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Abstract

This paper deals with existence and local attractivity of solution of a quadratic fractional integral
equation in two independent variables. The solution space has been considered to be the Banach
space of all bounded continuous functions defined on an unbounded interval. The fundamental
tool used for the purpose is the notion of noncompactness and the celebrated Schauder fixed point
principle. Finally an example has been provided at the end in support of the result.
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1. Introduction

From the literature(see, for example[1]-[5], [6]-[7], [10]-[13], [15], [17], [19], [20], [21])it has been
found that over the recent couple of decades researchers contributed immensely to the theory of
integral equations but till date most of the investigations have been limited to integral equations in
one independent variable. There are many physical situations notably those of inter-reflections of
light among perfectly diffused surfaces, skin effect in electrical conductors where the theory of one
independent variable is inadequate and there is urgent need for the theory of integral equations of
higher dimension especially of two independent variables.
In this paper the following quadratic fractional integral equation involving two arguments has been
considered.

u(x, y) = g(x, y) +
αγh(x, y, u(x, y))

Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1f(x, y, s, t, u(s, t))

(xα − sα)1−β(yγ − tγ)1−δ
dt ds, (1.1)
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where (x, y) ∈ R+ × [0, b], R+ = [0,∞), (β, δ) ∈ (0, 1) × (0, 1) is a fixed number, α, γ > 0 and
Γ(β),Γ(δ) denotes the gamma function.
For α = 1, γ = 1 the above equation is a mixed Riemann- Liouville type integral equation which was
discussed in [18]

2. Preliminaries

Now let us recapitulate some basic ideas regarding measure of noncompactness ([14], [9]).
Here an infinite dimensional Banach space (E, ∥ · ∥) has been considered, with the zero element

θ. Ḡ, ConvG symbolizes the closure and convex closure of a subset G of E, respectively. B(x, λ)
denotes the closed ball centered at x and with radius λ. For our convenience let us denote Bλ for
the ball B(θ, λ). Moreover BE to be the collection of all nonempty and bounded subsets of E and
NE to be its subfamily consisting of all nonempty and relatively compact subsets.

Definition 2.1. A mapping µ : BE → R+ is a measure of noncompactness in E if

(i) Kerµ = {G ∈ BE : µ(G) = 0} is nonempty and ker µ ⊂ NE.

(ii) G ⊂ H ⇒ µ(G) ≤ µ(H).

(iii) µ(Ḡ) = µ(G).

(iv) µ(Conv G) = µ(G).

(v) µ(λG+ (1− λ)H) ≤ λµ(G) + (1− λ)µ(H) for λ ∈ [0, 1].

(vi) If (Gn) is a sequence of closed sets from BE such that Gn+1 ⊂ Gn for n = 1, 2, ... and if
limn→∞ µ(Gn) = 0, then the intersection G∞ =

⋂∞
n=1 Gn is nonempty.

Kerµ defined in (i) is called the kernel of the measure of noncompactness µ.
Remark 1: From the inequality µ(G∞) ≤ µ(Gn) for n = 1, 2, ..., it concludes that µ(G∞) = 0 and
thus G∞ ∈ ker µ. This property of the intersection set G∞ has been applied in our study.
The Banach space B := BC(R+ × [0, b]) with the standard norm

∥u∥BC = sup
(x,y)∈R+×[0,b]

|u(x, y)|.

has been taken for the current study. Now to define such measure, a nonempty bounded subset X of
the space BC(R+ × [0, b]) and positive numbers a and b has been fixed. Also from the earlier study
the modulus of continuity of the function, u has been denoted by wa,b(u, ϵ) on J = [0, a]× [0, b], for
u ∈ X and ϵ ≥ 0, i.e.,

wa,b(u, ϵ) = sup{|u(x, y)− u(s, t)| : s ≤ x, t ≤ y, (x, y) ∈ [0, a]× [0, b], |x− s| ≤ ϵ, |y − t| ≤ ϵ}.

In addition,
wa,b(X, ϵ) = sup{wa,b(u, ϵ) : u ∈ X},

wa,b
0 (X) = lim

ϵ→0
wa,b(X, ϵ),

and
w0(X) = lim

a→∞
wa,b

0 (X).
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If (x, y) is fixed number from R+ × [0, b], then

X(x, y) = {u(x, y) : u ∈ X},

and
diam X(x, y) = sup{|u(x, y)− v(x, y)| : u, v ∈ X}.

Lastly, the function µ define on the family BBC(R+×[0,b]) has been considered by the formula

µ(X) = w0(X) + lim
x→∞

sup diam X(x, y), (2.1)

for each fixed y ∈ [0, b]. It has been seen from the earlier literature that the capacity µ is the
proportion of noncompactness in the space BC(R+ × [0, b]).

Remark 2.2. The portion ker µ is the group of all nonempty and bounded sets X such that functions
belonging to X are locally equicontinuous on R+ × [0, b] and the thickness of the bundle formed by
functions from X tends to zero at infinity. Those properties, will allow us to portray solutions of the
integral equation.

