
Int. J. Nonlinear Anal. Appl. 2 (2011) No.2, 1–6

ISSN: 2008-6822 (electronic)

http://www.ijnaa.com

HYERS-ULAM AND HYERS-ULAM-RASSIAS STABILITY OF
NONLINEAR INTEGRAL EQUATIONS WITH DELAY

JOSÉ R. MORALES1 AND EDIXON M. ROJAS2∗

Abstract. In this paper we are going to study the Hyers–Ulam–Rassias types
of stability for nonlinear, nonhomogeneous Volterra integral equations with delay
on finite intervals.

1. Introduction

Volterra integral equations have been extensively studied since its appearance in
1896. Part of this interest arises from the wide range of applications where this kind
of equations appears, for instance in semiconductors, fluid flow, chemical reactions,
elasticity and population dynamic among others (see [2, 5, 9, 12]). An important
subject related to the applications is the stability of the equations, where a functional
equation is stable if for every approximate solution, there exists an exact solution
near it. The stability problem of functional equations originated from a question of
Ulam concerning the stability of group homomorphisms [14]: given a group G and a
metric group G′ with metric ρ(·, ·). Given ε > 0, does there exist a δ > 0 such that
if f : G −→ G′ satisfies

ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G,

then a homomorphism h : G −→ G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?.
Hyers [10] gave a first affirmative partial answer to the question of Ulam for Banach
spaces, he proved that each solution of the inequality ‖f(x+ y)− f(x)− f(y)‖ ≤ ε,
for all x and y, can be approximated by an exact solution, say an additive function
(Hyer-Ulam stability). Hyers’s theorem was generalized by Aoki [1] for additive map-
pings and by Rassias [13] for linear mappings by considering an unbounded Cauchy
difference. More precisely, he attempted to weaken the condition for the bound of the
norm of the Cauchy difference as follows: ‖f(x+y)−f(x)−f(y)‖ ≤ ε(‖x‖p +‖y‖p)
and proved the Hyers theorem (Hyers-Ulam-Rassias stability). The terminologies
Hyers-Ulam stability and Hyers-Ulam-Rassias stability can also be applied to the
case of other functional equations, differential equations, and of various integral
equations. The paper of Rassias has provided a lot of influence in the development
of what is called generalized Hyers-Ulam-Rassias stability of functional equations
(see [6]).
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2. The nonhomogeneous nonlinear Volterra integral equations with
delay

In this paper we are going to consider the following class of nonhomogeneous
nonlinear integral equations with a delay:

u(x) = f(x) + Ψ

(∫ x

a

Φ(x, t, u(t), u(α(t)))dt

)
≡ (Tu)(x), (2.1)

where −∞ < a ≤ x ≤ b < +∞ with a, b fixed. f(x) is a complex-valued continuous
function on [a, b] and Φ(x, t, u(t), u(α(t))) is continuous with respect to the three
variables x, t and u on [a, b]× [a, b]× C× C satisfying the Lipschitz condition

|Φ(x, t, u(t), u(α(t)))− Φ(x, t, v(t), v(α(t)))| ≤ L|u(t)− v(t)|.

Here, α : [a, b] −→ [a, b] is a continuous delay function which therefore fulfill α(t) ≤
x for all t ∈ [a, b]. The above integral equation (2.1) will be considered on the
complete metric space of complex-valued continuous functions on the interval [a, b],
X := (C[a, b], d) where, as usual, d(f, g) = sup{|f(x) − g(x)| : x ∈ [a, b]} and
furthermore we will assume that Ψ is a Banach contraction mapping on X. I.e.,

d(Ψ(f),Ψ(g)) ≤ Kd(f, g), 0 ≤ K < 1.

The formal definitions of the above-mentioned two types of stability for the case
of equation (2.1) can be defined as follows. If for each function u satisfying∣∣∣∣u(x)− f(x)−Ψ

(∫ x

a

Φ(x, t, u(t), u(α(t)))dt

)∣∣∣∣ ≤ σ(x)

(where σ is a nonnegative function), there is a solution u0 of the nonlinear Volterra
integral equation (2.1) and a constant C1 > 0 independent of u and u0 such that

|u(x)− u0(x)| ≤ C1σ(x),

for all x, then we say that the nonlinear integral equation with delay (2.1) has the
Hyers-Ulam-Rassias stability. In the case where σ takes the form of a constant
function, we say that the integral equation (2.1) has the Hyers-Ulam stability.

