A generalization of Martindale's theorem to (α, β)-homomorphism

Eqbal Keyhani, Mahmoud Hassani*, Maryam Amyari
Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

(Communicated by M. Eshaghi)

Abstract

Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative (α, β)-derivation is additive.

Keywords: $\quad(\alpha, \beta)$-multiplicative mapping; (α, β)-multiplicative isomorphism; (α, β)-additive mapping; multiplicative (α, β)-derivations.
2010 MSC: Primary 16W25; Secondary 17A36, 17B40, 47B47.

1. Introduction and preliminaries

The question that when a multiplicative isomorphism is additive has been considered by Rickart [8] and Johnson [6]. In 1968 Martindale [7] proved an extension of Rickart's theorem [8]. He proved that under some conditions on a ring \mathcal{R}, every multiplicative isomorphism from \mathcal{R} into another ring \mathcal{S} is additive. In addition, the question that when a multiplicative derivation is additive has been investigated by Daif [2]. The authors of [5] extended Daif's theorem to multiplicative (α, β)-derivations. we give the definition of (α, β)-homomorphism for the first time to extened the concept of homomorphism to a larger class of mappings and then similar to the generalized Daif theorem by Hou, Zhang and Meng [5], we extend Martindale's theorem to (α, β)-isomorphism and then as a special case we deduce Hou, Zhang and Meng theorem with similar conditions.

Throughout this paper, \mathcal{R} and \mathcal{S} are arbitrary associative rings (not necessarily with identity element). A mapping $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ is called multiplicative, if $\sigma(x y)=\sigma(x) \sigma(y)$, for each $x, y \in \mathcal{R}$.

[^0]It is called as a multiplicative isomorphism if in addition it is one to one and onto. A mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is a multiplicative derivation, if for each $x, y \in \mathcal{R}$, we have $d(x y)=d(x) y+x d(y)$. If α and β are automorphisms of \mathcal{R}, then a multiplicative (α, β) - derivation from \mathcal{R} into itself is a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ such that $d(x y)=d(x) \alpha(y)+\beta(x) d(y)$, for each $x, y \in \mathcal{R}$. For further results see (3,4$]$).
In the rest section, first of all note that since the definition of (α, β)-homomorphism for the first time this section is new and without history so we not provided any reference in it.

Definition 1.1. Suppose that $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ and $\beta: \mathcal{S} \rightarrow \mathcal{S}$ are arbitrary mappings. Mapping $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ is called an (α, β)-multiplicative mapping, if $\sigma(x y)=\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y)))$, for each $x, y \in \mathcal{R}$. In addition, if it is one to one and onto, then is called an $(\alpha, \beta)-$ multiplicative isomorphism. It will be called an (α, β)-additive mapping if $\beta(\sigma(\alpha(x+y)))=\beta(\sigma(\alpha(x)))+\beta(\sigma(\alpha(y)))$, for each $x, y \in \mathcal{R}$.

Remark 1.2. (i) If \mathcal{R} and \mathcal{S} are unital and α, β, σ are unitary (i.e, $\alpha\left(1_{\mathcal{R}}\right)=1_{\mathcal{R}}$ and $\sigma\left(1_{\mathcal{R}}\right)=$ $\left.\beta\left(1_{\mathcal{S}}\right)=1_{\mathcal{S}}\right)$, then every (α, β)-multiplicative mapping $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ is a multiplicative mapping of \mathcal{R} into \mathcal{S}. In fact, by putting $y=1$ in the definition of (α, β)-multiplicative mapping, we have $\sigma(x)=\beta(\sigma(\alpha(x)))$ for each $x \in \mathcal{R}$. Hence $\sigma(x y)=\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y)))=\sigma(x) \sigma(y)$.
(ii) If \mathcal{R} and \mathcal{S} are unital and $\beta\left(1_{\mathcal{S}}\right)=\sigma\left(1_{\mathcal{R}}\right)=1_{\mathcal{S}}$, and σ is onto, then $\alpha=I_{\mathcal{R}}$, implies that $\beta=I_{\mathcal{S}}$. In fact by putting $y=1$ in the definition of (α, β)-multiplicative mapping we have $\beta(\sigma(x))=\sigma(x)$ for each $x \in \mathcal{R}$. So $\beta(z)=z$ for each $z \in \mathcal{S}$.
(iii) If \mathcal{R} and \mathcal{S} are unital and σ, α are unitary, σ is one to one and $\beta=I_{\mathcal{S}}$, then $\alpha=I_{\mathcal{R}}$. Putting $y=1$ in the definition of (α, β)-multiplicative mapping. Then $\sigma(\alpha(x))=\sigma(x)$, which implies that $\alpha(x)=x$ for each $x \in \mathcal{R}$.
(iv) If α and β are multiplicative and idempotents $\left(\alpha^{2}=\alpha, \quad \beta^{2}=\beta\right)$ and σ is an (α, β)-multiplicative, then $\sigma^{\prime}=\beta o \sigma o \alpha$, is multiplicative. Since

