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Abstract

In this paper, using fixed point methods, we prove the fuzzy orthogonally ∗-n-derivation on orthog-
onally fuzzy C∗-algebra for the functional equation

f(
µx+ µy

2
+ µw) + f(

µx+ µw

2
+ µy) + f(

µy + µw

2
+ µx) = 2µf(x)− 2µf(y)− 2µf(w).
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1. Introduction

The stability problem of functional equations originated from the question of Ulam [20] concerning the
stability of group homomorphisms. Hyers [10] gave the first affirmative partial answer to the question
of Ulam for Banach spaces. Hyers’ theorem was generalized by Th.M. Rassias [17] for linear mappings
by considering an unbounded Cauchy difference. Park et al. proved stability homomorphisms and
derivations in Banach algebras, Banach ternary algebras, C∗-algebras, Lie C∗-algebras and C∗-ternary
algebras [11, 15, 16]. The stability problems of several functional equations have been extensively
investigated by a number of authors, and there are many interesting results concerning this problem
[4, 8, 9, 12, 18].

In the follwing, we review the basic definitions of orthogonally sets [2, 6] and the definition of
fuzzy normed spaces [7, 13], which can be consider the main definition of our paper.
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Definition 1.1. Let X ̸= ∅ and ⊥ ⊆ X × X be an binary relation. If ⊥ satisfies the following
condition

∃x0; (∀y; y⊥x0) or (∀y;x0⊥y),

then X is called an orthogonally set (briefly O-set). We denote this O-set by (X,⊥).

Definition 1.2. Let (X,⊥) be an orthogonally space. A function f : X → X is called ⊥-preserving,
if x ⊥ y, then f(x) ⊥ f(y) for all x, y ∈ X.

Definition 1.3. Let (X,⊥) be an O-set. A sequence {xn}n∈N is called orthogonally sequence (briefly
O-sequence) if

(∀n;xn⊥xn+1) or (∀n;xn+1⊥xn).

Definition 1.4. Let (X,⊥, d) be an orthogonally metric space (i.e, (X,⊥) is an O-set and (X, d)
is a metric space), then f : X → X is ⊥−continuous at a ∈ X if for each O-sequence {an}n∈N in X,
an → a,implies f(an) → f(a). Also, f is ⊥−continuous on X if f is ⊥−continuous at each a ∈ X.

It is abvious to see that every continuous mapping is ⊥−continuous.

Definition 1.5. Let (X,⊥, d) be an orthogonally metric space, then X is orthogonally complete
(briefly O-complete) if every Cauchy O-sequence is convergent.

Every complete metric space is O-complete, but the converse is not true.

Definition 1.6. Let (X,⊥, d) be an orthogonally metric space and 0 < λ < 1. A mapping f : X →
X is said to be orthogonality contraction with Lipschitz constant λ if

d(fx, fy) ≤ λd(x, y) if x⊥y.

Definition 1.7. Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on
X if d satisfies the following conditions:
(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.8. [2] Let (X, d,⊥) be an O-complete generalized metric space and 0 ≤ λ < 1. Let
T : X → X be ⊥-preserving, ⊥-continuous and ⊥-λ-contraction. Consider the “O-sequence of
successive approximations with initial element x0 ”: x0, T (x0), T 2(x0), ..., T n(x0), ... . Then,
either d(T n(x0), T

n+1(x0)) = ∞ for all n ≥ 0, or there exists a positive integer n0 such that
d(T n(x0), T

n+1(x0)) < ∞ for all n ≥ n0. If the second alternative holds, then
i) the O-sequence of {T n(x0)} is convergent to a fixed point x∗ of T .
ii) x∗ is the unique fixed point of T in X∗ = {y ∈ X : d(T n(x0), y) < ∞}.
iii) d(y, x∗) ≤ 1

1−λ
d(y, T (y)) for all y ∈ X∗.

In the follwing, we use the definition of fuzzy normed spaces to investigate a fuzzy version of the
Hyers-Ulam stability for the functional equation in the fuzzy normed algebra setting [1, 3, 14, 19].
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Definition 1.9. Let X be a vector space. A function N : X ×R → [0, 1] is called a fuzzy norm on
X if
(N1) N(x, t) = 0 for all x ∈ X and t ∈ R with t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all x ∈ X and t > 0;
(N3) N(cx, t) = N(x, t

|c|) for all x ∈ X and c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)} for all x, y ∈ X and s, t ∈ R;
(N5) N(x, .) is a non-decreasing function of R and limt→∞N(x, t) = 1 for all x ∈ X and t ∈ R;
(N6) for all x ∈ X with x ̸= 0, N(x, .) is continuous on R.
The pair (X,N) is called a fuzzy normed vector space.