Now to present some significant ideas embraced in the paper, let us consider Ω to be a nonempty sub-
set of the space BC(R+× [0, b]) and let R be an operator define on Ω with values in BC(R+× [0, b]).
Then the solution of the following operator equation

u(x, y) = (R u)(x, y), (x, y) ∈ R+ × [0, b]. (2.2)

can be categorized into two parts.

Definition 2.3 ([8]). The solutions of equation (2.2) are locally attractive if there exists a closed
ball B(u0, η) in the space BC(R+× [0, b]) such that for arbitrary solutions u = u(x, y) and v = v(x, y)
of equation (2.2) belonging to B(u0, η) ∩ Ω, we have that,

lim
x→∞

(u(x, y)− v(x, y)) = 0, for each y ∈ [0, b]. (2.3)

When the limit in (2.3) is uniform with respect to the set B(u0, η) ∩ Ω, solutions of equation (2.2)
are said to be uniformly locally attractive (or equivalently, that solutions of (2.2) are asymptotically
stable).

Definition 2.4 ([8]). The solutions u = u(x, y) of equation (2.2) is said to be globally attractive if
(2.3) holds for each solution v = v(x, y) of (2.2). Solutions of equation (2.2) are said to be globally
asymptotically stable (or uniformly globally attractive)if condition (2.3) is satisfied uniformly with
respect to the set Ω.

Clearly global attractivity imply local attractivity but the converse is not necessarily true and has
been justified later in this work.
Now we present two results which will be used in the rest of the paper.

Lemma 2.5 ([16]). Let κ : R+ → R+ be a concave function with κ(0) = 0. Then κ is subaddi-
tive(this means that κ(z1 + z2) ≤ κ(z1) + κ(z2) for any z1, z2 ∈ R+.)

Lemma 2.6 ([16]). Let κ : R+ → R+ be the function defined by κ(z) = zα.

(1) If α ≥ 1 and z1, z2 ∈ I with z2 > z1, then zα2 − zα1 ≤ α(z2 − z1).

(2) If 0 < α < 1 and z1, z2 ∈ I with z2 > z1, then zα2 − zα1 ≤ (z2 − z1)
α.
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3. Main Results

(H1) The function g : R+ × [0, b] → R is continuous and bounded on J ′ = R+ × [0, b].

(H2) The function h : J ′×R → R is continuous and there exists a continuous function, m : J ′ → R+

such that
|h(x, y, u)− h(x, y, v)| ≤ m(x, y) |u− v|,

for any (x, y) ∈ J ′ and for all u, v ∈ R.

(H3) The function f(x, y, s, t, u(s, t)) = f : J ′×J ′×R → R is continuous. In addition, there exists a
continuous function, n : J ′ → R+, and a continuous and nondecreasing function, ϕ : R+ → R+,
with ϕ(0) = 0 such that

|f(x, y, s, t, u)− f(x, y, s, t, v)| ≤ n(x, y) ϕ(|u− v|),

for all (x, y), (s, t) ∈ J ′ such that s ≤ x ; t ≤ y and for all u, v ∈ R.
Let us define the function f1 : J

′ → R+,

f1(x, y) = max{|f(x, y, s, t, 0)| : 0 ≤ s ≤ x, 0 ≤ t ≤ y}.

The function f1 is continuous on R+ × [0, b].
Moreover,it has been assumed that the following conditions are satisfied:

(H4) The functions p, q, r, s : J ′ → R+ defined by p(x, y) = m(x, y) n(x, y) xαβyγδ,
q(x, y) = m(x, y) f1(x, y) x

αβyγδ,
r(x, y) = n(x, y) |h(x, y, 0)| xαβyγδ,
s(x, y) = f1(x, y) |h(x, y, 0)| xαβyγδ,
are bounded on J ′ and the functions p(x, y), r(x, y) are such that
limx→∞ p(x, y) = limx→∞ r(x, y) = 0, for each fixed y ∈ [0, b].
In (H4), we may define the following finite constants:
P = sup{p(x, y) : (x, y) ∈ J ′},
Q = sup{q(x, y) : (x, y) ∈ J ′},
R = sup{r(x, y) : (x, y) ∈ J ′},
S = sup{s(x, y) : (x, y) ∈ J ′}.

(H5) There exists a positive solution λ0 of the inequality

∥g∥+ 1

Γ(1 + β)Γ(1 + δ)
[Pλϕ(λ) +Qλ+Rϕ(λ) + S] ≤ λ.

Also,
Q < Γ(1 + β)Γ(1 + δ).