$$
\begin{aligned}
\sigma^{\prime}(x y)=\beta(\sigma(\alpha(x y))) & =\beta(\sigma(\alpha(x) \alpha(y))) \\
& =\beta[\beta(\sigma(\alpha(\alpha(x)))) \beta(\sigma(\alpha(\alpha(y))))] \\
& =\beta(\beta(\sigma(\alpha(\alpha(x))))) \beta(\beta(\sigma(\alpha(\alpha(y))))) \\
& =\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y)))=\sigma^{\prime}(x) \sigma^{\prime}(y) .
\end{aligned}
$$

Note that in this case we have $\sigma^{\prime}(x y)=\sigma^{\prime}(x) \sigma^{\prime}(y)=\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y)))=\sigma(x y)$.
If \mathcal{R} is a Banach algebra with a bounded left approximate identity, in particular if \mathcal{R} is a C^{*}-algebra, then by Cohen's factorization theorem $\mathcal{R}^{2}=\mathcal{R}$ [1]. So we have $\sigma^{\prime}=\sigma$.
(v) If $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ and $\beta: \mathcal{S} \rightarrow \mathcal{S}$ and $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ are multiplicative and in addition σ is an $(\alpha, \beta)-$ multiplicative, then $\sigma(x y z)=\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y))) \beta(\sigma(\alpha(z)))$. In fact

$$
\begin{aligned}
\sigma(x y z)=\sigma((x y) z) & =\beta(\sigma(\alpha(x y))) \beta(\sigma(\alpha(z))) \\
& =\beta(\sigma(\alpha(x) \alpha(y))) \beta(\sigma(\alpha(z))) \\
& =\beta(\sigma(\alpha(x) \sigma(\alpha(y)))) \beta(\sigma(\alpha(z))) \\
& =\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y))) \beta(\sigma(\alpha(z))) .
\end{aligned}
$$

(vi) If $\mathcal{R}=\mathcal{S}$ and $\sigma=I$, then obviously in each of the following cases, we have a $(\alpha, \beta)-$ multiplicative mapping.
(a) $\alpha=\beta=I$.
(b) $\beta=\alpha^{-1}$ or $\beta=-\alpha^{-1}$.
(vii) If σ is a multiplicative mapping, then obviously in each of the following cases we have a (α, β) - multiplicative mapping.
(a) $\alpha=\sigma^{-1}, \quad \beta=\sigma$.
(b) $\alpha=\sigma, \quad \beta=\sigma^{-1}$ or $\beta=-\sigma^{-1}$.

Example 1.3. (i) If \mathbb{R} is the set of real numbers and $\sigma, \alpha, \beta: \mathbb{R} \rightarrow \mathbb{R}$ are mappings, then in each of the following cases we have a (α, β) - multiplicative mapping.
(a) $\sigma(x)=4 x, \quad \alpha(x)=3 x, \quad \beta(x)=\frac{1}{6} x$. In this case we have
$\sigma(x y)=4 x y=(2 x)(2 y)=\frac{4(3 x)}{6} \cdot \frac{4(3 y)}{6}=\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y)))$
(b) $\sigma(x)=x, \quad \alpha(x)=\sin x, \quad \beta(x)=\sin ^{-1} x$.
(c) $\sigma(x)=x^{2}, \quad \alpha(x)=\sqrt{|x|}, \quad \beta(x)=x^{2}$.
(ii) Let $\mathbb{Z}_{5}=\{0,1,2,3,4\}$ be the ring of integer numbers module 5 and $\sigma: \mathbb{Z}_{5} \longrightarrow \mathbb{Z}_{5}, \alpha: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$, $\beta: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ defined by $\sigma(x)=4 x, \quad \alpha(x)=3 x, \quad \beta(x)=4 x$, then σ is a (α, β)-multiplicative mapping. In fact $\sigma(x y)=4 x y=(3 x)(3 y)=\beta(\sigma(\alpha(x))) \beta(\sigma(\alpha(y)))$.