Definition 1.10. Let (X,⊥, N) be a orthogonally fuzzy normed vector space. A sequence {xn} in
X is said to be convergent to a point x ∈ X or converges if there exists x ∈ X such that

limn→∞N(xn − x, t) = 1

for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N −
limn→∞xn = x.

Definition 1.11. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called
Cauchy if, for each ϵ > 0 and t > 0, there exists an n0 ∈ N such that for all n ≥ n0 and all p > 0,
we have N(xn+p − xn, t) > 1− ϵ.

It is well-known that every convergent sequence in a fuzzy normed vector space is a Cauchy
sequence. If each Cauchy sequence is convergent, then the fuzzy normed vector space is said to be
complete and the complete fuzzy normed vector space is called a fuzzy Banach space. We say that a
mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at a point x0 ∈ X if,
for each sequence {xn} converging to x0 ∈ X, the sequence f(xn) converges to f(x0). If f : X → Y
is continuous at each x ∈ X, then f : X → Y is said to be continuous on X.

Definition 1.12. A fuzzy normed algebra (X,N) is a fuzzy normed space (X,N) with the algebraic
structure such that
(N7) N(xy, ts) ≥ N(x, t)N(y, s) for all x, y ∈ X and t, s > 0.

Every normed algebra (X, ||.||) defines a fuzzy normed algebra (X,N), where N is defined by

N(x, t) =
t

t+ ||x||

for all t > 0. This space is called the induced fuzzy normed algebra.

Definition 1.13. Let (X,N) and (Y,N) be fuzzy normed algebras.
(1) A C-linear mapping f : X → Y is called a homomorphism if

f(xy) = f(x)f(y)

for all x, y ∈ X.
(2) An C-linear mapping f : X → X is called a derivation if

f(xy) = f(x)y + xf(y)

for all x, y ∈ X.
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Definition 1.14. Let (U,N) be a fuzzy Banach algebra. Then an involution on U is a mapping
u → u∗ from U into U which satisfies the following:
(a) u∗∗ = u for any u ∈ U ;
(b) (αu+ βv)∗ = αu∗ + βv∗;
(c) (uv)∗ = v∗u∗ for any u, v ∈ U .

If, in addition, N(u∗u, ts) = N(u, t)N(u, s) and N(u∗, t) = N(u, t) for all u ∈ U and t, s > 0, then U
is a fuzzy C∗-algebra.

2. Stability of ∗-n-derivation in orthogonally fuzzy C∗-algebras

Throughout this section, assume that (A, ∥.∥1,⊥1) with norm NA and a⊥1b if ab∗ = b∗a = 0 is
an orthogonally fuzzy C∗-algebras. For any mapping f : A → A, we define

∆µf(x, y, w) :=f(
µx+ µy

2
+ µw) + f(

µx+ µw

2
+ µy) + f(

µy + µw

2
+ µx)

− 2µf(x)− 2µf(y)− 2µf(w)
(2.1)

for all µ ∈ T1 := {v ∈ C : |v| = 1} and x, y, w ∈ A with x ⊥ y, y ⊥ w and w ⊥ x. Note that a
C-linear mapping δ : A → A is called a fuzzy C∗-algebra derivation on fuzzy C∗-algebra if δ satisfies
the following

δ(xy) = yδ(x) + xδ(y) (2.2)

and

δ(x∗) = δ(x)∗ (2.3)

for all x; y ∈ A. We are going to investigate the generalized Hyers-Ulam stability of orthogonally
fuzzy C∗-algebra derivation on orthogonally fuzzy C∗-algebra for the functional equation

∆µf(x, y, w) := 0. (2.4)

For a given mapping f : A → A, we define

D(z1, z2, ..., zn) := f(z1z2...zn)− f(z1)z2z3...zn − z1f(z2)z3...zn−
...− z1z2...zn−1f(zn)

(2.5)

for all zi ∈ A, zi ⊥ zi+1.

Theorem 2.1. Let f : A → A be a mapping for which there are functions φ : An → [0,∞) such tha
there exists an L < 1

2
with

φ(
x1

2
,
x2

2
, ...,

xn

2
) ≤ Lφ(x1, x2, ..., xn)

2
(2.6)

NA(∆µf(x1, x2, x3), t) ≥
t

t+ φ(x1, x2, x3, ..., 0)
(2.7)

NA(D(x1, x2, ..., xn), t) ≥
t

t+ φ(x1, x2, ..., xn)
(2.8)
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NA(f(x
∗)− f(x)∗, t) ≥ t

t+ φ(x, 0, ..., 0)
(2.9)

for all µ ∈ T, x1, x2, ..., xn ∈ A with xi⊥xi+1 and t > 0. Then there exists a unique fuzzy
orthogonally ∗-n-derivation δ : A → A such that

NA(f(x)− δ(x), t) ≥ (6− 6L)t

(6− 6L)t+ φ(x, x, ..., x)
(2.10)

for all x ∈ A and t > 0.