Despite the large amount of works on Volterra integral equations, the interest on
this kind of stability of these integral equations is quite recent, see [3, 4, 7, 8, 11].

2.1. On the existence of the solution of the Nonlinear Volterra integral
equations with delay. First of all, we are going to prove the existence and unique-
ness of the solution of the integral equations (2.1).

Theorem 2.1. Let a, b fixed real numbers −∞ < a < b < +∞, K ∈ [0, 1) and
L ∈ (0,+∞) such that KL < 1

b−a . Let α : [a, b] −→ [a, b] be a continuous function
such that

α(x) ≤ x for all x ∈ [a, b]

and f : [a, b] −→ C be a continuous function. Assume furthermore that Φ : [a, b] ×
[a, b]× C× C −→ C is a continuous function satisfying the Lipschitz condition

|Φ(x, t, u(t), u(α(t)))− Φ(x, t, v(t), v(α(t)))| ≤ L|u(t)− v(t)|,
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and that Ψ is a Banach contraction on X with contraction constant K. Then there
is one and only one solution u of

u(x) = f(x) + Ψ

(∫ x

a

Φ(x, t, u(t), u(α(t)))dt

)
on [a, b].

Proof. Consider the iterative scheme

un+1(x) = f(x) + Ψ

(∫ x

a

Φ(x, t, un(x), un(α(x)))dt

)
≡ (Tun)(x), n = 1, 2, . . . .

(2.2)
Since Ψ is a Banach contraction mapping on X and Φ(x, t, u(x), u(α(x))) is assumed
Lipschitz on u, then we have

|un+1(x)− un(x)| =∣∣∣∣Ψ(∫ x

a

Φ(x, t, un(t), un(α(t)))dt

)
−Ψ

(∫ x

a

Φ(x, t, un−1(t), un−1(α(t)))dt

)∣∣∣∣
≤ K sup

x∈[a,b]

∣∣∣∣∫ x

a

Φ(x, t, un(t), un(α(t)))dt−
∫ x

a

Φ(x, t, un−1(t), un−1(α(t)))dt

∣∣∣∣
≤ KL sup

x∈[a,b]

∫ x

a

|un(t)− un−1(t)|dt.

Hence,

|un+1(x)− un(x)| ≤ KL sup
x∈[a,b]

∫ x

a

|un(t1)− un−1(t1)|dt1

≤ (KL)2 sup
x∈[a,b]

∫ x

a

sup
t1∈[a,b]

∫ t1

a

|un−1(t2)− un−2(t2)|dt2

...

≤ (KL)n sup
x∈[a,b]

∫ x

a

. . . sup
tn−2∈[a,b]

∫ tn−2

a

|u2(tn−1)− u1(tn−1)|dtn−1 . . . dt1.

Therefore, |un+1(x) − un(x)| ≤ (KL)n(b − a)nd(Tu1, u1). Since X is a complete
metric space, and KL < 1

b−a , then we conclude by using the Weierstrass M-test that

+∞∑
n=1

(un+1(x)− un(x))

is absolutely and uniformly convergent on [a, b]. Due to the fact that un(x) can be
written as

un(x) = u1(x) +
n−1∑
k=1

(uk+1(x)− uk(x)),
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so there exists a unique solution u ∈ X such that lim
n→+∞

un = u. Taking limit of

both sides of (2.2), we obtain

u(x) = lim
n→+∞

un+1(x) = lim
n→+∞

(
f(x) + Ψ

(∫ x

a

Φ(x, t, un(t), un(α(t)))dt

))
=f(x) + Ψ

(∫ x

a

Φ(x, t, lim
n→+∞

un(t), lim
n→+∞

un(α(t)))dt

)
=f(x) + Ψ

(∫ x

a

Φ(x, t, u(t), u(α(t)))dt

)
.

Therefore, the limit function u is the unique solution u ∈ X such that Tu = u. �

3. Hyers-Ulam and Hyers-Ulam-Rassias stability for the
nonhomogeneous Volterra equations with delay

In section we are going to prove that under the conditions of Theorem 2.1, the
class of Volterra integral equations with delay (2.1) has both the Hyers-Ulam and
the Hyers-Ulam-Rassias stability.

Theorem 3.1. Under the assumptions of Theorem 2.1, the equation Tu = u, where
T is defined by (2.1), has the Hyers-Ulam stability; that is, for every ϕ ∈ X and
ε > 0 with

|Tϕ− ϕ| ≤ ε

there exists a unique u ∈ X such that

Tu = u,

|ϕ− u| ≤ Cε

for some C ≥ 0.