2. The main results

In this section, we generalized the Martindale's theorem [7] to (α, β)-isomorphisms.
Theorem 2.1. Suppose that \mathcal{R} is a ring containing a family $\left\{e_{\alpha}\right\}_{\alpha \in A}$ of idempotents, such that for each $x \in \mathcal{R}$ satisfies the following conditions:

$$
\text { (i) } x \mathcal{R}=0 \quad \text { implies } \quad x=0 \text {; }
$$

(ii) $e_{\alpha} \mathcal{R} x=0 \quad$ for each $\quad \alpha \in A \quad$ implies $\quad x=0 ;$
(iii) $e_{\alpha} x e_{\alpha} R\left(1-e_{\alpha}\right)=0$ implies $e_{\alpha} x e_{\alpha}=0$, for every $\alpha \in A$.

Suppose that \mathcal{S} is an arbitrary ring, $\alpha: \mathcal{R} \rightarrow \mathcal{R}$ and $\beta: \mathcal{S} \rightarrow \mathcal{S}$ are bijective and $\alpha_{0} \in A$. If (α, β)-multiplicative isomorphism $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ satisfies the following conditions, then it is (α, β)-additive.

$$
\begin{gathered}
\text { (iv) } \beta o \sigma o \alpha\left(e_{\alpha_{0}} x y\right)=\beta o \sigma o \alpha\left(e_{\alpha_{0}} x\right) \beta o \sigma o \alpha(y) ; \\
\text { (v) } \beta o \sigma o \alpha\left(x y e_{\alpha_{0}}\right)=\beta o \sigma o \alpha(x) \beta o \sigma o \alpha\left(y e_{\alpha_{0}}\right) ; \\
\quad \text { (vi) } \sigma(x z)+\sigma(y z)=\sigma((x+y) z) ; \\
\quad \text { (vii) } \sigma(z x)+\sigma(z y)=\sigma(z(x+y)) ;
\end{gathered}
$$

for each $x, y, z \in \mathcal{R}$.

Note that under condition 2.2.(iv),(iv) holds and (iv) implies that:

$$
\beta \circ \sigma o \alpha\left(e_{\alpha_{0}} x\right)=\beta \circ \sigma o \alpha\left(e_{\alpha_{0}} e_{\alpha_{0}} x\right)=\beta \circ \sigma o \alpha\left(e_{\alpha_{0}} e_{\alpha_{0}}\right) \beta \circ \sigma o \alpha(x)=\beta \circ \sigma o \alpha\left(e_{\alpha_{0}}\right) \beta \circ \sigma o \alpha(x) .
$$

Similarly $\beta \operatorname{oo\sigma o\alpha }\left(x e_{\alpha_{0}}\right)=\beta o \sigma o \alpha(x) \beta o \sigma o \alpha\left(e_{\alpha_{0}}\right)$.
The proof of the theorem will be organized in a series of lemmas. We assume that the hypothesis of theorem as needed during the proof. First we begin with the trivial lemma.

Lemma 2.2. $\sigma(0)=0$.

Proof. Since β oroo is onto, there is $x \in \mathcal{R}$ such that $\beta o \sigma o \alpha(x)=0$. Hence $\sigma(0)=\sigma(0 . x)=\beta(\sigma(\alpha(0))) \beta(\sigma(\alpha(x)))=\beta(\sigma(\alpha(0))) .0=0$.