Proof . Putting µ = 1, x = x1 = x2 = x3 and x4 = ... = xn = 0 in (2.7), we have

NA(3f(2x)− 6f(x), t) ≥ t

t+ φ(x, x, x, ..., 0)
(2.11)

for all x ∈ A. So

NA(f(x)− 2f(
x

2
), t) ≥ 3t

3t+ φ(x
2
, x
2
, x
2
, ..., 0)

≥ 3t

3t+ L
2
φ(x, x, x, ..., 0)

(2.12)

for all x ∈ A. Consider the set X := {g : A → A} and define the generalized metric d on X, by

d(g, h) = inf{µ ∈ R+ : NA(g(x)− h(x), µt) ≥ t

t+ φ(x, x, x, ..., 0)
, ∀x ∈ A, t > 0}.

Now, we put the orthogonality relation ⊥ on X as follows

h ⊥ g ⇔ h(x) ⊥ g(x) or g(x) ⊥ h(x)

for all x ∈ A and g, h ∈ X. It is easy to show that (X, d,⊥) is an O-complete generalized metric
space.

Now, we consider the linear mapping T : X → X defined by Tg(x) = 2g(x
2
) for all x ∈ A. Let

g, h ∈ X with g ⊥ h be such that d(g, h) = ϵ. Then NA(g(x)− h(x), ϵt) ≥ t
t+φ(x,x,x,...,0)

for all x ∈ A
and t > 0. Hence

NA(Tg(x)− Th(x), Lϵt) = NA(2g(
x

2
)− 2h(

x

2
), Lϵt)

= NA(g(
x

2
)− h(

x

2
),
Lϵt

2
)

≥
Lt
2

Lt
2
+ φ(x

2
, x
2
, x
2
, ..., 0)

≥
Lt
2

Lt
2
+ Lφ(x,x,x,...,0)

2

=
t

t+ φ(x, x, x, ..., 0)

for all x ∈ A and t > 0. Thus d(g, h) = ϵ implies that d(Tg, Th) ≤ Lϵ. Hence we see that

d(Tg, Th) ≤ L d(g, h)

for all g, h ∈ X with g ⊥ h, that is, T is a strictly contractive self-mapping of X with the Lipschitz
constant L. Now, we show that T is ⊥-continuous. To this end, let {gn}n∈N be an O-sequence with
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gn ⊥ gn+1 or gn+1 ⊥ gn in (X, d,⊥) for all n ∈ N, which convergent to g ∈ X and let ϵ > 0 be given.
Then there exists N ∈ N and k ∈ R+ with k < ϵ such that

NA(gn(x)− g(x), kLt) ≥ t

t+ φ(x, x, x, ..., 0)

for all x ∈ A and n ≥ N and so

NA(2gn(
x

2
)− 2g(

x

2
), kLt) ≥ t

t+ φ(x
2
, x
2
, x
2
, ..., 0)

for all x ∈ A and n ≥ N . By inequality (2.6) and the definition of T , we get

NA(Tgn(x)− Tg(x), kLt) ≥ t

t+ φ(x, x, x, ..., 0)

for all x ∈ A and n ≥ N . Hence
d(T (gn), T (g)) ≤ kL < ϵ

for all n ≥ N . It follows that T is ⊥-continuous. It follows from (2.12) that

NA(f(x)− 2f(
x

2
),
Lt

2
) ≥ 3t

3t+ φ(x, x, x, ..., 0)
(2.13)

for all x ∈ A and all t > 0. This implies that d(f, Tf) ≤ L
6
. By Theorem 1.8, there exists a mapping

δ : A → A satisfying the following:
• δ is a fixed point of T , that is,

δ(
x

2
) =

δ(x)

2
(2.14)

for all x ∈ A. The mapping δ is a unique fixed point of T in the set Y = {h ∈ X : d(g, h) < ∞}.
This implies that δ is a unique mapping satisfying equation (2.14) such that there exists µ ∈ (0,∞)
satisfying

NA(g(x)−H(x), µt) ≥ t

t+ φ(x, x, x, ..., 0)
(2.15)

for all x ∈ X and t > 0.
• d(T nf, δ) → 0 as n → ∞. This implies the equality

N − lim
n→∞

2nf(
x

2n
) = δ(x) (2.16)

for all x ∈ X.
• d(f, δ) ≤ d(f,Tf)

1−L
with f ∈ X, which implies the inequality d(f, δ) ≤ L

6−6L
. This implies that the

inequality (2.22) holds. It follows from equations (2.7) and (2.16) that

NA(δ(
µx1 + µx2

2
+ µx3) + δ(

µx1 + µx3

2
+ µx2) + δ(

µx2 + µx3

2
+ µx1)

