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Abstract

In this paper, we establish a proof for a necessary condition for multiple objective fractional pro-
gramming. In order to derive the set of necessary conditions, we employ an equivalent parametric
problem. Also, we present the related semi parametric model.
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1. Introduction

Suppose that An is the n-fold product of the σ−algebra A of the subsets of a given set X. Fi, Gi,
i ∈ p ≡ {1, 2, . . . , p}, Hj, j ∈ m ≡ {1, 2, . . . ,m}, are real valued functions defined on An. Also for
each i ∈ p, Gi(S) > 0 for all S ∈ An such that Hj(S) 5 0, for all j ∈ m.

Consider the following multi-objective fractional subset programming problem:

(P) Minimize :
(

F1(S)
G1(S)

, F2(S)
G2(S)

, . . . , Fp(S)

Gp(S)

)
Subject to : Hj(S) 5 0, j ∈ m, S ∈ An,

The point-function counterparts of (P) are known in the area of mathematical programming as
multi-objective fractional programming problems. These problems have been the focus of interest in
the past few years, which has resulted in numerous publications such as [14]. For more information
about general multi-objective problems with point-functions see [3, 15, 16].
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In the area of subset programming, multi-objective problems have been investigated in [4, 7], and
multi-objective fractional problems in [5, 6]. Much attention has been paid to analysis of optimization
problems with set functions, for example see Chou [1], Corley [2], Kim [7], Lai and Lin[8], Lin
[9, 10, 11, 12], Liu [13], Morris [17], Preda [18, 19], Preda and Minasian [20, 21, 22] and Zalmai
[23, 24, 25].

In this paper, we first present a proof for necessary conditions on multiple objective fractional
programming. To this end, we employ an equivalent parametric problem. Then we give its semi
parametric model.

2. Preliminaries

In this section, we gather, for convenience of reference, a number of basic definitions and results that
will be used often throughout the sequel.

Let (X,A, µ) be a finite atomless measure space with L1(X,A, µ) separable, and let d be the
pseudo-metric on A′′ defined by

d(R, S) =

[
n∑

i=1

µ2(Ri∆Si)

]1/2
,

for all R = (R1, R2, . . . , Rn), S = (S1, S2, . . . , Sn) ∈ An, where ∆ denotes the symmetric difference;
thus (An, d) is a pseudo-metric space. For h ∈ L1(X,A, µ) and T ∈ A with characteristic function
χ

T
∈ L∞(X,A, µ), the integral

∫
T
hdµ will be denoted by 〈h, χ

T
〉.

The notion of differentiability was originally introduced by Morris [17] for set functions and
extended by Corley [2] for n-set functions.

Definition 2.1. A function F : A → R is said to be differentiable at S∗ if there exists DF (S∗) ∈
L1(X,A, µ), called the derivative of F at S∗, such that for each S ∈ A,

F (S) = F (S∗) + 〈DF (S∗), χ
S
− χ

S∗ 〉+ VF (S, S∗),

where VF (S, S∗) is o (d(S, S∗)), that is

lim
d(S,S∗)→0

VF (S, S∗)/d(S, S∗) = 0.

Definition 2.2. A functionG : An → R is said to have a partial derivative at S∗ = (S∗1 , S
∗
2 , . . . , S

∗
n) ∈

An with respect to its ith argument if the function F (Si) = G(S∗1 , . . . , S
∗
i−1, S

∗
i , S

∗
i+1, . . . , S

∗
n) has

derivative DF (S∗i ), i ∈ n; in that case, the ith partial derivative of G at S∗ is defined to be
DiG(S∗) = DF (S∗i ), i ∈ n. A function G : An → R is said to be differentiable at S∗ if all the
partial derivatives DiG(S∗) , i ∈ n exist and satisfy the following equation:

G(S) = G(S∗) +
n∑

i=1

〈
DGi(S

∗), χ
Si
− χ

S∗
i

〉
+WG(S, S∗),

where WG(S, S∗) is o (d(S, S∗)), for all S ∈ An.

Notation 2.3. For a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn, we denote by a = b, when
ai ≥ bi for 1 ≤ i ≤ n.
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3. The main results

In order to derive a set of necessary conditions for (P ), we employ a Dinkelbach-type [3] indirect
approach via the following auxiliary problem:

(Pλ) MinimizeS∈F (F1(S)− λ1G1(S), . . . , Fp(S)− λpGp(S)) ,

where λi, i ∈ p, are parameters. This problem is equivalent to (P) in the sense that for particular
choices of λi, i ∈ p, the two problems have the same set of efficient solutions. The equivalence is
stated more precisely in the following lemma.

Lemma 3.1. S∗ ∈ F is an efficient solution of (P) if and only if it is an efficient solution of (Pλ∗)
with λ∗i = Fi(S

∗)/Gi(S
∗), i ∈ p.

