Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 533-540 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.4835

Stability of fuzzy orthogonally *-n-derivation in orthogonally fuzzy C^* -algebras

Najmeh Ansari^a, Mohammad Hadi Hooshmand^{a,*}, Madjid Eshaghi Gordji^b, Khadijeh Jahedi^a

^aDepartment of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran ^bDepartment of Mathematics, Semnan University P.O. Box 35195-363, Semnan, Iran

(Communicated by Themistocles M. Rassias)

Abstract

In this paper, using fixed point methods, we prove the fuzzy orthogonally *-n-derivation on orthogonally fuzzy C^* -algebra for the functional equation

$$f(\frac{\mu x + \mu y}{2} + \mu w) + f(\frac{\mu x + \mu w}{2} + \mu y) + f(\frac{\mu y + \mu w}{2} + \mu x) = 2\mu f(x) - 2\mu f(y) - 2\mu f(w).$$

Keywords: Stability; Fixed point approach; *-*n*-derivation, Fuzzy C*-algebra. 2010 MSC: 39B82, 39B52.

1. Introduction

The stability problem of functional equations originated from the question of Ulam [20] concerning the stability of group homomorphisms. Hyers [10] gave the first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' theorem was generalized by Th.M. Rassias [17] for linear mappings by considering an unbounded Cauchy difference. Park et al. proved stability homomorphisms and derivations in Banach algebras, Banach ternary algebras, C^* -algebras, Lie C^* -algebras and C^* -ternary algebras [11, 15, 16]. The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem [4, 8, 9, 12, 18].

In the following, we review the basic definitions of orthogonally sets [2, 6] and the definition of fuzzy normed spaces [7, 13], which can be consider the main definition of our paper.

^{*}Corresponding author

Email addresses: n_ansari_91@yahoo.com (Najmeh Ansari), hooshmand@iaushiraz.ac.ir (Mohammad Hadi Hooshmand), meshaghi@semnan.ac.ir (Madjid Eshaghi Gordji), mjahedi80@yahoo.com (Khadijeh Jahedi)

Definition 1.1. Let $X \neq \emptyset$ and $\bot \subseteq X \times X$ be an binary relation. If \bot satisfies the following condition

$$\exists x_0; (\forall y; y \perp x_0) \ or \ (\forall y; x_0 \perp y),$$

then X is called an orthogonally set (briefly O-set). We denote this O-set by (X, \perp) .

Definition 1.2. Let (X, \bot) be an orthogonally space. A function $f : X \to X$ is called \bot -preserving, if $x \bot y$, then $f(x) \bot f(y)$ for all $x, y \in X$.

Definition 1.3. Let (X, \bot) be an O-set. A sequence $\{x_n\}_{n \in \mathbb{N}}$ is called orthogonally sequence (briefly O-sequence) if

$$(\forall n; x_n \perp x_{n+1})$$
 or $(\forall n; x_{n+1} \perp x_n)$.

Definition 1.4. Let (X, \bot, d) be an orthogonally metric space (i.e, (X, \bot) is an O-set and (X, d) is a metric space), then $f: X \to X$ is \bot -continuous at $a \in X$ if for each O-sequence $\{a_n\}_{n \in \mathbb{N}}$ in X, $a_n \to a$, implies $f(a_n) \to f(a)$. Also, f is \bot -continuous on X if f is \bot -continuous at each $a \in X$.

It is abvious to see that every continuous mapping is \perp -continuous.

Definition 1.5. Let (X, \bot, d) be an orthogonally metric space, then X is orthogonally complete (briefly O-complete) if every Cauchy O-sequence is convergent.

Every complete metric space is O-complete, but the converse is not true.