− 2µδ(x1)− 2µδ(x2)− 2µδ(x3), t)

= N − lim
n→∞

(2nf(
µx1 + µx2

2n+1
+

µx3

2n
) + 2nf(

µx1 + µx3

2n+1
+

µx2

2n
) + 2nf(

µx2 + µx3

2n+1
+

µx1

2n
)

− 2n+1µf(
x1

2n
)− 2n+1µf(

x2

2n
)− 2n+1fµf(

x3

2n
), t)

≥ lim
n→∞

t
2n

t
2n

+ φ(x1

2n
, x2

2n
, x3

2n
, ..., 0)

≥ lim
n→∞

t
2n

t
2n

+ Ln

2n
φ(x1, x2, x3, ..., 0)

→ 1
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for all µ ∈ T, x1, x2, ..., xn ∈ A and t > 0. Hence

δ(
µx1 + µx2

2
+ µx3) + δ(

µx1 + µx3

2
+ µx2) + δ(

µx2 + µx3

2
+ µx1)

− 2µδ(x1)− 2µδ(x2)− 2µδ(x3) = 0

for all x1, x2, ..., xn ∈ A. So the mapping δ : A → A is additive and C-linear. It follows from
equations (2.8) that

NA(2
n2

f(
x1x2...xn

2n2 )− 2nf(
x1

2n
)x2x3...xn − x12

nf(
x2

2n
)x3...xn − ...

− x1x2...xn−12
nf(

xn

2n
), 2n

2

t) ≥ t

t+ φ(x1

2n
, x2

2n
, ..., xn

2n
)

for all x1, x2, ..., xn ∈ A. Then

NA(2
n2

f(
x1x2...xn

2n2 )− 2nf(
x1

2n
)x2x3...xn − x12

nf(
x2

2n
)x3...xn − ...

− x1x2...xn−12
nf(

xn

2n
), t) ≥

t
22n

t
22n

+ Ln

2n
φ(x1

2n
, x2

2n
, ..., xn

2n
)

≥
t

22n

t
22n

+ Ln

2n
φ(x1, x2, ..., xn)

→ 1 when n → ∞

for all x1, x2, ..., xn ∈ A and t > 0. So δ(x1x2...xn) − δ(x1)x2x3...xn − x1δ(x2)x3...xn − ... −
x1x2...xn−1δ(xn) = 1 for all x1, x2, ..., xn ∈ A and t > 0. It follows from equation (2.8) that

NA(2
nf(

x

2n
∗
)− 2nf(

x

2n
)∗, 2nt) ≥ t

t+ φ( x
2n
, 0, ..., 0)

(2.17)

for all x ∈ A and t > 0. Then

NA(2
nf(

x

2n
∗
)− 2nf(

x

2n
)∗, t) ≥

t
2n

t
2n

+ φ( x
2n
, 0, ..., 0)

≥
t
2n

t
2n

+ Ln

2n
φ(x, 0, ..., 0)

(2.18)

for all x ∈ A and t > 0. Since limn→∞
t
2n

t
2n

+Ln

2n
φ(x,0,...,0)

= 1 for all x ∈ A and t > 0, we get

NA(δ(
x
2n

∗)− δ( x
2n
)∗, t) = 1 for all x ∈ A and t > 0. Thus δ( x

2n
∗) = δ( x

2n
)∗ for all x ∈ A.

Corollary 2.2. Let θ, p be non–negative real numbers with 0 < p < 1. Suppose that f : A → A is a
mapping, such that

NA(∆µf(x1, x2, x3), t) ≥
t

t+ θ(∥x1∥pA + ∥x2∥pA + ∥x3∥pA)
(2.19)

NA(D(x1, x2, ..., xn), t) ≥
t

t+ θ(∥x1∥pA∥x2∥pA...∥xn∥pA)
(2.20)

NA(f(x
∗)− f(x)∗, t) ≥ t

t+ θ(∥x∥pA)
(2.21)
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for all µ ∈ T, x1, x2, ..., xn ∈ A and t > 0 with and xi⊥xi+1. Then there exists a unique fuzzy
orthogonally ∗-n-derivation δ : A → A such that

NA(f(x)− δ(x), t) ≥ t

t+ θ(∥x∥pA)
(2.22)

for all x ∈ A and t > 0.

Proof . The proof follows from Theorem 2.1 by taking

φ(x1, x2, x3, t) := θ(∥x1∥pA + ∥x2∥pA + ∥x3∥pA)),

φ(x1, x2, ..., xn, t) :=
t

t+ θ(∥x1∥pA∥x2∥pA...∥xn∥pA)
for all x1, x2, x3 ∈ A with xi⊥xi+1. Then we can choose L = 2−p and so the desired conclusion
follows. □
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