Proof . Straightforward. �

Theorem 3.2. Let Fi, Gi, for i ∈ p, and Hj for j ∈ q in S∗ be differentiable and for all i ∈ p, there

exists Ŝi such that
Hj(S

∗) +
n∑

k=1

〈DkHj(S
∗), χ

Ŝi
k

− χ
Sk

∗ 〉 < 0, j ∈ q,

n∑
k=1

〈DkFl(S
∗)− λ∗lDkGl(S

∗), χ
Ŝl
k

− χ
Sk

∗ 〉 < 0, l ∈ p \ {i}.
(I)

If S∗ is an efficient solution of (P) and λ∗i = Fi(S
∗)/Gi(S

∗), for i ∈ p, then there exist u∗ ∈ U ={
u ∈ Rn : u > 0,

p∑
i=1

ui = 1

}
and v∗ ∈ Rq

+ such that

n∑
k=1

〈
p∑

i=1

u∗i [DkFi(S
∗)− λ∗iDkGi(S

∗)] +

q∑
j=1

v∗jDkHj(S
∗), χ

Sk
− χ

S∗
k

〉
= 0,

and for all S ∈ An, v∗jHj(S
∗) = 0, j ∈ q.

Proof . Suppose that S∗ be a solution for (P). Consider the following inequalities system:
(i)

n∑
k=1

〈DkFi(S
∗)− λ∗iDkGi(S

∗), χ
Sk
− χ

S∗
k
〉 < 0,

(ii) Hj(S∗) +
n∑

k=1

〈DkHj(S
∗), χ

Sk
− χ

S∗
k
〉 < 0, j ∈ q.

(II)

We show that for each S ∈ An, the system (II) has no solution. By a contradiction, suppose
that there exists S ∈ An that is a solution for (P). We may rewrite system (II) as follows:

(i)

〈
n∑

k=1

(DkFi(S
∗)− λ∗iDkGi(S

∗)),
n∑

k=1

(χ
Sk
− χ

S∗
k
)

〉
< 0,

(ii) Hj(S∗) +

〈
n∑

k=1

〈DkHj(S
∗),

n∑
k=1

(χ
Sk
− χ

S∗
k
)

〉
< 0, j ∈ q.
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Since Hj for j ∈ q is differentiable, then we have:

Hj

(
S∗ + λ

[
n∑

k=1

(χ
Sk
− χ

S∗
k
)

])

= Hj(S
∗) + λ

〈
n∑

k=1

DkHj(S
∗),

n∑
k=1

(χ
Sk
− χ

S∗
k
)

〉
+ o(λ)

= (1− λ)Hj(S
∗) + λHj(S

∗) + λ

〈
n∑

k=1

(χ
Sk
− χ

S∗
k
)

〉
+ o(λ)

5 λ

(
Hj(S

∗) +

〈
n∑

k=1

DkHj(S
∗),

n∑
k=1

(χ
Sk
− χ

S∗
k
)

〉)
+ o(λ),

for all j ∈ q and 0 < λ < 1. Note that the last inequality follows from feasibility of S∗ and
0 < λ < 1.

From (ii) and by considering λ small enough, we obtain:(
Hj(S

∗) +

〈
n∑

k=1

DkHj(S
∗),

n∑
k=1

(χ
Sk
− χ

S∗
k
)

〉)
+
o(λ)

λ
< 0.

Since λ > 0, then

Hj

(
S∗ + λ

[
n∑

k=1

(χ
Sk
− χ

S∗
k
)

])
< 0.

So S∗ + λ

[
n∑

k=1

(χ
Sk
− χ

S∗
k
)

]
is feasible for (P).

On the other hand, since Fi, Gi, i ∈ p, are differentiable, if we set Ŝ := S∗ + λ

[
n∑

k=1

(χ
Sk
− χ

S∗
k
)

]
,

we have:(
F1(Ŝ)− λ∗1G1(Ŝ), . . . , Fp(Ŝ)− λ∗pGp(Ŝ)

)
=

(
F1(S

∗)− λ∗1G1(S
∗), . . . , Fp(S

∗)− λ∗pGp(S
∗)
)

+ λ

〈
n∑

k=1

(DkFi(S
∗)− λ∗iDkGi(S

∗)),
n∑

k=1

(χ
Sk
− χ

S∗
k
)

〉
+ o(λ).

By applying (i) and small enough λ, we get(
F1(Ŝ)− λ∗1G1(Ŝ), . . . , Fp(Ŝ)− λ∗pGp(Ŝ)

)
<
(
F1(S

∗)− λ∗1G1(S
∗), . . . , Fp(S

∗)− λ∗pGp(S
∗)
)
,

which is a contradiction by the fact that S∗ is a feasible solution. So that system (II) has no solution
S ∈ An. Then by Gordan’s Lemma, there exist 0 6= û ∈ Rp

+ and v̂ ∈ Rq
+ such that
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n∑
k=1

p∑
i=1

ûi〈DkFi(S
∗)− λ∗iDkGi(S

∗), χ
Sk
− χ

S∗
k
〉

+

q∑
j=1

v̂jHj(S
∗) +

q∑
j=1

n∑
k=1

v̂j〈DkHj(S
∗), χ

Sk
− χ

S∗
k
〉 = 0. (III)

The above inequality is satisfied for all S ∈ An, so if we let S := S∗, we obtain:

q∑
j=1

v̂jHj(S
∗) = 0.