Definition 1.6. Let (X, \bot, d) be an orthogonally metric space and $0 < \lambda < 1$. A mapping $f : X \to X$ is said to be orthogonality contraction with Lipschitz constant λ if

$$d(fx, fy) \le \lambda d(x, y) \quad if \ x \bot y.$$

Definition 1.7. Let X be a set. A function $d : X \times X \to [0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all $x, y \in X$; (2) d(x, y) = d(y, x) for all $x, y \in X$; (3) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Theorem 1.8. [2] Let (X, d, \bot) be an O-complete generalized metric space and $0 \le \lambda < 1$. Let $T : X \to X$ be \bot -preserving, \bot -continuous and \bot - λ -contraction. Consider the "O-sequence of successive approximations with initial element x_0 ": x_0 , $T(x_0)$, $T^2(x_0)$, ..., $T^n(x_0)$, Then, either $d(T^n(x_0), T^{n+1}(x_0)) = \infty$ for all $n \ge 0$, or there exists a positive integer n_0 such that $d(T^n(x_0), T^{n+1}(x_0)) < \infty$ for all $n \ge n_0$. If the second alternative holds, then i) the O-sequence of $\{T^n(x_0)\}$ is convergent to a fixed point x^* of T. ii) x^* is the unique fixed point of T in $X^* = \{y \in X : d(T^n(x_0), y) < \infty\}$. iii) $d(y, x^*) \le \frac{1}{1-\lambda}d(y, T(y))$ for all $y \in X^*$.

In the following, we use the definition of fuzzy normed spaces to investigate a fuzzy version of the Hyers-Ulam stability for the functional equation in the fuzzy normed algebra setting [1, 3, 14, 19].

Definition 1.9. Let X be a vector space. A function $N : X \times \mathbb{R} \to [0,1]$ is called a fuzzy norm on X if $(N_1) \ N(x,t) = 0$ for all $x \in X$ and $t \in \mathbb{R}$ with $t \leq 0$; $(N_2) \ x = 0$ if and only if N(x,t) = 1 for all $x \in X$ and t > 0; $(N_3) \ N(cx,t) = N(x, \frac{t}{|c|})$ for all $x \in X$ and $c \neq 0$; $(N_4) \ N(x+y,s+t) \geq \min\{N(x,s), N(y,t)\}$ for all $x, y \in X$ and $s, t \in \mathbb{R}$; $(N_5) \ N(x,.)$ is a non-decreasing function of \mathbb{R} and $\lim_{t\to\infty} N(x,t) = 1$ for all $x \in X$ and $t \in \mathbb{R}$; (N_6) for all $x \in X$ with $x \neq 0$, N(x,.) is continuous on \mathbb{R} . The pair (X, N) is called a fuzzy normed vector space.

Definition 1.10. Let (X, \bot, N) be a orthogonally fuzzy normed vector space. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ or converges if there exists $x \in X$ such that

$$\lim_{n \to \infty} N(x_n - x, t) = 1$$

for all t > 0. In this case, x is called the limit of the sequence $\{x_n\}$ and we denote it by $N - \lim_{n\to\infty} x_n = x$.

Definition 1.11. Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is called Cauchy if, for each $\epsilon > 0$ and t > 0, there exists an $n_0 \in N$ such that for all $n \ge n_0$ and all p > 0, we have $N(x_{n+p} - x_n, t) > 1 - \epsilon$.

It is well-known that every convergent sequence in a fuzzy normed vector space is a Cauchy sequence. If each Cauchy sequence is convergent, then the fuzzy normed vector space is said to be complete and the complete fuzzy normed vector space is called a fuzzy Banach space. We say that a mapping $f: X \to Y$ between fuzzy normed vector spaces X and Y is continuous at a point $x_0 \in X$ if, for each sequence $\{x_n\}$ converging to $x_0 \in X$, the sequence $f(x_n)$ converges to $f(x_0)$. If $f: X \to Y$ is continuous at each $x \in X$, then $f: X \to Y$ is said to be continuous on X.

Definition 1.12. A fuzzy normed algebra (X, N) is a fuzzy normed space (X, N) with the algebraic structure such that $(N_{-}) N(m + t_{0}) \geq N(m + t_{0}) = 0$

 (N_7) $N(xy,ts) \ge N(x,t)N(y,s)$ for all $x, y \in X$ and t, s > 0.

