Int. J. Nonlinear Anal. Appl.

Volume 12, Special Issue, Winter and Spring 2021, 71-82

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/IJNAA.2021.4845

Coefficient Bounds of m-Fold Symmetric Bi-Univalent Functions for Certain Subclasses

Nihad Hameed Shehab ^{a*}, Abdul Rahman S. Juma^b

(Communicated by Dr. Ehsan Kozegar)

Abstract

In this article, the authors introduce two new subclasses of a class m-fold symmetric biunivalent functions in open unit disk. Coefficient bounds for the Taylor-Maclaurin coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ are are obtain. Furthermore, we solve Fekete-Szegö functional problems for functions in $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$ and $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Also, several certain special improver results for the associated classes are presented.

Keywords: Analytic functions , Bi-Univalent functions , Fekete-Szeg \ddot{o} coefficient , Taylor-Maclaurin series, Univalent functions .

1. Introduction

Indicate by A the class of normalized functions satisfying the condition f(0) = f'(0) - 1 = 0 and given by next Taylor expansion :

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad , \quad z \in \mathbb{D}$$
 (1.1)

which are analytic in the open unit disk $D = \{z \in \mathbb{C} and |z| < 1\}$, where \mathbb{C} is complex plane. Further, let \mathcal{H} indicate the class of all functions in \mathcal{A} which are univalent in open unit disk. The Koebe one

Email address: nih19u2012@uoanbar.edu.iq, ORCID : https://orcid.org/0000-0002-7017-4490

eps.abdulrahman.juma@uoanbar.edu.iq

Mobile : 009647807209830 (Nihad Hameed Shehab a* , Abdul Rahman S. Juma b)

Received: October 2020 accepted: Jaunary 2021

^aDepartment of Mathematics; College of Education for Pure Sciences; University of Anbar; Anbar; Iraq.

^bDepartment of Mathematics ;College of Education for Pure Sciences ;University of Anbar ;Anbar ; Iraq.

^{*}Corresponding Author: Nihad Hameed Shehab

– Quarter Theorem [5] ensures that the image of $\mathbb D$ under every univalent function $f\in\mathcal H$ contains a disk of radius $\frac{1}{4}$. therefore, every univalent functions f has an inverse f^{-1} define $z=f^{-1}(f(z))$, $(z\in\mathbb D)$ and

$$\omega = f(f^{-1}(\omega)), \left(|\omega| < p_0(f); p_0(f) \geqslant \frac{1}{4}\right)$$
 (1.2)

where

$$f^{-1}(\omega) = \omega - c_2 \omega^2 + (2c_2^2 - c_3)\omega^3 - (5c_2^3 - 5c_2c_3 + c_4)\omega^4 + \dots$$
 (1.3)

If both two functions f and f^{-1} are univalent in \mathbb{D} , $f \in A$ is known to be bi univalent functions. Indicate for the class of bi-univalent functions in \mathbb{D} by \sum , which are normalized by (1.1) .Let f and g be two analytic functions in \mathbb{D} . A function f is subordinate to g if there exist \hbar be a Schwarz analytic function in \mathbb{D} with $\hbar(0) = 0$ and $|\hbar(z)| < 1$, $(z \in \mathbb{D})$ satisfying the following condition:

$$f(z) = g(\tilde{h}(z))$$
 , $z \in \mathbb{D}$

This subordination is indicate by f < g or $f(z) < g(z), z \in \mathbb{D}$.

If the function g is univalent in , then f < g if and only if f(0) = g(0) and $f(D) \subset g(D)$ (see [20]).

Lewin [9] obtained a coefficient bound given by $|a_2| \leq 1.51$ for each $f \in \sum$ and investigated the class \sum of bi-univalent functions .Thereafter, stimulated by the working of Lewin[9], Clunie and Brannan [3] guessing that $|a_2| \leq \sqrt{2}$ for each $f \in \sum$.