Suppose the operators W,U and V defined on the space BC(R+ × [0, b]) is such that:
(Wu)(x, y) = h(x, y, u(x, y)),

(Uu)(x, y) = αγ
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1f(x,y,s,t,u(s,t))
(xα−sα)1−β(yγ−tγ)1−δ dt ds,

(V u)(x, y) = g(x, y) + (Wu)(x, y)(Uu)(x, y).
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Lemma 3.1. The operator V transforms the ball Bλ0 in the space BC(R+×[0, b]) into itself satisfying
the above assumptions(H1−H5) where λ0 is a number appearing in assumption (H5). Moreover, all
solutions of equation (1.1) belonging to the space BC(R+ × [0, b]) are fixed points of the operator V .

Proof . It is obvious from the assumptions that, the function Wu is continuous on R+ × [0, b] for
any u ∈ BC(R+× [0, b]). We will show that the same holds also for the operator U . In order to show
that, let us fix a, b > 0 and ϵ > 0. Also suppose that x1, x2 ∈ [0, a] and y1, y2 ∈ [0, b] are such that
|x2 − x1| ≤ ϵ and |y2 − y1| ≤ ϵ. Without loss of generality, it is assume that x1 < x2 and y1 < y2.
Then, by virtue of the above mentioned assumptions, we have

|(Uu)(x2, y2)− (Uu)(x1, y1)|

= αγ
Γ(β)Γ(δ)

[
x1∫
0

y1∫
0

[
sα−1tγ−1f(x2,y2,s,t,u(s,t))
(xα

2−sα)1−β(yγ2−tγ)1−δ − sα−1tγ−1f(x1,y1,s,t,u(s,t))
(xα

1−sα)1−β(yγ1−tγ)1−δ

]
dt ds

+
x2∫
x1

y2∫
y1

sα−1tγ−1f(x2,y2,s,t,u(s,t))
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds+
x1∫
0

y2∫
y1

sα−1tγ−1f(x2,y2,s,t,u(s,t))
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

+
x2∫
x1

y1∫
0

sα−1tγ−1f(x2,y2,s,t,u(s,t))
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

]
≤ αγ

Γ(β)Γ(δ)

x1∫
0

y1∫
0

sα−1tγ−1|f(x2,y2,s,t,u(s,t))−f(x1,y1,s,t,u(s,t))|
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

+ αγ
Γ(β)Γ(δ)

x1∫
0

y1∫
0

sα−1tγ−1|f(x1, y1, s, t, u(s, t))|
[

1
(xα

2−sα)1−β(yγ2−tγ)1−δ

− 1
(xα

1−sα)1−β(yγ1−tγ)1−δ

]
dt ds

+ αγ
Γ(β)Γ(δ)

x2∫
x1

y2∫
y1

sα−1tγ−1 {|f(x2,y2,s,t,u(s,t))−f(x2,y2,s,t,0)|+|f(x2,y2,s,t,0)|}
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

+ αγ
Γ(β)Γ(δ)

x1∫
0

y2∫
y1

sα−1tγ−1 {|f(x2,y2,s,t,u(s,t))−f(x2,y2,s,t,0)|+|f(x2,y2,s,t,0)|}
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

+ αγ
Γ(β)Γ(δ)

x2∫
x1

y1∫
0

sα−1tγ−1 {|f(x2,y2,s,t,u(s,t))−f(x2,y2,s,t,0)|+|f(x2,y2,s,t,0)|}
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

≤ αγ
Γ(β)Γ(δ)

x1∫
0

y1∫
0

sα−1tγ−1wa,b
1 (f,ϵ;∥u∥)

(xα
2−sα)1−β(yγ2−tγ)1−δ dt ds

+ 1
Γ(r1)Γ(r2)

x1∫
0

y1∫
0

{sα−1tγ−1|f(x1, y1, s, t, u(s, t))− f(x1, y1, s, t, 0)|+ |f(x1, y1, s, t, 0)|}

×
[

1
(xα

2−sα)1−β(yγ2−tγ)1−δ − 1
(xα

2−sα)1−β(yγ2−tγ)1−δ

]
dt ds

+ αγ
Γ(β)Γ(δ)

x2∫
x1

y2∫
y1

sα−1tγ−1{n(x2,y2)ϕ(|u(s,t)|)+f1(x2,y2)}
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

+ αγ
Γ(β)Γ(δ)

x1∫
0

y2∫
y1

sα−1tγ−1{n(x2,y2)ϕ(|u(s,t)|)+f1(x2,y2)}
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

+ αγ
Γ(β)Γ(δ)

x2∫
x1

y1∫
0

sα−1tγ−1{n(x2,y2)ϕ(|u(s,t)|)+f1(x2,y2)}
(xα

2−sα)1−β(yγ2−tγ)1−δ dt ds

≤ wa,b
1 (f,ϵ;∥u∥)xαβ

1 yγδ1

Γ(β+1)Γ(δ+1)

+ n(x1,y1)ϕ(∥u∥)+f1(x1,y1)
Γ(β+1)Γ(δ+1)

[
x1

αβyγδ1 −
{
(xα

2 − xα
1 )