Every normed algebra (X, ||.||) defines a fuzzy normed algebra (X, N), where N is defined by

$$N(x,t) = \frac{t}{t+||x||}$$

for all t > 0. This space is called the induced fuzzy normed algebra.

Definition 1.13. Let (X, N) and (Y, N) be fuzzy normed algebras. (1) A C-linear mapping $f : X \to Y$ is called a homomorphism if

$$f(xy) = f(x)f(y)$$

for all $x, y \in X$. (2) An C-linear mapping $f : X \to X$ is called a derivation if

$$f(xy) = f(x)y + xf(y)$$

for all $x, y \in X$.

Definition 1.14. Let (U, N) be a fuzzy Banach algebra. Then an involution on \mathcal{U} is a mapping $u \to u^*$ from \mathcal{U} into \mathcal{U} which satisfies the following: (a) $u^{**} = u$ for any $u \in \mathcal{U}$; (b) $(\alpha u + \beta v)^* = \overline{\alpha} u^* + \overline{\beta} v^*$; (c) $(uv)^* = v^* u^*$ for any $u, v \in \mathcal{U}$.

If, in addition, $N(u^*u, ts) = N(u, t)N(u, s)$ and $N(u^*, t) = N(u, t)$ for all $u \in \mathcal{U}$ and t, s > 0, then \mathcal{U} is a fuzzy C^* -algebra.

2. Stability of *-n-derivation in orthogonally fuzzy C^* -algebras

Throughout this section, assume that $(A, \|.\|_1, \perp_1)$ with norm N_A and $a \perp_1 b$ if $ab^* = b^*a = 0$ is an orthogonally fuzzy C^* -algebras. For any mapping $f : A \to A$, we define

$$\Delta_{\mu}f(x,y,w) := f(\frac{\mu x + \mu y}{2} + \mu w) + f(\frac{\mu x + \mu w}{2} + \mu y) + f(\frac{\mu y + \mu w}{2} + \mu x) - 2\mu f(x) - 2\mu f(y) - 2\mu f(w)$$
(2.1)

for all $\mu \in \mathbb{T}^1 := \{v \in \mathbb{C} : |v| = 1\}$ and $x, y, w \in A$ with $x \perp y, y \perp w$ and $w \perp x$. Note that a *C*-linear mapping $\delta : A \to A$ is called a fuzzy *C*^{*}-algebra derivation on fuzzy *C*^{*}-algebra if δ satisfies the following

$$\delta(xy) = y\delta(x) + x\delta(y) \tag{2.2}$$

and

$$\delta(x^*) = \delta(x)^* \tag{2.3}$$

for all $x; y \in A$. We are going to investigate the generalized Hyers-Ulam stability of orthogonally fuzzy C^* -algebra derivation on orthogonally fuzzy C^* -algebra for the functional equation

$$\Delta_{\mu} f(x, y, w) := 0. \tag{2.4}$$

For a given mapping $f: A \to A$, we define

$$D(z_1, z_2, ..., z_n) := f(z_1 z_2 ... z_n) - f(z_1) z_2 z_3 ... z_n - z_1 f(z_2) z_3 ... z_n - ... - z_1 z_2 ... z_{n-1} f(z_n)$$
(2.5)

for all $z_i \in A$, $z_i \perp z_{i+1}$.

Theorem 2.1. Let $f : A \to A$ be a mapping for which there are functions $\varphi : A^n \to [0, \infty)$ such that there exists an $L < \frac{1}{2}$ with

$$\varphi(\frac{x_1}{2}, \frac{x_2}{2}, ..., \frac{x_n}{2}) \le \frac{L\varphi(x_1, x_2, ..., x_n)}{2}$$
(2.6)

$$N_A(\Delta_\mu f(x_1, x_2, x_3), t) \ge \frac{t}{t + \varphi(x_1, x_2, x_3, ..., 0)}$$
(2.7)

$$N_A(D(x_1, x_2, ..., x_n), t) \ge \frac{t}{t + \varphi(x_1, x_2, ..., x_n)}$$
(2.8)