Actully , in recent years Srivastava et al.[16] have actually enliver the study of bi-univalent and analytic functions, by Bulut [4] it was followed by such work, Adegani and et al.[1], Guney et al. [6], Srivastava and Wanas [12] and other (see, for example [2, 8,13,14,15,17,18,19]) . We notice that the class \sum is note empty . For example , the functions $z, \frac{z}{1-z}, -log(1-z)$ and $\frac{1}{2}log\frac{1+z}{1-z}$ are members of \sum . However, the Koebe functions is note a member of . Until now , the coefficient estimate problem for each the following Taylor-Maclaurin coefficients $|a_n|, (n \in N = \{1, 2, 3, 4, \ldots, \}, n \geqslant 3)$, for functions $f \in \sum$ is as yet an open problem (see ,for specifics,[16]) . For all $f \in \mathcal{H}$, the function p define by $f(z) = \sqrt[m]{f(z^m)}$ $f(z) \in \mathbb{R}$

For all $f \in \mathcal{H}$, the function p define by $p(z) = \sqrt[m]{f(z^m)}$ $(m \in N = \{1, 2, 3, \dots\})$ is maps and univalent in \mathbb{D} into region with m-fold symmetry. A function is called m-fold symmetric (see [10],[11]) if the condition of normalized is hold and written as the form:

$$f(z) = z + \sum_{j=1}^{\infty} a_{mj+1} z^{mj+1}$$
 , $(m \in N = \{1, 2, 3, \dots\}, z \in \mathbb{D}).$ (1.4)

The class m-fold symmetric univalent functions indicate by \mathcal{H}_m and which are normalized by above series expansion (1.4). in particular if m=1, the function in class \mathcal{H} are one-fold symmetric. Similar to the notion of m-fold symmetric, one can think of the notion of m-fold symmetric biunivalent functions in a normal way. For all positive integer m, each function f in the class \sum creates an m-fold symmetric biunivalent function. The normalized form of f is define as in (1.4) and f^{-1} is define as follows:

$$g(\omega) = \omega - c_{m+1}\omega^{m+1} + [(m+1)c_{2m+1}^2 - c_{2m+1}]\omega^{2m+1} - [\frac{1}{2}(m+1)(3m+1)c_{m+1}^3 - (3m+1)c_{m+1}c_{2m+1}]\omega^{3m+1} + \dots$$
(1.5)

where $g=f^{-1}$. The class m-fold symmetric biunivalent functions denoted by \sum_m . For m=1, the formula (1.5) synchronized with the formula (1.3) of the class \sum . Indicate by ς of the class function of the form :

$$h(z) = 1 + h_1 z + h_2 z^2 + \dots \quad (z \in \mathbb{D})$$

such that

$$Re(h(z)) > 0 \quad (z \in \mathbb{D}).$$

Pommerenke [10] in see of his working, a symmetric m-fold function h in the class ς of the form

$$h(z) = 1 + d_m z^m + d_{2m} z^{2m} + d_{3m} z^{3m} \dots (1.6)$$

Throughout our present investigation , it is assumed that analytic function ϑ with positive real part in \mathbb{D} such that $\vartheta(0)=0$ and and $\vartheta(\mathbb{D})$ is symmetric with regard to the real part . Such a function has a series expansion of the form:

$$\vartheta(z) = 1 + A_1 z + A_2 z^2 + A_3 z^3 + \dots, \quad (A_1 > 0)$$
(1.7)

Let two analytic functions t(z) and $u(\omega)$ in \mathbb{D} with

$$t(0) = u(0) \text{ and } max|t(z)|, |u(\omega)| < 1.$$

Assume that

$$t(z) = b_m z^m + b_{2m} z^{2m} + b_{3m} z^{3m} + \dots (1.8)$$

$$u(\omega) = d_m \omega^m + d_{2m} \omega^{2m} + d_{3m} \omega^{3m} + \dots$$
 (1.9)

Observe that

$$|b_m| \le 1, |b_{2m}| \le 1 - |b_m|^2, |d_m| \le 1, |d_{2m}| \le 1 - |d_m|^2. \tag{1.10}$$