β − xαβ
2

}
×
{
(yγ2 − yγ1 )

δ − yγδ2

}]
+

n(x2,y2)ϕ(∥u∥)+f1(x2,y2)
Γ(β+1)Γ(δ+1)

×
[
(xα

2 − xα
1 )

β(yγ2 − yγ1 )
δ + (yγ2 − yγ1 )

δ
{
xαβ
2 − (xα

2 − xα
1 )

β
}
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+(xα
2 − xα

1 )
β
{
yγδ2 − (yγ2 − yγ1 )

δ
}]

≤ wa,b
1 (f,ϵ;∥u∥)xαβ

1 yγδ1

Γ(β+1)Γ(δ+1)

+ n(x1,y1)ϕ(∥u∥)+f1(x1,y1)
Γ(1+β)Γ(1+δ)

{
(xα

1 − xα
2 )

βyγδ2 + yγδ1 (xα
2 − xα

1 )
β + xαβ

2 (yγ2 − yγ1 )
δ
}

+
n(x2, y2)ϕ(∥u∥) + f1(x2, y2)

Γ(1 + β)Γ(1 + δ)

{
xαβ
2 (yγ2 − yγ1 )

δ + yγδ1 (xα
2 − xα

1 )
β
}

(3.1)

where
wa,b

1 (f, ϵ; ∥u∥) = sup{|f(x2, y2, s, t, z)− f(x1, y1, s, t, z)| : (s, t), (x1, y1), (x2, y2) ∈ [0, a]× [0, b]; s ≤
x1, x2 and t ≤ y1, y2; |x2 − x1| ≤ ϵ; |y2 − y1| ≤ ϵ; |z| ≤ ∥u∥}.

By the uniform continuity of the function f(x, y, s, t, z) on the set J ×J × [−∥u∥, ∥u∥] we deduce
that wa,b

1 (f, ϵ; ∥u∥) → 0 as ϵ → 0. Let us denote

n̄(a, b) = max{n(x, y) : (x, y) ∈ [0, a]× [0, b]},

f̄1(a, b) = max{f1(x, y) : (x, y) ∈ [0, a]× [0, b]}.

Now, we have two distinguish cases:
Case 1: 0 < α < 1, 0 < γ < 1
by Lemma 2, (xα

2 − xα
1 )

β ≤ (x2 − x1)
αβ,

(yγ2 − yγ1 )
β ≤ (y2 − y1)

γδ

and therefore, from inequality (3.1) it follows

wa,b(Uu, ϵ) ≤ aαβbγδwa,b
1 (f,ϵ;∥u∥)

Γ(1+β)Γ(1+δ)

+ n(x1,y1)ϕ(∥u∥)+f1(x1,y1)
Γ(1+β)Γ(1+δ)

{ϵαβ(yγδ1 + yγδ2 ) + ϵγδxαβ
2 }

+n(x2,y2)ϕ(∥u∥)+f1(x2,y2)
Γ(1+β)Γ(1+δ)

{ϵγδxαβ
2 + ϵαβyγδ1 }

wa,b(Uu, ϵ) ≤ aαβbγδwa,b
1 (f, ϵ; ∥u∥)

Γ(1 + β)Γ(1 + δ)
+

n̄(a, b)ϕ(∥u∥) + f̄1(a, b)

Γ(1 + β)Γ(1 + δ)
{3ϵαβbγδ + 2ϵγδaαβ}. (3.2)

Case 2: α ≥ 1, γ ≥ 1
by Lemma 2, (xα

2 − xα
1 )

β ≤ αβ(x2 − x1)
β

(yγ2 − yγ1 )
β ≤ γ(y2 − y1)

δ

and therefore, from inequality (3.1) it follows

wa,b(Uu, ϵ) ≤ aαβbγδwa,b
1 (f,ϵ;∥u∥)

Γ(1+β)Γ(1+δ)

+ n(x1,y1)ϕ(∥u∥)+f1(x1,y1)
Γ(1+β)Γ(1+δ)

{αβϵβ(yγδ1 + yγδ2 ) + γδϵδxαβ
2 }

+n(x2,y2)ϕ(∥u∥)+f1(x2,y2)
Γ(1+β)Γ(1+δ)

{γδϵδxαβ
2 + αβϵβyγδ1 }

wa,b(Uu, ϵ) ≤ aαβbγδwa,b
1 (f, ϵ; ∥u∥)

Γ(1 + β)Γ(1 + δ)
+

n̄(a, b)ϕ(∥u∥) + f̄1(a, b)

Γ(1 + β)Γ(1 + δ)
{3ϵαβbγδαβ + 2ϵγδaαβγδ}. (3.3)