Stability of fuzzy orthogonally *-n-derivation 12 (2021) No. 1, 533-540

$$N_A(f(x^*) - f(x)^*, t) \ge \frac{t}{t + \varphi(x, 0, ..., 0)}$$
(2.9)

for all $\mu \in \mathbb{T}$, $x_1, x_2, ..., x_n \in A$ with $x_i \perp x_{i+1}$ and t > 0. Then there exists a unique fuzzy orthogonally *-n-derivation $\delta : A \to A$ such that

$$N_A(f(x) - \delta(x), t) \ge \frac{(6 - 6L)t}{(6 - 6L)t + \varphi(x, x, ..., x)}$$
(2.10)

for all $x \in A$ and t > 0.

Proof. Putting $\mu = 1$, $x = x_1 = x_2 = x_3$ and $x_4 = ... = x_n = 0$ in (2.7), we have

$$N_A(3f(2x) - 6f(x), t) \ge \frac{t}{t + \varphi(x, x, x, ..., 0)}$$
(2.11)

for all $x \in A$. So

$$N_A(f(x) - 2f(\frac{x}{2}), t) \ge \frac{3t}{3t + \varphi(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \dots, 0)} \ge \frac{3t}{3t + \frac{L}{2}\varphi(x, x, x, \dots, 0)}$$
(2.12)

for all $x \in A$. Consider the set $X := \{g : A \to A\}$ and define the generalized metric d on X, by

$$d(g,h) = \inf\{\mu \in \mathbb{R}^+ : N_A(g(x) - h(x), \mu t) \ge \frac{t}{t + \varphi(x, x, x, ..., 0)}, \forall x \in A, t > 0\}.$$

Now, we put the orthogonality relation \perp on X as follows

$$h \perp g \iff h(x) \perp g(x) \text{ or } g(x) \perp h(x)$$

for all $x \in A$ and $g, h \in X$. It is easy to show that (X, d, \bot) is an O-complete generalized metric space.

Now, we consider the linear mapping $T: X \to X$ defined by $Tg(x) = 2g(\frac{x}{2})$ for all $x \in A$. Let $g, h \in X$ with $g \perp h$ be such that $d(g, h) = \epsilon$. Then $N_A(g(x) - h(x), \epsilon t) \ge \frac{t}{t + \varphi(x, x, x, \dots, 0)}$ for all $x \in A$ and t > 0. Hence

$$\begin{split} N_A(Tg(x) - Th(x), L\epsilon t) &= N_A(2g(\frac{x}{2}) - 2h(\frac{x}{2}), L\epsilon t) \\ &= N_A(g(\frac{x}{2}) - h(\frac{x}{2}), \frac{L\epsilon t}{2}) \\ &\geq \frac{\frac{Lt}{2}}{\frac{Lt}{2} + \varphi(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \dots, 0)} \\ &\geq \frac{\frac{Lt}{2}}{\frac{Lt}{2} + \frac{L\varphi(x, x, x, \dots, 0)}{2}} = \frac{t}{t + \varphi(x, x, x, \dots, 0)} \end{split}$$

for all $x \in A$ and t > 0. Thus $d(g, h) = \epsilon$ implies that $d(Tg, Th) \leq L\epsilon$. Hence we see that

$$d(Tg,Th) \le L \ d(g,h)$$

for all $g, h \in X$ with $g \perp h$, that is, T is a strictly contractive self-mapping of X with the Lipschitz constant L. Now, we show that T is \perp -continuous. To this end, let $\{g_n\}_{n \in \mathbb{N}}$ be an O-sequence with