For the rest lemma, fix $\alpha_{0} \in A$ and set $e_{\alpha_{0}}=e_{1}, \quad e_{2}=1-e_{1}$.
We will use $e_{2} x$, in place of $x-e_{1} x$.
Take $\mathcal{R}_{i j}=e_{i} \mathcal{R} e_{j}, \quad(i, j=1,2)$, then we may write \mathcal{R} in the following decomposition $\mathcal{R}=\mathcal{R}_{11} \oplus \mathcal{R}_{12} \bigoplus \mathcal{R}_{21} \oplus \mathcal{R}_{22}$.
In fact, $\left.x=\left(e_{1}+\left(1-e_{1}\right)\right) x\left(e_{1}+\left(1-e_{1}\right)\right)=e_{1} x e_{1}+e_{1} x\left(1-e_{1}\right)+\left(1-e_{1}\right) x e_{1}+\left(1-e_{1}\right) x\left(1-e_{1}\right)\right)$, shows that $\mathcal{R}=\mathcal{R}_{11}+\mathcal{R}_{12}+\mathcal{R}_{21}+\mathcal{R}_{22}$, and the later sum is a direct sum. Because for instance $z \in \mathcal{R}_{11} \cap \mathcal{R}_{12}$, we have $z=e_{1} x e_{1}=e_{1} y\left(1-e_{1}\right)$, for some $x, y \in \mathcal{R}$. Therefore

$$
\begin{gathered}
e_{1} x e_{1}=e_{1} y-e_{1} y e_{1} \\
e_{1}\left(e_{1} x e_{1}\right) e_{1}=e_{1}\left(e_{1} y-e_{1} y e_{1}\right) e_{1} \\
e_{1} x e_{1}=e_{1} y e_{1}-e_{1} y e_{1}=0
\end{gathered}
$$

So $z=e_{1} x e_{1}=0$.
We denote an element of $\mathcal{R}_{i j}$ by $x_{i j}$. Since $e_{1} e_{2}=e_{1}\left(1-e_{1}\right)=e_{1}-e_{1}^{2}=0$, we have $e_{j} x_{k l}=0$ and $x_{i j} x_{k l}=0, \quad(i, j, k, l=1,2, j \neq k)$.

Lemma 2.3. $\beta\left(\sigma\left(\alpha\left(x_{i i}+x_{j k}\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(x_{i i}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{j k}\right)\right)\right)$ for each $j \neq k$.
Proof . First assume that $i=j=1$ and $k=2$. Since α, β and σ are onto there exist an element z of \mathcal{R} such that $\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)$. For $a_{1 j} \in R_{1 j}$, by (vi) we have

$$
\begin{aligned}
\sigma\left(z a_{1 j}\right) & =\beta(\sigma(\alpha(z))) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right) \\
& =\left(\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right) \\
& =\sigma\left(\left(x_{11}+x_{12}\right) a_{1 j}\right) .
\end{aligned}
$$

Therefore $z a_{1 j}=\left(x_{11}+x_{12}\right) a_{1 j}$, since σ is one to one. Similarly for $a_{2 j} \in \mathcal{R}_{2 j}$, we have

$$
z a_{2 j}=\left(x_{11}+x_{12}\right) a_{2 j} .
$$

Therefore

$$
\begin{aligned}
& \left(z-\left(x_{11}+x_{12}\right)\right) a_{1 j}=0 \\
& \left(z-\left(x_{11}+x_{12}\right)\right) a_{2 j}=0
\end{aligned}
$$

Hence $\left[z-\left(x_{11}+x_{12}\right)\right]\left[\mathcal{R}_{11}+\mathcal{R}_{12}+R_{21}+\mathcal{R}_{22}\right]=0$, or $\left[z-\left(x_{11}+x_{12}\right)\right] \mathcal{R}=0$.
By (i) we have $z=x_{11}+x_{12}$. It means that $\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)=\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{11}+\right.\right.\right.$ $\left.x_{12}\right)$)).
Similarly for $i=k=1$ and $j=2$ and applying (ii) we have $\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{21}\right)\right)\right)=$ $\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{11}+x_{21}\right)\right)\right)$.

Lemma 2.4. σ is (α, β)-additive on \mathcal{R}_{12}.

Proof . Let $x_{12}, y_{12} \in \mathcal{R}_{12}$, and choose $z \in \mathcal{R}$ such that
$\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right)$.
For $a_{1 j} \in \mathcal{R}_{1 j}$, we have

$$
\begin{aligned}
\sigma\left(z a_{1 j}\right) & =\beta(\sigma(\alpha(z))) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right) \\
& =\left(\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{1 j}\right)\right)\right) \\
& =\sigma\left(x_{12} a_{1 j}\right)+\sigma\left(y_{12} a_{1 j}\right) \\
& =\sigma(0)+\sigma(0)=0
\end{aligned}
$$

whence $z a_{1 j}=0$. since σ is one to one.
Similarly for $a_{2 j} \in \mathcal{R}_{2 j}$ we have

$$
\begin{array}{r}
\sigma\left(z a_{2 j}\right)=\left(\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{2 j}\right)\right)\right), \\
\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{2 j}\right)\right)\right)=\sigma\left(e_{1} a_{2 j}\right)=\sigma(0)=0, \\
\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right)=\sigma\left(x_{12} y_{12}\right)=\sigma(0)=0 \tag{2.3}
\end{array}
$$

and by (iv)

$$
\begin{equation*}
\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(e_{1} y_{12}\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right), \tag{2.4}
\end{equation*}
$$