Linking both cases (3.2), (3.3) with the above established facts we conclude that the function Uu is
continuous on the subset [0, a]× [0, b] for any a, b > 0. This gives the continuity of Uu on R+× [0, b].
Consequently, the function V u is continuous on R+ × [0, b].
Now, for an arbitrary function u ∈ BC(R+ × [0, b]) and using our assumptions, for a fixed (x, y) ∈
R+ × [0, b], we have
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|(V u)(x, y)| ≤ |g(x, y)|+ αγ{|h(x,y,u(x,y))−h(x,y,0)|+|h(x,y,0)|}
Γ(β)Γ(δ)

×
x∫
0

y∫
0

sα−1tγ−1{|f(x,y,s,t,u(s,t))−f(x,y,s,t,0)|+|f(x,y,s,t,0)|}
(xα−sα)1−β(yγ−tγ)1−δ dt ds

≤ ∥g∥+ αγ{m(x,y)|u(x,y)|+|h(x,y,0)|}
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1{n(x,y)ϕ(|u(s,t)|)+f1(x,y)}
(xα−sα)1−β(yγ−tγ)1−δ dt ds

≤ ∥g∥+ αγ{m(x,y)∥u∥+|h(x,y,0)|}{n(x,y)ϕ(∥u∥)+f1(x,y)}
Γ(β)Γ(δ)

×
x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ

≤ |g∥+ 1
Γ(1+β)Γ(1+δ)

{m(x, y)n(x, y)xαβyγδ∥u∥ϕ(∥u∥) +m(x, y)f1(x, y)

xαβyγδ∥u∥+ n(x, y)|h(x, y, 0)|xαβyγδϕ(∥u∥) + f1(x, y)|h(x, y, 0)|xαβyγδ}

≤ ∥g∥+ 1

Γ(1 + β)Γ(1 + δ)
{p(x, y)∥u∥ϕ(∥u∥) + q(x, y)∥u∥+ r(x, y)ϕ(∥u∥) + s(x, y)}. (3.4)

As a result, from the above inequality in view of assumption (H4), the function V u is bounded on
R+ × [0, b] and also we conclude that V u ∈ BC(R+ × [0, b]), so from the estimate (3.4), we get
∥V u∥ ≤ ∥g∥+ 1

Γ(1+β)Γ(1+δ)
{P∥u∥ϕ(∥u∥) +Q∥u∥+Rϕ(∥u∥) + S}.

Similarly, from the above estimate and assumption (H5), we deduce that there exists positive number
λ0 such that the operator V transforms the ball Bλ0 into itself.
Finally, the operator V transforms the space BC(R+ × [0, b]) into itself, so second assertion of our
lemma is obvious. □

Theorem 3.2. The equation (1.1) has at least one solution u = u(x, y) belonging to the space
BC(R+ × [0, b]) under the assumptions(H1 − H5). In addition, solutions of equation (1.1) are
uniformly locally attractive.

Proof . Suppose let us consider a nonempty set X ⊂ Bλ0 , where Bλ0 is a ball in the space
BC(R+ × [0, b]). Then, in virtue of assumptions (H2)− (H4) for u, v ∈ X and for an arbitrary fixed
(x, y) ∈ R+ × [0, b], we get |(V u)(x, y)− (V v)(x, y)|

=

[
αγh(x,y,u(x,y))

Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1f(x,y,s,t,u(s,t))
(xα−sα)1−β(yγ−tγ)1−δ dt ds

− αγh(x,y,v(x,y))
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1f(x,y,s,t,v(s,t))
(xα−sα)1−β(yγ−tγ)1−δ dt ds

]
≤ αγ|h(x,y,u(x,y))−h(x,y,v(x,y))|

Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1|f(x,y,s,t,u(s,t))|
(xα−sα)1−β(yγ−tγ)1−δ dt ds

+ αγ|h(x,y,v(x,y))|
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1|f(x,y,s,t,u(s,t))−f(x,y,s,t,v(s,t))|
(xα−sα)1−β(yγ−tγ)1−δ dt ds

≤ αγm(x,y)|u(x,y)−v(x,y)|
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1{n(x,y)ϕ(|u(s,t)|)+f1(x,y)}
(xα−sα)1−β(yγ−tγ)1−δ dt ds

+ αγn(x,y){m(x,y)|v(x,y)|+|h(x,y,0)|}
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1ϕ(|u(s,t)−v(s,t)|)
(xα−sα)1−β(yγ−tγ)1−δ dt ds

≤ αγ2m(x,y)n(x,y)p0ϕ(p0)
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ +

αγm(x,y)f1(x,y)
Γ(β)Γ(δ)

× diam X(x, y)
x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ +

αγm(x,y)n(x,y)p0ϕ(2p0)
Γ(β)Γ(δ)

×
x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ +

αγn(x,y)|h(x,y,0)|ϕ(2p0)
Γ(β)Γ(δ)
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×
x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ

≤ 2p(x,y)
Γ(1+β)Γ(1+δ)

λ0ϕ(λ0) +
p(x,y)

Γ(1+β)Γ(1+δ)
λ0ϕ(2λ0)