537

 $g_n \perp g_{n+1}$ or $g_{n+1} \perp g_n$ in (X, d, \perp) for all $n \in \mathbb{N}$, which convergent to $g \in X$ and let $\epsilon > 0$ be given. Then there exists $N \in \mathbb{N}$ and $k \in \mathbb{R}^+$ with $k < \epsilon$ such that

$$N_A(g_n(x) - g(x), kLt) \ge \frac{t}{t + \varphi(x, x, x, ..., 0)}$$

for all $x \in A$ and $n \ge N$ and so

$$N_A(2g_n(\frac{x}{2}) - 2g(\frac{x}{2}), kLt) \ge \frac{t}{t + \varphi(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, ..., 0)}$$

for all $x \in A$ and $n \geq N$. By inequality (2.6) and the definition of T, we get

$$N_A(Tg_n(x) - Tg(x), kLt) \ge \frac{t}{t + \varphi(x, x, x, ..., 0)}$$

for all $x \in A$ and $n \ge N$. Hence

$$d(T(g_n), T(g)) \le kL < \epsilon$$

for all $n \ge N$. It follows that T is \perp -continuous. It follows from (2.12) that

$$N_A(f(x) - 2f(\frac{x}{2}), \frac{Lt}{2}) \ge \frac{3t}{3t + \varphi(x, x, x, ..., 0)}$$
(2.13)

for all $x \in A$ and all t > 0. This implies that $d(f, Tf) \leq \frac{L}{6}$. By Theorem 1.8, there exists a mapping $\delta : A \to A$ satisfying the following:

• δ is a fixed point of T, that is,

$$\delta(\frac{x}{2}) = \frac{\delta(x)}{2} \tag{2.14}$$

for all $x \in A$. The mapping δ is a unique fixed point of T in the set $Y = \{h \in X : d(g,h) < \infty\}$. This implies that δ is a unique mapping satisfying equation (2.14) such that there exists $\mu \in (0, \infty)$ satisfying

$$N_A(g(x) - H(x), \mu t) \ge \frac{t}{t + \varphi(x, x, x, ..., 0)}$$
(2.15)

for all $x \in X$ and t > 0.

• $d(T^n f, \delta) \to 0$ as $n \to \infty$. This implies the equality

$$N - \lim_{n \to \infty} 2^n f(\frac{x}{2^n}) = \delta(x) \tag{2.16}$$

for all $x \in X$.

• $d(f, \delta) \leq \frac{d(f,Tf)}{1-L}$ with $f \in X$, which implies the inequality $d(f, \delta) \leq \frac{L}{6-6L}$. This implies that the inequality (2.22) holds. It follows from equations (2.7) and (2.16) that

$$\begin{split} N_A(\delta(\frac{\mu x_1 + \mu x_2}{2} + \mu x_3) + \delta(\frac{\mu x_1 + \mu x_3}{2} + \mu x_2) + \delta(\frac{\mu x_2 + \mu x_3}{2} + \mu x_1) \\ &- 2\mu\delta(x_1) - 2\mu\delta(x_2) - 2\mu\delta(x_3), t) \\ &= N - \lim_{n \to \infty} (2^n f(\frac{\mu x_1 + \mu x_2}{2^{n+1}} + \frac{\mu x_3}{2^n}) + 2^n f(\frac{\mu x_1 + \mu x_3}{2^{n+1}} + \frac{\mu x_2}{2^n}) + 2^n f(\frac{\mu x_2 + \mu x_3}{2^{n+1}} + \frac{\mu x_1}{2^n}) \\ &- 2^{n+1}\mu f(\frac{x_1}{2^n}) - 2^{n+1}\mu f(\frac{x_2}{2^n}) - 2^{n+1}f\mu f(\frac{x_3}{2^n}), t) \\ &\geq \lim_{n \to \infty} \frac{\frac{t}{2^n}}{\frac{t}{2^n} + \varphi(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}, ..., 0)} \geq \lim_{n \to \infty} \frac{\frac{t}{2^n} + \frac{L^n}{2^n}\varphi(x_1, x_2, x_3, ..., 0)} \to 1 \end{split}$$