From the above relations,

$$
\begin{equation*}
\sigma\left(z a_{2 j}\right)=\left[\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)\right]\left[\beta\left(\sigma\left(\alpha\left(a_{2 j}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{2 j}\right)\right)\right)\right], \tag{2.5}
\end{equation*}
$$

Now by (iv) we have
$\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{2 j}\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(y_{12} a_{2 j}\right)\right)\right)$,
Since $e_{1}=e_{1} e_{1} e_{1}$, by applying Lemma 2.3 we have

$$
\begin{equation*}
\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(e_{1}+x_{12}\right)\right)\right), \tag{2.6}
\end{equation*}
$$

Again in each of cases $j=1$ or $j=2$ in another term of right hand (3.5) we can apply Lemma 2.3 and obtain that

$$
\begin{equation*}
\beta\left(\sigma\left(\alpha\left(a_{2 j}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12} a_{2 j}\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(a_{2 j}+y_{12} a_{2 j}\right)\right)\right), \tag{2.7}
\end{equation*}
$$

Now from (3.5), (3.6), (3.7) we see that

$$
\begin{aligned}
\sigma\left(z a_{2 j}\right) & =\beta\left(\sigma\left(\alpha\left(e_{1}+x_{12}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(a_{2 j}+y_{12} a_{2 j}\right)\right)\right) \\
& \left.=\sigma\left(\left(e_{1}+x_{12}\right)\right)\left(a_{2 j}+y_{12} a_{2 j}\right)\right) \\
& =\sigma\left(e_{1} a_{2 j}+e_{1} y_{12} a_{2 j}+x_{12} a_{2 j}+x_{12} y_{12} a_{2 j}\right) \\
& =\sigma\left(0+y_{12} a_{2 j}+x_{12} a_{2 j}+0 a_{2 j}\right) \\
& =\sigma\left(\left(y_{12}+x_{12}\right) a_{2 j}\right) .
\end{aligned}
$$

Whence $z a_{2 j}=\left(y_{12}+x_{12}\right) a_{2 j}$, since σ is one to one. Now $\left[z-\left(x_{12}+y_{12}\right)\right] a_{2 j}=0$.
Then

$$
\begin{array}{r}
{\left[z-\left(x_{12}+y_{12}\right)\right] \mathcal{R}=\left[z-\left(x_{12}+y_{12}\right)\right]\left(\mathcal{R}_{11}+\mathcal{R}_{12}+\mathcal{R}_{21}+\mathcal{R}_{22}\right)} \\
=z \mathcal{R}_{11}+z \mathcal{R}_{12}-\left(x_{12}+y_{12}\right)\left(\mathcal{R}_{11}+\mathcal{R}_{12}\right)+\left[z-\left(x_{12}+y_{12}\right)\right]\left(\mathcal{R}_{21}+\mathcal{R}_{22}\right) \\
=0+0+0+0=0
\end{array}
$$

So by (i), $z=x_{11}+y_{12}$. That is
$\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right)=\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{12}+y_{12}\right)\right)\right)$.

Lemma 2.5. σ is (α, β)-additive on \mathcal{R}_{11}.

Proof. Let $x_{11}, y_{11} \in \mathcal{R}_{11}$. There exist $z \in \mathcal{R}$ such that $\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right)$. Since β oooo is onto. By using (v) and Lemma 2.4 we see that

$$
\begin{aligned}
\beta o \sigma o \alpha\left(z a_{12}\right) & =\left(\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right)\right)\left(\beta\left(\sigma\left(\alpha\left(a_{12}\right)\right)\right)\right) \\
& =\left(\beta\left(\sigma\left(\alpha\left(x_{11} a_{12}\right)\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11} a_{12}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(x_{11} a_{12}+y_{11} a_{12}\right)\right)\right) .
\end{aligned}
$$