+
r(x, y)

Γ(1 + β)Γ(1 + δ)
ϕ(2λ0) +

q(x, y)

Γ(1 + β)Γ(1 + δ)
diam X(x, y). (3.5)

Now, applying our assumptions, above estimate yields
diam (V X)(x, y) ≤ 2p(x,y)

Γ(1+β)Γ(1+δ)
λ0ϕ(λ0) +

p(x,y)
Γ(1+β)Γ(1+δ)

λ0ϕ(2λ0)

+
r(x, y)

Γ(1 + β)Γ(1 + δ)
ϕ(2λ0) +

q(x, y)

Γ(1 + β)Γ(1 + δ)
diam X(x, y). (3.6)

Also by applying assumption (H4) we have

lim
x→∞

sup diam (V X)(x, y) ≤ k lim
x→∞

sup diam X(x, y) (3.7)

for each fixed y ∈ [0, b],

where k = B
Γ(1+β)Γ(1+δ)

.

It is clear from the assumption (H5), that k < 1.
Now, let us suppose arbitrary positive numbers a, b and ϵ > 0. Also we fix an arbitrary function
u ∈ X; x1, x2 ∈ [0, a] and y1, y2 ∈ [0, b] such that |x2 − x1| < ϵ and |y2 − y1| < ϵ. Without loss of
generality, we may assume that x1 < x2 and y1 < y2. Then using our assumptions and obtained
estimate (3.2), when 0 < α < 1 we get
|(V u)(x2, y2)− (V u)(x1, y1)|
≤ |g(x2, y2)− g(x1, y1)|+ |(Wu)(x2, y2)(Uu)(x2, y2)− (Wu)(x1, y1)(Uu)(x2, y2)|
+ |(Wu)(x1, y1)(Uu)(x2, y2)− (Wu)(x1, y1)(Uu)(x1, y1)|
≤ wa,b(g, ϵ) + αγ|h(x2,y2,u(x2,y2))−h(x1,y1,u(x1,y1))|

Γ(β)Γ(δ)

×
x2∫
0

y2∫
0

sα−1tγ−1f(x2,y2,s,t,u(s,t))
(xα−sα)1−β(yγ−tγ)1−δ dt ds+ |h(x1,y1,u(x1,y1))|

Γ(1+β)Γ(1+δ)
[aαβbγδwa,b

1 (f, ϵ;λ0)

+ {n̄(a, b)ϕ(λ0) + f̄1(a, b)}{3ϵαβbγδ + 2ϵγδaαβ}]
≤ wa,b(g, ϵ) +

αγ{m(x2,y2)|u(x2,y2)−u(x1,y1)|+wa,b
1 (h,ϵ)}

Γ(β)Γ(δ)

×
x2∫
0

y2∫
0

sα−1tγ−1{n(x2,y2)ϕ(|u(s,t)|)+f1(x2,y2)}
(xα−sα)1−β(yγ−tγ)1−δ dt ds+ m(x1,y1)|u(x1,y1)|+|h(x,y,0)|

Γ(1+β)Γ(1+δ)

× [aαβbγδwa,b
1 (λ, ϵ;λ0) + {n̄(a, b)ϕ(λ0) + f̄1(a, b)}{3ϵαβbγδ + 2ϵγδaαβ}]

≤ wa,b(g, ϵ) + wa,b(u,ϵ)
Γ(1+β)Γ(1+δ)

{m(x2, y2)n(x2, y2)x
αβ
2 yγδ2 ϕ(λ0)

+m(x2, y2)f1(x2, y2)x
αβ
2 yγδ2 }+ wa,b

1 (h,ϵ)aαβbγδ

Γ(1+β)Γ(1+δ)
{n̄(a, b)ϕ(λ0) + f̄1(a, b)}

+ m̄(a,b)λ0+h̄(a,b)
Γ(1+β)Γ(1+δ)

[aαβbγδwa,b
1 (f, ϵ;λ0) + {n̄(a, b)ϕ(λ0) + f̄1(a, b)}{3ϵαβbγδ

+ 2ϵγδaαβ}]
≤ wa,b(g, ϵ) + Pϕ(p0)+Q

Γ(1+β)Γ(1+δ)
wa,b(u, ϵ) +

wa,b
1 (h,ϵ)aαβbγδ

Γ(1+β)Γ(1+δ)

× {n̄(a, b)ϕ(λ0) + f̄1(a, b)}+ m̄(a,b)λ0+f̄(a,b)
Γ(1+β)Γ(1+δ)

[aαβbγδwa,b
1 (f, ϵ;λ0)

+ {n̄(a, b)ϕ(λ0) + f̄1(a, b)}{3ϵαβbγδ + 2ϵγδaαβ}], (3.8)
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Similarly, when α > 1 and obtained estimate (3.3), we get
|(V u)(x2, y2)− (V u)(x1, y1)|
≤ wa,b(g, ϵ) + Pϕ(λ0)+Q