for all $\mu \in \mathbb{T}$, $x_1, x_2, ..., x_n \in A$ and t > 0. Hence

$$\delta(\frac{\mu x_1 + \mu x_2}{2} + \mu x_3) + \delta(\frac{\mu x_1 + \mu x_3}{2} + \mu x_2) + \delta(\frac{\mu x_2 + \mu x_3}{2} + \mu x_1) - 2\mu\delta(x_1) - 2\mu\delta(x_2) - 2\mu\delta(x_3) = 0$$

for all $x_1, x_2, ..., x_n \in A$. So the mapping $\delta : A \to A$ is additive and C-linear. It follows from equations (2.8) that

$$N_A(2^{n^2}f(\frac{x_1x_2...x_n}{2^{n^2}}) - 2^n f(\frac{x_1}{2^n})x_2x_3...x_n - x_12^n f(\frac{x_2}{2^n})x_3...x_n - ...- x_1x_2...x_{n-1}2^n f(\frac{x_n}{2^n}), 2^{n^2}t) \ge \frac{t}{t + \varphi(\frac{x_1}{2^n}, \frac{x_2}{2^n}, ..., \frac{x_n}{2^n})}$$

for all $x_1, x_2, ..., x_n \in A$. Then

$$N_{A}(2^{n^{2}}f(\frac{x_{1}x_{2}...x_{n}}{2^{n^{2}}}) - 2^{n}f(\frac{x_{1}}{2^{n}})x_{2}x_{3}...x_{n} - x_{1}2^{n}f(\frac{x_{2}}{2^{n}})x_{3}...x_{n} - ...$$
$$- x_{1}x_{2}...x_{n-1}2^{n}f(\frac{x_{n}}{2^{n}}), t) \geq \frac{\frac{t}{2^{2n}}}{\frac{t}{2^{2n}} + \frac{L^{n}}{2^{n}}\varphi(\frac{x_{1}}{2^{n}}, \frac{x_{2}}{2^{n}}, ..., \frac{x_{n}}{2^{n}})}{\frac{t}{2^{2n}} + \frac{L^{n}}{2^{n}}\varphi(x_{1}, x_{2}, ..., x_{n})} \rightarrow 1 \quad when \quad n \rightarrow \infty$$

for all $x_1, x_2, ..., x_n \in A$ and t > 0. So $\delta(x_1 x_2 ... x_n) - \delta(x_1) x_2 x_3 ... x_n - x_1 \delta(x_2) x_3 ... x_n - ... - x_1 x_2 ... x_{n-1} \delta(x_n) = 1$ for all $x_1, x_2, ..., x_n \in A$ and t > 0. It follows from equation (2.8) that

$$N_A(2^n f(\frac{x}{2^n}^*) - 2^n f(\frac{x}{2^n})^*, 2^n t) \ge \frac{t}{t + \varphi(\frac{x}{2^n}, 0, ..., 0)}$$
(2.17)

for all $x \in A$ and t > 0. Then

$$N_A(2^n f(\frac{x}{2^n}^*) - 2^n f(\frac{x}{2^n})^*, t) \ge \frac{\frac{t}{2^n}}{\frac{t}{2^n} + \varphi(\frac{x}{2^n}, 0, ..., 0)} \ge \frac{\frac{t}{2^n}}{\frac{t}{2^n} + \frac{L^n}{2^n}\varphi(x, 0, ..., 0)}$$
(2.18)

for all $x \in A$ and t > 0. Since $\lim_{n\to\infty} \frac{\frac{t}{2^n}}{\frac{t}{2^n} + \frac{L^n}{2^n}\varphi(x,0,\dots,0)} = 1$ for all $x \in A$ and t > 0, we get $N_A(\delta(\frac{x}{2^n}) - \delta(\frac{x}{2^n})^*, t) = 1$ for all $x \in A$ and t > 0. Thus $\delta(\frac{x}{2^n}) = \delta(\frac{x}{2^n})^*$ for all $x \in A$.