Proof. Let ϕ ∈ X, ε > 0 and |Tϕ− ϕ| ≤ ε. As was proved in Theorem 2.1,

u(t) = lim
n→+∞

(T nϕ)(t)

is an exact solution of the equation Tx = x. Since T nϕ converges uniformly to u as
n→ +∞, then there is a natural number N such that |TNϕ− u| ≤ ε. Thus,

|ϕ− u| ≤|ϕ− TNϕ|+ |TNϕ− u|
≤|ϕ− Tϕ|+ |Tϕ− T 2ϕ|+ · · ·+ |TN−1ϕ− TNϕ|+ |TNϕ− u|
≤d(ϕ, Tϕ) + κd(ϕ, Tϕ) + · · ·+ κn−1d(ϕ, Tϕ) + ε

≤(1 + κ+ κ2 + · · ·+ κN−1)ε+ ε

≤ ε

1− κ
+ ε =

(
2− κ
1− κ

)
ε

where κ = LK(b− a). This complete the proof. �

Corollary 3.2. Theorem 3.1 holds for every finite interval [a, b], [a, b), (a, b] and
(a, b) when −∞ < a < b < +∞.
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Theorem 3.3. Under the assumptions of Theorem 2.1, the equation Tu = u, where
T is defined by (2.1), has the hyers-Ulam-Rassias stability; that is, for every ϕ ∈ X
and σ(x) > 0 for all x ∈ [a, b] with

|Tϕ− ϕ| ≤ σ(x),

there exists a unique u ∈ X such that

Tu = u,

|ϕ− u| ≤ C1σ(x)

for some C1 > 0.

Proof. Let ϕ ∈ X and σ a nonnegative function on [a, b] such that

|Tϕ− ϕ| ≤ σ(x).

In addition, let u ∈ X the unique solution of the Volterra equation with delay (2.1)
on X. Then, we have

|ϕ− u| ≤|ϕ− Tϕ|+ |Tϕ− u|
≤σ(x) + |Tϕ− u|. (3.1)

On the other hand, notice that

|Tϕ− Tu| = |Tϕ− u| =∣∣∣∣Ψ(∫ x

a

Φ(x, t, ϕ(t), ϕ(α(t))dt

)
−Ψ

(∫ x

a

Φ(x, t, u(t), u(α(t))dt

)∣∣∣∣
≤ K

∣∣∣∣∫ x

a

Φ(x, t, ϕ(t)ϕ(α(t))dt−
∫ x

a

Φ(x, t, u(t), u(α(t))dt

∣∣∣∣
≤ KL

∫ x

a

|ϕ(t)− u(t)|dt.

Thus, we obtain that

|Tϕ− u| ≤ KL(b− a)d(ϕ, u). (3.2)

Therefore, from inequalities (3.1) and (3.2) we conclude that

|ϕ− u| ≤ d(ϕ, u) ≤ σ(x) +KL(b− a)d(ϕ, u)

which implies then

|ϕ− u| ≤ d(ϕ, u) ≤ C1σ(x)

with C1 = 1
1−KL(b−a) . I.e., the equation (2.1) has the Hyers-Ulam-Rassias stability.

�

Corollary 3.4. Theorem 3.3 holds for every finite interval [a, b], [a, b), (a, b] and
(a, b) when −∞ < a < b < +∞.

Proposition 3.5. For infinite intervals, Theorems 3.1 and 3.3 are not necessarily
true.
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Proof. Let us consider the function Φ(x, t, u(t), u(α(t))) = 2(u(t)+u(α(t))) with the
delay function α(t) = −t for t ∈ [0,+∞). Let be f(x) = e−x and Ψ : X −→ X the
mapping defined by Ψ(g) = 1

2
g. The exact solution of the equation

u(x) = e−x +
1

2

∫ x

0

2(u(t) + u(α(t)))dt, on [0,+∞)

is the function u(x) = ex. Moreover, notice that the functions above satisfy the
conditions of Theorem 2.1. However, by choosing ε = 1 and y(x) = 0, we get
T (y) = e−x, so d(Ty, y) ≤ ε = 1 but on the other hand d(y, u) = +∞, therefore
there exists no Hyers-Ulam stability constant C ≥ 0 such that d(y, u) ≤ Cε is
true. Notice that the same argument can be applied for the case of the study the
Hyers-Ulam-Rassias stability. �
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