Γ(1+β)Γ(1+δ)
wa,b(u, ϵ) +

wa,b
1 (h,ϵ)aαβbγδ

Γ(1+β)Γ(1+δ)

× {n̄(a, b)ϕ(λ0) + f̄1(a, b)}+ m̄(a,b)λ0+f̄(a,b)
Γ(1+β)Γ(1+δ)

[aαβbγδwa,b
1 (f, ϵ;λ0)

+ {n̄(a, b)ϕ(λ0) + f̄1(a, b)}{3ϵαβbγδαβ + 2ϵγδaαβγδ}], (3.9)

where
wa,b

1 (h, ϵ) = sup{|h(x2, y2, u) − h(x1, y1, u)| : x1, x2 ∈ [0, a]; y1, y2 ∈ [0, b]; |x2 − x1| ≤ ϵ; |y2 − y1| ≤
ϵ;u ∈ [−λ0, λ0]},
m̄(a, b) = max{m(x, y) : (x, y) ∈ [0, a]× [0, b]},
h̄(a, b) = max{h(x, y, 0) : (x, y) ∈ [0, a]× [0, b]}.

Now, by the uniform continuity of the function f = f(x, y, s, t, u) on J × J × [−λ0, λ0] and the
uniform continuity of the function h = h(x, y, u) on J × [−λ0, λ0], it has been concluded from both
the estimates (3.8) and (3.9) that

wa,b
0 (V X) ≤ kwa,b

0 (X).

Consequently,
w0(V X) ≤ kw0(X). (3.10)

Now linking equations (3.7) and (3.10), we get

µ(V X) ≤ kµ(X), (3.11)

Further let us construct a nonempty, bounded, closed and convex set S, for which the sequence
(Bn

λ0
) has been constructed, where B1

λ0
= ConvV (Bλ0), B

2
λ0

= ConvV (B1
λ0
).... . Obviously all sets of

this sequence are nonempty, bounded, convex and closed. A part from this it has been observed that
Bn+1

λ0
⊂ Bn

λ0
⊂ Bλ0 for n = 1, 2, 3, .... . Thus, applying k < 1 and taking into account equation (3.11),

it has been concluded that limn→∞ µ(Bn
λ0
) = 0. Hence, using the axiom (vi) of Definition (2.1), the

set S =
⋂∞

n=1B
n
λ0

is nonempty, bounded, convex and closed. However, by the remark 1, S ∈ ker µ.
In particular,

lim
x→∞

sup diam S(x, y) = lim
x→∞

diam S(x, y) = 0, (3.12)

for each fixed y ∈ [0, b]. It has been witnessed that the operator V maps S into itself and also V is
continuous on the set S.
Let us fix ϵ > 0 and suppose u, v ∈ S be arbitrary functions such that ∥u− v∥ ≤ ϵ. Then by linking
(3.12) and V S ⊂ S it has been derived that there exists a, b > 0 such that for an arbitrary x ≥ a, it
follows

|(V u)(x, y)− (V v)(x, y)| ≤ ϵ. (3.13)

Further, take (x, y) ∈ J . Then, proceeding as above, we obtain
|(V u)(x, y)− (V v)(x, y)|

≤ αγm(x,y)|u(x,y)−v(x,y)|
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1{n(x,y)ϕ(|u(s,t)|)+f1(x,y)}
(xα−sα)1−β(yγ−tγ)1−δ dt ds

+ αγ{m(x,y)|v(x,y)|+|h(x,y,0)|}n(x,y)
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1ϕ(|u(s,t)−v(s,t)|)
(xα−sα)1−β(yγ−tγ)1−δ dt ds

≤ αγ{m(x,y)n(x,y)ϕ(λ0)+m(x,y)f1(x,y)}ϵ
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ
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+ αγ{m(x,y)n(x,y)λ0+|h(x,y,0)|n(x,y)}ϕ(ϵ)
Γ(β)Γ(δ)

x∫
0

y∫
0

sα−1tγ−1dt ds
(xα−sα)1−β(yγ−tγ)1−δ

≤ p(x, y)ϕ(λ0) + q(x, y)

Γ(1 + β)Γ(1 + δ)
ϵ+

p(x, y)λ0 + r(x, y)

Γ(1 + β)Γ(1 + δ)
ϕ(ϵ) ≤ Pϕ(λ0) +Q

Γ(1 + β)Γ(1 + δ)
ϵ+

Pλ0 +R

Γ(1 + β)Γ(1 + δ)
ϕ(ϵ).