On the other hand, v̂j = 0, for all j ∈ q, and S∗ is a feasible solution. Then

q∑
j=1

v̂jHj(S
∗) 5 0.

It follows that
q∑

j=1

v̂jHj(S
∗) = 0.

So (III) turns to
n∑

k=1

[
p∑

i=1

ûi〈DkFi(S
∗)− λ∗iDkGi(S

∗), χ
Sk
− χ

S∗
k
〉

+

q∑
j=1

n∑
k=1

v̂j〈DkHj(S
∗), χ

Sk
− χ

S∗
k
〉

]
= 0.

Then for all S ∈ An, we have:

n∑
k=1

〈
p∑

i=1

ûi[DkFi(S
∗)− λ∗iDkGi(S

∗)]

+

q∑
j=1

n∑
k=1

v̂jDkHj(S
∗), χ

Sk
− χ

S∗
k

〉
= 0.

Set

u∗i :=
ûi
p∑

i=1

ûi

, i ∈ p and v∗i :=
v̂i
p∑

i=1

ûi

, j ∈ q.

Note that

p∑
i=1

ûi > 0. Hence for all S ∈ An:

n∑
k=1

〈
p∑

i=1

u∗i [DkFi(S
∗)− λ∗iDkGi(S

∗)]

+

q∑
j=1

n∑
k=1

v∗jDkHj(S
∗), χ

Sk
− χ

S∗
k

〉
= 0,
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where 0 6= u∗ ∈ Rp
+ and v∗ ∈ Rq

+. Now we claim that u∗ > 0. By a contradiction suppose that there
exists h ∈ p such that u∗h = 0. By our hypothesis (I), for all i ∈ p,

Hj(S
∗) +

n∑
k=1

〈DkHj(S
∗), χ

Ŝi
k

− χ
S∗
k
〉 < 0, j ∈ q.

Furthermore, since for all j ∈ q, v̂j = 0, then

v̂jHj(S
∗) +

n∑
k=1

v̂j〈DkHj(S
∗), χ

Ŝi
k

− χ
S∗
k
〉 5 0, j ∈ q.

It follows that
q∑

j=1

v̂jHj(S
∗) +

q∑
j=1

n∑
k=1

〈DkHj(S
∗), χ

Ŝi
k

− χ
S∗
k
〉 5 0.

On the other hand, by considering (I), for all l ∈ p we get

n∑
k=1

〈Gl(S
∗)DkFl(S

∗)− Fl(S
∗)DkGl(S

∗), χ
Ŝl
k

− χ
S∗
k
〉 < 0,

and by the hypothesis u∗ 6= 0 we have

p∑
l=1,l 6=i

n∑
k=1

ûl〈Gl(S
∗)DkFl(S

∗)− Fl(S
∗)DkGl(S

∗), χ
Ŝl
k

− χ
S∗
k
〉 < 0.

This inequality holds for all i ∈ p and in particular, for i = h. Since we assumed that ûh = 0, we
obtain

p∑
i=1

n∑
k=1

ûi〈Gi(S
∗)DkFi(S

∗)− Fi(S
∗)DkGi(S

∗), χ
Ŝi
k

− χ
S∗
k
〉 < 0.

Whence we get the following inequality:

q∑
j=1

v̂jHj(S
∗) +

n∑
k=1

p∑
i=1

ûi〈DkFi(S
∗)− λ∗iDkGi(S

∗), χ
Ŝk
− χ

S∗
k
〉

+

q∑
j=1

n∑
k=1

v̂j〈DkHj(S
∗), χ

Ŝk
− χ

S∗
k
〉 < 0,

which contradicts (III). So u∗ > 0, whence u∗ ∈ U . �

The form and contents of the necessary efficiency conditions given in the above theorem are
used by Zalmai [26] to derive a number of semi-parametric sufficient efficiency criteria as well as for
constructing various duality models for (P).

This result is also applicable, when appropriately specialized to the following three classes of
problems with multiple, fractional and conventional objective functions, which are particular cases
of (P):

MinimizeS∈X : (F1(S), F2(S), . . . , Fp(S)) (P1)



A necessary condition for multiple objective . . . 8 (2017) No. 2, 201-207 207

MinimizeS∈X
F1(S)

G1(S)
(P2)

MinimizeS∈XF1(S) (P3)

where X (assumed to be nonempty) is the feasible set of (P), that is,

X = {S ∈ Λn : Hj(S) ≤ 0, j ∈ m}.
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