By simple computations, we have

$$\vartheta(t(z)) = 1 + A_1 b_m z^m + A_2 b_{2m} z^{2m} + A_2 b_m^2 z^{2m} + \dots, \quad (|z| < 1)$$
(1.11)

$$\vartheta(u(\omega)) = 1 + A_1 d_m \omega^m + A_2 d_{2m} \omega^{2m} + A_2 d_m^2 \omega^{2m} + \dots, \quad (|\omega| < 1)$$
(1.12)

In this work, two new classes of m-fold biunivalent functions are introduced for this classes and obtain boundary for the Taylor-Maclauain coefficients $|c_{m+1}|$ and $|c_{2m+1}|$. Also, in this two new classes Fekete-Szegö functional problems for afunctions are presented.

2. The function class $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$

Definition1. Let f(z) be a function, given in (1.4) ,be in the class $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$ if satisfied the following conditions $f \in \sum_{m'} \left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(\frac{zf'(z) + \mu z^2 f''(z)}{(1-\mu)f(z) + \mu z f'(z)}\right) < \vartheta(z)$, where $z \in \mathbb{D}$, $0 \le \mu \le 1$ and $\gamma \ge 0$, and

Note that the particular cases of above class

- 1- when m=1 reduce to the classes $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)=\mathcal{F}_{\sum,1}(\gamma,\mu,\vartheta)$.
- 2- when m = 1, $\gamma = 0$ and $\mu = 0$ reduce to the classes $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta) = \mathcal{F}_{\sum,1}(0,0,\vartheta)$ introduce to the class starlike function [7].
- 3) when $m = 1, \gamma = 0$ and $\mu = 0$ reduce to the classes $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta) = \mathcal{F}_{\sum,1}(1,0,\vartheta)$ introduce to the class convex function [7].

The next Theorem prove to a class $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$.

Theorem1. Let f(z) be a function, define by (1.4), in the class $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$ Then:

 $|c_{m+1}| \leqslant$

$$\frac{A_1\sqrt{2A_1}}{\sqrt{|[2m^2(1-\mu^2m-\mu)+2m^2(\mu\gamma m+\mu m+2\gamma)+m(2\mu+\gamma^2-\gamma)]A_1^2-2m^2(1+\mu m+\gamma)^2A_2|+(1+\mu m+\gamma)^2A_1}}$$
(2.1)

and

 $|c_{m+1}| \leqslant$

$$\begin{cases}
\frac{(m+1)A_{1}}{[2m^{2}(1-\mu^{2}m-\mu)+2m^{2}(\mu\gamma m+\mu m+2\gamma)+m(2\mu+\gamma^{2}-\gamma)]}; if|A_{2}| \leqslant A_{1} \\
\frac{(m+1)[|2m^{2}(1-\mu^{2}m-\mu)+2m^{2}(\mu\gamma m+\mu m+2\gamma)+m(2\mu+\gamma^{2}-\gamma)A_{1}^{2}-2m^{2}(1+\mu m+\gamma)^{2}A_{2}|]A_{1}+(m+1)(1+\mu m+\gamma)^{2}|A_{2}|A_{1}\rangle}{[2m^{2}(1-\mu^{2}m-\mu)+2m^{2}(\mu\gamma m+\mu m+2\gamma)+m(2\mu+\gamma^{2}-\gamma)]|2m^{2}(1-\mu^{2}m-\mu)+2m^{2}}; if|A_{2}| > A_{1} \\
\frac{(\mu\gamma m+\mu m+2\gamma)+m(2\mu+\gamma^{2}-\gamma)A_{1}^{2}-2m^{2}(1+\mu m+\gamma)^{2}A_{2}|+(1+\mu m+\gamma)^{2}A_{1}}{(2.2)}
\end{cases}$$