Therefore $z a_{12}=x_{11} a_{12}+y_{11} a_{12}$. Since σ is one to one and consequently $\left[z-\left(x_{11}+y_{11}\right)\right] a_{12}=0$. So $\left[z-\left(x_{11}+y_{11}\right)\right] R_{12}=0$.
Now we write z in terms of its components $z=z_{11}+z_{12}+z_{21}+z_{22}$, and by applying (iv) we have

$$
\begin{aligned}
\beta(\sigma(\alpha(z))) & =\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(e_{1} x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(e_{1} y_{11}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right) \beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right)\left(\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right)\right)\right. \\
& =\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right)\left(\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right) \beta(\sigma(\alpha(z))) \\
& =\beta\left(\sigma\left(\alpha\left(e_{1}\right)\right)\right) \beta\left(\sigma\left(\alpha\left(z_{11}+z_{12}+z_{21}+z_{22}\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(e_{1}\left(z_{11}+z_{12}+z_{21}+z_{22}\right)\right)\right)\right) \\
& =\beta\left(\sigma\left(\alpha\left(z_{11}+z_{12}\right)\right)\right) .
\end{aligned}
$$

Therefore $z=z_{11}+z_{12}$. Since $\beta o \sigma o \alpha$ is one to one and hence $z_{11}=z_{12}=0$, by uniqueness of direct sum.
Next using (v) and repeating the above argument with e_{1} multiplied on the right, one finds that $z_{12}=0$, thus yielding $z=z_{11} \in \mathcal{R}_{11}$. Therefore $z-\left(x_{11}+y_{11}\right) \in \mathcal{R}_{11}$ and consequently $\left(z-\left(x_{11}+\right.\right.$ $\left.\left.y_{11}\right)\right) \mathcal{R}_{12}=0$. For some $x \in \mathcal{R}$, we have $e_{1} x e_{1} e_{1} R e_{2}=0$. Hence $e_{1} x e_{1} \mathcal{R}\left(1-e_{1}\right)=0$. This implies that $x=0$ by condition (iii). Then $0=e_{1} x e_{1}=z-\left(x_{11}+y_{11}\right)$. So $z=x_{11}+y_{11}$. Therefore $\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right)=\beta(\sigma(\alpha(z)))=\beta\left(\sigma\left(\alpha\left(x_{11}+y_{11}\right)\right)\right)$.

Lemma 2.6. σ is (α, β)-additive on $e_{1} \mathcal{R}=\mathcal{R}_{11}+\mathcal{R}_{12}$.

Proof . Let $x_{11}, y_{11} \in \mathcal{R}_{11}$ and let $x_{12}, y_{12} \in \mathcal{R}_{12}$. By Lemmas 2.3 and 2.4 and 2.5 to see that

$$
\begin{array}{r}
\beta\left(\sigma\left(\alpha\left(\left(x_{11}+x_{12}\right)+\left(y_{11}+y_{12}\right)\right)\right)\right)=\beta\left(\sigma\left(\alpha\left(\left(x_{11}+y_{11}\right)+\left(x_{12}+y_{12}\right)\right)\right)\right) \\
=\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right) \\
=\beta\left(\sigma\left(\alpha\left(x_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{12}\right)\right)\right) \\
=\beta\left(\sigma\left(\alpha\left(x_{11}+x_{12}\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(y_{11}+y_{12}\right)\right)\right)
\end{array}
$$

Now we are ready to state the proof of Theorem 2.1.

Proof . Let $x, y \in \mathcal{R}$, there exists $z \in \mathcal{R}$ such that $\beta(\sigma(\alpha(z)))=\beta(\sigma(\alpha(x)))+\beta(\sigma(\alpha(y)))$. Choose $t_{\alpha} \in e_{\alpha} \mathcal{R}$. By Lemma 2.6. σ is $(\alpha, \beta)-$ additive on $e_{\alpha} \mathcal{R}$ and by (iv) we have,

$$
\begin{aligned}
\beta\left(\sigma\left(\alpha\left(t_{\alpha} z\right)\right)\right) & =\left(\beta\left(\sigma\left(\alpha\left(t_{\alpha}\right)\right)\right)(\beta(\sigma(\alpha(z)))\right. \\
& \left.=\beta\left(\sigma\left(\alpha\left(t_{\alpha}\right)\right)\right)[\beta(\sigma(\alpha(x))))+\beta(\sigma(\alpha(y)))\right] \\
& =\left(\beta\left(\sigma\left(\alpha\left(t_{\alpha} x\right)\right)\right)+\beta\left(\sigma\left(\alpha\left(t_{\alpha} y\right)\right)\right)\right. \\
& =\left(\beta\left(\sigma\left(\alpha\left(t_{\alpha} x+t_{\alpha} y\right)\right)\right)\right.
\end{aligned}
$$

