(X) ⊆ g(X) and g(X) is a

complete subspace of (X, p), then f, g and T have a unique point of coincidence in X. Moreover, if
the pairs (T, g) and (f, g) are weakly compatible, then f, g and T have a unique common fixed point
in X.

Proof . Taking dp = ξe ◦ p, it follows that dp is a b-metric. Using Theorem 4.8, we conclude that
g(X) is a complete subspace of (X, dp). By applying Lemma 4.4, we obtain from (4.1) that

dp(Tx, fy) ≤ α dp(gx, gy)) + β dp(gx, Tx) + γ dp(gy, fy)

for all x, y ∈ X, where α, β, γ ≥ 0 with α + β + γ < 1
s
. Now, Theorem 3.1 applies to obtain the

desired result. �

By using the techniques above, we can derive the following theorems.

Theorem 4.10. Let (X, p) be a cone b-metric space with the coefficient s ≥ 1. Suppose the map-
pings f, g, T : X → X satisfy

p(Tx, fy) � β p(Tx, gy) + γ p(fy, gx)

for all x, y ∈ X, where β, γ ≥ 0 with max {β, γ} < 1
s(1+s)

. If T (X) ∪ f(X) ⊆ g(X) and g(X) is a

complete subspace of (X, p), then f, g and T have a unique point of coincidence in X. Moreover,
if the pairs (T, g) and (f, g) are weakly compatible, then f, g and T have a unique common fixed
point in X.

Theorem 4.11. Let (X, p) be a complete cone b-metric space with the coefficient s ≥ 1 and let
T : X → X be a mapping such that for each positive integer n,

p(T nx, T ny) � an p(x, y)

for all x, y ∈ X, where an > 0 is independent of x, y. If the series
∞∑
n=1

snan is convergent, then T has

a unique fixed point in X.
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[18] D. Ilić, V. Rakočević, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008)
876–882.

[19] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4
(1996) 199–215.

[20] J.O. Olaleru, Some generalizations of fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2009,
Article ID 657914, 10 pages.

[21] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal.: Theory, Method. Appl. 47 (2001)
2683–2693.

[22] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost gen-
eralized (ψ,ϕ)s-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2013, 2013:159,
doi:10.1186/1687-1812-2013-159, 23 pages.

[23] P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo 56 (2007) 464–468.


	 Introduction 
	 Preliminaries 
	 Main Results
	 Fixed points via scalarization functions