Now, connecting (3.13) and (3.14) with the assumption (H4), it has been concluded that the operator
V is a self continuous mapping from the set S into itself.
Lastly, by the classical Schauder fixed point principle, it has been concluded that V has at least one
fixed point u in the set S . Let us observe that the function u = u(x, y) is a solution of the quadratic
fractional integral equation (1.1) by the Lemma (3.1).
By using Definition (2.3), we deduce that

lim
x→∞

(u(x, y)− v(x, y)) = 0,

for each fixed y ∈ [0, b]. Consequently, equation (1.1) has a solution and all solutions are uniformly
locally attractive on R+ × [0, b].
□

Remark 3.3. The behavior of solution can be analysed from the fact that as S ∈ kerµ where S is a
nonempty bounded convex and closed subset, then by the remark 2 we can conclude that the thickness
of the bundle formed by solutions of equation (1.1) from S tends to zero at infinity.

4. Numerical Example

Example 4.1. Consider the following quadratic fractional integral equation of fractional order:

u(x, y) = e−(x2+y2) +
5

3
(
x+ y + x

2
3y

2
3u(x, y)

Γ(3
4
)Γ(4

5
)

)

x∫
0

y∫
0

s1/3t1/4(e−5xy−3st
√
u(s, t) + 1

7x5/3y5/3
)

(x4/3 − s4/3)1/4(y5/4 − t5/4)1/5
dt ds, (4.1)

where (x, y) ∈ R+ × [0, 1].
The above equation is a particular case of equation (1.1).

g(x, y) = e−(x2+y2),

h(x, y, u) = x+ y + x
2
3y

2
3u(x, y),

f(x, y, s, t, u) = e−5xy−3st
√

u(s, t) +
1

7x5/3y5/3
,

α = 4/3, β = 3/4, γ = 5/4, δ = 4/5

which satisfied the assumptions of Theorem 3.2. Obviously the function g(x, y) satisfy assumption
(H1) with ∥g∥ = e0 = 1 .
Further, observe that the assumption (H2) is satisfied with m(x, y) = x2/3y2/3 and |h(x, y, 0)| = x+y.
Moreover, from assumption (H3), we have

|f(x, y, s, t, u)− f(x, y, s, t, v)| ≤ e−5xy|
√
u−

√
v|.

Since
|u− v| = |

√
u−

√
v||

√
u+

√
v|
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i.e., |
√
u−

√
v| = |u− v|

|
√
u+

√
v|

i.e., |
√
u−

√
v| < |u− v|.

Observe that the function f(x, y, s, t, u) satisfies assumption (H3) with

n(x, y) = e−5xy,

ϕ(λ) =
√
λ,

and

f1(x, y) = f(x, y, s, t, 0) =
1

7x5/3y5/3
.

Also
p(x, y) = x5/3y5/3e−5xy,

q(x, y) =
1

7
,

r(x, y) = (x+ y)xye−5xy,

s(x, y) =
x+ y

7x2/3y2/3
.

Let us observe that p(x, y) → 0 as x → ∞ and P = (1/3)5/3e−5/3 = 0.030267... . It is also seen that
the function q(x, y) is constant on R+ × [0, 1] and Q = 0.142857... . Let us see that r(x, y) → 0 as
x → ∞ and R = 2(3/10)3/2e−3/2 = 0.073328... . Also, we check that s(x, y) → 0 as x → ∞ and
S = 0.22907.... .
Finally, the inequality from the assumption (H5) comes in the form

e0 +
1

Γ(7/4)Γ(9/5)
[Pλ3/2 +Qλ+Rλ1/2 + S] ≤ λ.

Let us write the inequality in the form:

Γ(7/4)Γ(9/5) + Pλ3/2 +Qλ+Rλ1/2 + S ≤ λ Γ(7/4)Γ(9/5). (4.2)

Let us denote the left-hand side of this inequality by L(λ), i.e.,

L(λ) = Γ(7/4)Γ(9/5) + Pλ3/2 +Qλ+Rλ1/2 + S.

Here, keeping in mind the above established values of the constants P,Q,R, S for λ = 2, we obtain

L(2) = Γ(7/4)Γ(9/5) + 0.08562 + 0.28572 + ....

Hence, it has been observed that λ0 = 2 is a solution of the inequality (4.2), since Γ(7/4) ≃ 0.9197
and Γ(9/5) ≃ 0.9322.
Moreover,

Q ≃ 0.14286.. < Γ(7/4)Γ(9/5).

Thus, on the basis of the Theorem 3.2, equation (4.1) has at least one solution in the space BC(R+×
[0, 1]) which belongs to the ball Bλ0. Moreover, solutions of equation (4.1) are uniformly locally
attractive in the sense of Definition (2.3) which means that for arbitrary solutions u(x, y) and v(x, y)
of equation (4.1) belonging to Bλ0 for each fixed y ∈ [0, 1], we have that

lim
x→∞

(u(x, y)− v(x, y)) = 0,

uniformly with respect to the ball Bλ0 .
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5. Conclusion

In this work we have derived the sufficient condition for the existence of solution of a quadratic
fractional integral equation in two variables on an unbounded interval. Also we have shown that the
the solutions are uniformly locally attractive. Finally, an example has been given to substantiate the
result.
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