Proof. Let $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$. Then there is two analytic functions $t:\mathbb{D}\mathfrak{B}\mathbb{D}$ and $u:\mathbb{D}\mathfrak{B}\mathbb{D}$ with t(0)=u(0)=0, satisfying the next conditions:

$$\left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(\frac{zf'(z) + \mu z^2 f''(z)}{(1-\mu)f(z) + \mu z f'(z)}\right) = \vartheta(t(z)),\tag{2.3}$$

and

$$\left(\frac{\omega g'(\omega)}{g(\omega)}\right)^{\gamma} \left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1 - \mu)g(\omega) + \mu \omega g'(\omega)}\right) = \vartheta(u(\omega)), \quad (g(\omega) = f^{-1}(\omega)) \tag{2.4}$$

We get

$$\left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(\frac{zf'(z) + \mu z^{2}f''(z)}{(1-\mu)f(z) + \mu zf'(z)}\right) = 1 + m(1+\mu m+\gamma)c_{m+1}z^{m} + 2m(1+2\mu m+\gamma)c_{2m+1}z^{2m} - \left[m(\mu m+1)^{2} - m^{2}\gamma(\mu m+1) - \frac{1}{2}m(\gamma^{2} - 3\gamma)\right]c_{m+1}^{2}z^{2m} + \dots$$
(2.5)

and

$$\left(\frac{\omega g'(\omega)}{g(\omega)}\right)^{\gamma} \left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1-\mu)g(\omega) + \mu \omega g'(\omega)}\right) = 1 - m(1+\mu m+\gamma)c_{m+1}\omega^m - 2m(1+2\mu m+\gamma)c_{2m+1}\omega^{2m} + \left[m(2m+1)^2 - \mu m(2m^2 - \mu m^2 + 2) + \gamma m^2(1+\mu m) + 2m(1+m) + \frac{1}{2}m(\gamma^2 - 3\gamma)\right]c_{m+1}^2\omega^{2m} + \dots$$
(2.6)

from (1.11),(1.12),(2,5) and (2.6), we find that

$$m(1 + \mu m + \gamma)c_{m+1} = A_1 b_m, \tag{2.7}$$

$$2m(1+2\mu m+\gamma)c_{2m+1} - \left[m(\mu m+1)^2 - m^2\gamma(\mu m+1) - \frac{1}{2}m(\gamma^2 - 3\gamma)\right]c_{m+1}^2$$

$$= A_1 b_{2m} + A_2 b_m^2 (2.8)$$

$$-m(1+\mu m+\gamma)c_{m+1} = A_1 d_m \tag{2.9}$$

and

$$-2m(1+2\mu m+\gamma)c_{2m+1} + \left[m(2m+1)^2 + \gamma m^2(1+\mu m) + \mu m(2m^2 - \mu m^2 + 2) + 2m(1+m) + \frac{1}{2}m(\gamma^2 - 3\gamma)\right]c_{m+1}^2$$

$$= A_1d_{2m} + A_2d_m^2$$
(2.10)

From (2.7) and (2.9), we get

$$d_m = -b_m (2.11)$$

and

$$2m^2(1+\mu m+\gamma)^2c_{m+1}^2=A_1^2(b_m^2+d_m^2)$$

By adding (2.8) and (2.10) and, up on some calculations using (2.7) and (2.11), we obtain

$$\left[\left[2m^2(1 - \mu^2 m - \mu) + 2m^2(\mu\gamma m + \mu m + 2\gamma) + m(2\mu + \gamma^2 - \gamma) \right] A_1^2 - 2m^2(1 + \mu m + \gamma)^2 A_2 \right] c_{m+1}^2
= A_1^3(b_{2m} + d_{2m})$$
(2.12)

Moreover, the equations (2.11), (2.12), jointly with (1.10), yield

$$\left| \left[2m^2(1 - \mu^2 m - \mu) + m(\gamma^2 + 2\mu - \gamma) 2m^2(\mu\gamma m + \mu m + 2\gamma) \right] A_1^2 - 2m^2(1 + \mu m + \gamma)^2 A_2 \right| \\
\leq 2A_1^3(1 - |b_m|^2)$$
(2.13)

Now, from (2.7) and (2.13), we get

 $|c_{m+1}| \leqslant$

$$\frac{A_1\sqrt{2A_1}}{\sqrt{|[2m^2(1-\mu^2m-\mu)+m(2\mu+\gamma^2-\gamma)+2m^2(\mu\gamma m+\mu m+2\gamma)]A_1^2-2m^2(1+\mu m+\gamma)^2A_2|+(1+\mu m+\gamma)^2A_1}}$$
 as certain in (2.1).