So $t_{\alpha} z=t_{\alpha} x+t_{\alpha} y$, since β oooo α is one to one. Hence $t_{\alpha}[z-(x+y)]=0$. So $e_{\alpha} \mathcal{R}[z-(x+y)]=0$. By conditio(ii), $z-(x+y)=0$ or $z=x+y$. Then
$\beta(\sigma(\alpha(x)))+\beta(\sigma(\alpha(y)))=\beta(\sigma(\alpha(z)))=\beta(\sigma(\alpha(x+y)))$.

Corollary 2.7. If α and β are multiplicative under the conditions of Theorem 2.1, then every multiplicative isomorphism $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ is additive.

Proof . Under the condition of theorem σ is a (α, β)-additive mapping. In other words $\beta o \sigma o \alpha$ is an additive mapping, furthermore since α and β are onto multiplicative isomorphisms. We conclude that also α^{-1} and β^{-1} are multiplicative isomorphisms. In fact,

$$
\begin{aligned}
\alpha(x y) & =\alpha(x) \alpha(y) \\
\alpha^{-1}(\alpha(x) \alpha(y)) & =\alpha^{-1}(\alpha(x y))=x y=\alpha^{-1}(\alpha(x)) \alpha^{-1}(\alpha(y)) .
\end{aligned}
$$

Surjectivity α implies the multiplication of α^{-1}. By the main theorem of [7] α^{-1} and β^{-1} are additive and consequently $\beta^{-1} o(\beta o \sigma o \alpha) o \alpha^{-1}=\sigma$ is an additive mapping.

Now we recall the following theorem and we state a similar to one.

Theorem 2.8. (see [5, Theorem 1]) Suppose that \mathcal{R} is a ring (not necessarily with an identity) and α and β are ring automorphisms on \mathcal{R}. Also assume that there exists an idempotent $e(e \neq 0, e \neq 1)$ such that the following conditions hold:
(a) $\tilde{e} \mathcal{R} x=0$ implies $x=0$;
(b) ẽ $x e \mathcal{R}(1-e)=0$ implies ẽ $x e=0$;
(c) $x \mathcal{R}=0$ implies $x=0$,
where $\tilde{e}=\beta \alpha^{-1}(e)$. Then every multiplicative $(\alpha, \beta)-$ derivation of \mathcal{R} is additive.
As a special case of Theorem 2.1, we conclude the following theorem:
Theorem 2.9. Suppose that \mathcal{R} is a ring containing a family $\left\{e_{\alpha}\right\}_{\alpha \in A}$ of idempotents, such that for each $\alpha \in A$ and $x \in \mathcal{R}$ satisfies the following conditions:
(i) $x \mathcal{R}=0$ implies $x=0$;
(ii) $e_{\alpha} \mathcal{R} x=0$ implies $x=0$;
(iii) If $e_{\alpha} x e_{\alpha} R\left(1-e_{\alpha}\right)=0$ then $e_{\alpha} x e_{\alpha}=0$.

If α and β are ring homomorphisms on \mathcal{R} and at least one of α and β is one to one then every multiplicative (α, β)-derivation of \mathcal{R} is additive.

Proof . Let $d: \mathcal{R} \rightarrow \mathcal{R}$ be a multiplicative (α, β) - derivation, and let
$\mathcal{S}=\left\{\left.\left(\begin{array}{cc}\beta(x) & d(x) \\ 0 & \alpha(x)\end{array}\right) \right\rvert\, x \in \mathcal{R}\right\}$. Obviously \mathcal{S} is a ring. Define $\sigma: \mathcal{R} \rightarrow \mathcal{S}$ by
$\sigma(x)=\left(\begin{array}{cc}\beta(x) & d(x) \\ 0 & \alpha(x)\end{array}\right)$, for each $x \in \mathcal{R}$. Then σ is onto and one to one, since one of α and β is one to one.
For every $x, y \in \mathcal{R}$, we have

$$
\begin{aligned}
\sigma(x y) & =\left(\begin{array}{cc}
\beta(x y) & d(x y) \\
0 & \alpha(x y)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\beta(x) \beta(y) & d(x) \alpha(y)+\beta(x) d(y) \\
0 & \alpha(x) \alpha(y)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\beta(x) & d(x) \\
0 & \alpha(x)
\end{array}\right) \\
& \times\left(\begin{array}{cc}
\beta(y) & d(y) \\
0 & \alpha(y)
\end{array}\right) \\
& =\sigma(x) \sigma(y) .
\end{aligned}
$$