Corollary 2.2. Let θ , p be non-negative real numbers with $0 . Suppose that <math>f : A \to A$ is a mapping, such that

$$N_A(\Delta_{\mu} f(x_1, x_2, x_3), t) \ge \frac{t}{t + \theta(\|x_1\|_A^p + \|x_2\|_A^p + \|x_3\|_A^p)}$$
(2.19)

$$N_A(D(x_1, x_2, ..., x_n), t) \ge \frac{t}{t + \theta(\|x_1\|_A^p \|x_2\|_A^p ... \|x_n\|_A^p)}$$
(2.20)

$$N_A(f(x^*) - f(x)^*, t) \ge \frac{t}{t + \theta(\|x\|_A^p)}$$
(2.21)

for all $\mu \in \mathbb{T}$, $x_1, x_2, ..., x_n \in A$ and t > 0 with and $x_i \perp x_{i+1}$. Then there exists a unique fuzzy orthogonally *-n-derivation $\delta : A \to A$ such that

$$N_A(f(x) - \delta(x), t) \ge \frac{t}{t + \theta(\|x\|_A^p)}$$
(2.22)

for all $x \in A$ and t > 0.

Proof. The proof follows from Theorem 2.1 by taking

$$\varphi(x_1, x_2, x_3, t) := \theta(\|x_1\|_A^p + \|x_2\|_A^p + \|x_3\|_A^p)),$$
$$\varphi(x_1, x_2, \dots, x_n, t) := \frac{t}{t + \theta(\|x_1\|_A^p \|x_2\|_A^p \dots \|x_n\|_A^p)}$$

for all $x_1, x_2, x_3 \in A$ with $x_i \perp x_{i+1}$. Then we can choose $L = 2^{-p}$ and so the desired conclusion follows. \Box

References

- R.P. Agarwal, Y.J. Cho, R. Saadati and S. Wang, Nonlinear L-fuzzy stability of cubic functional equations, J. Inequal. Appl. 2012 (2012) 1–19.
- [2] A. Bahraini, G. Askari, M. Eshaghi Gordji, et al. Stability and hyperstability of orthogonally *-m-homomorphisms in orthogonally Lie C*-algebras: a fixed point approach, J. Fixed Point Theory Appl. 20 (2018) 1–12.
- [3] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003) 687–705.
- [4] M. Eshaghi-Gordji and S. Abbaszadeh, Stability of Cauchy-Jensen inequalities in fuzzy Banach spaces, Appl. Comput. Math. 11 (2012) 27–36.
- [5] M. Eshaghi Gordji, G. Askari, N. Ansari, G. A. Anastassiou and C. Park, Stability and hyperstability of generalized orthogonally quadratic ternary homomorphisms in non-Archimedean ternary Banach algebras: a fixed point approach, J. Comput. Anal. Appl. 21 (2016) 1–6.
- [6] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y.J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017) 569–578.
- [7] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992) 239–248.
- [8] P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010) 11–18.
- R. Gholami, G. AskariI and M. Eshaghi Gordji, Stability and hyperstability of orthogonally ring *-n-derivations and orthogonally ring *-n-homomorphisms on C*-algebras, J. Linear Topol. Alg. 7 (2018) 109–119.
- [10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222–224.
- [11] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968) 305–309.
- [12] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008) 567–572.
- [13] A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 159 (2008) 730–738
- [14] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inf. Sci. 178 (2008) 3791–3798.
- [15] C. Park, Lie *-homomorphism between Lie C*-algebra and Lie *-derrivation on Lie C*-algebra, J. Math. Anal. Appl. 15 (2004) 419–434.
- [16] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003) 91–96.
- [17] T.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978) 297–300.
- [18] D. Shin, C. Park and Sh. Farhadabadi, On the superstability of ternary Jordan C*-homomorphisms, J. Comput. Anal. Appl. 16 (2014) 964–973.
- [19] R. Thakur and S.K. Samanta, Fuzzy Banach algebra with Felbin's type fuzzy norm, J. Fuzzy Math. 18 (2011) 943–954.
- [20] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964.