Then σ is multiplicative. Hence it is an isomorphism and by Theorem 2.1, it is additive.

$$
\begin{aligned}
\sigma(x+y) & =\left(\begin{array}{cc}
\beta(x+b) & d(x+y) \\
0 & \alpha(x+y)
\end{array}\right) \\
& =\sigma(x)+\sigma(y) \\
& =\left(\begin{array}{cc}
\beta(x)+\beta(y) & d(x)+d(y) \\
0 & \alpha(x)+\alpha(y)
\end{array}\right) .
\end{aligned}
$$

Hence d is additive.
Note that by Theorem 2.9 every derivation on a prime ring $\mathcal{R}(x \mathcal{R} y=0$ implies that $x=0$ or $y=0)$, with a nontrivial idempotents $e(e \neq 0,1)$ is additive.

Example 2.10. Suppose that $M_{n}(\mathbb{C})$ denotes the algebra of all the $n \times n$ complex matrices.
Set $e_{k}=\left[a_{i j}\right]_{n \times n}, \quad(k=1,2, \ldots, n)$, where

$$
a_{i j}= \begin{cases}1 & \text { if } i=j=k \tag{2.8}\\ 0 & \text { otherwise } .\end{cases}
$$

In other words e_{k} is the diagonal matrix in which the only nonzero element is the $k^{t h}$ element on its diagonal. Theorem 2.9 implies that every multiplicative (α, β)-derivation on $M_{n}(\mathbb{C})$ in which one of α and β is one to one is additive.

Example 2.11. Let \mathcal{X} be a Banach space such that $\operatorname{dim}(\mathcal{X}) \geq 2$ and let $F(\mathcal{X})$ the algebra of all finite rank operators on \mathcal{X}. Using by Hahn Banach theorem, one can show that $F(\mathcal{X})$ is a prime ring. Choose a nonzero idempotent P of $F(\mathcal{X})$. If $T \in F(\mathcal{X})$, then
(i) $T F(\mathcal{X})=0$ implies $T=0$.
(ii) $P F(\mathcal{X}) T=0$ implies $T=0$.
(iii) $\operatorname{PTPF}(\mathcal{X})(I-P)=0$ implies $P T P=0$.

Hence if one of the mapping α and β is one to one, every multiplicative derivation on $F(\mathcal{X})$ is additive.

Acknowledgements

The authors gratefully acknowledge editorial board of the journal and anonymous reviewers for their carefully reading of the paper and helpful suggestions.

References

[1] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1973.
[2] M.N. Daif, When is a multiplicative derivation additive, Int. J. Math. Math. Sci. 14 (1991) 615-618.
[3] A. Hosseini, M. Hassani and A. Niknam, Generalized σ-derivation on Banach algebras, Bull. Iranian Math. Soc. 37 (2011) 81-94.
[4] A. Hosseini, M. Hassani, A. Niknam and S. Hejazian, Some results on σ-derivations, Ann. Funct. Anal. 2 (2011) 75-84.
[5] C. Hou, W. Zhang and Q. Meng, A note on (α, β)-derivations, Linear Algebra Appl. 432 (2010) 2600-2607.
[6] R.E. Johnson, Rings with unique addition, proc. Amer. Math. Soc. 9 (1958) 57-61.
[7] W.S. Martindale, When are multiplicative mappings additive, proc. Amer. Math. Soc. 21 (1969) 695-698.
[8] C.E. Rickart, One to one mapping of rings and lattices, Bull. Amer. Math. Soc. 54 (1948) 758-764.

[^0]: *Corresponding author
 Email addresses: kayhanymath@gmail.com (Eqbal Keyhani), Hassani@mshdiau.ac.ir (Mahmoud Hassani), amyari@mshdiau.ac.ir (Maryam Amyari)