Subtracting (2.10) from (2.8), and using (2.11) and (2.7), we get

$$\mu(2m^{2} - \mu m^{2} + 2) + (2m + 1) + \gamma m(\mu m + 1) + 2\gamma(m + 1) + \frac{1}{2}(\gamma^{2} - 3\gamma)A_{1}b_{2m}$$

$$+ \left[m^{2}\gamma(\mu m + 1) - m(\mu m + 1)^{2} - \frac{1}{2}m(\gamma^{2} - 3\gamma)\right]A_{1}d_{2m} + 2(m + 1)[1 + 2\mu m + \gamma]^{2}A_{2}b_{m}^{2}$$

$$= 4m^{2}[1 + \gamma + 2\mu m][1 + \mu m + \gamma]c_{2m+1}$$
(2.14)

Therefore, by using equation (1.10) in (2.14), we obtain

$$2m^{2}[1 + \mu m + \gamma][1 + \mu m + \gamma]|c_{2m+1}|$$

$$\leq \mu(2m^{2} - \mu m^{2} + 2) + (2m + 1) + \gamma m(\mu m + 1) + 2\gamma(m + 1) + \frac{1}{2}(\gamma^{2} - 3\gamma)A_{1}$$

$$- (2m + 1) + \mu(2m^{2} - \mu m^{2} + 2) + \gamma m(\mu m + 1) + 2(1 + m) + \frac{1}{2}(\gamma^{2} - 3\gamma)A_{1}|b_{m}|^{2}$$

$$= +(1 + m)(1 + 2\mu m + \gamma)|A_{2}||b_{m}|^{2}$$

$$(2.15)$$

Since

$$|b_m|^2 <$$

$$\frac{[1+\mu m+\gamma]^2 A_1}{\sqrt{|[2m^2(1-\mu^2 m-\mu)+m(2\mu+\gamma^2-\gamma)+2m^2(\mu\gamma m+\mu m+2\gamma)]A_1^2-2m^2(1+\mu m+\gamma)^2 A_2|+(1+\mu m+\gamma)^2 A_1}}{(2.16)}$$

Up on substituting from (2.16) into (2.15), we are led easily to the asertion (2.2) of Theorem 1.

In case of one-fold symmetric functions of Theorem we get the next results.

Corollary 1. Let f(z) be a function, define by (1.4), in the clas $\mathcal{F}_{\sum,1}(\gamma,\mu,\vartheta)$. Then

$$|c_2| \leqslant \frac{A_1\sqrt{2A_1}}{\sqrt{|[2(1-\mu^2-\mu)+2(\mu\gamma+\mu+2\gamma)+(2\mu+\gamma^2-\gamma)]A_1^2-2^2(1+\mu+\gamma)^2A_2|+(1+\mu+\gamma)^2A_1}}$$

and

$$|c_3| \leqslant$$

$$\begin{cases} \frac{2A_1}{[2(1-\mu^2-\mu)+2(\mu\gamma+\mu+2\beta)+(2\mu+\gamma^2-\gamma)]};if|A_2|\leqslant A_1\\ & \qquad \langle 2[|2(1-\mu^2-\mu)+2(\mu\gamma+\mu+2\gamma)\\ \frac{+(2\mu+\gamma^2-\gamma)A_1^2-2(1+\mu+\gamma)^2A_2|]A_1+2(1+\mu+\gamma)^2|A_2|A_1\rangle}{[2(1-\mu^2-\mu)+2(\mu\gamma+\mu+2\gamma)+(2\mu+\gamma^2-\gamma)]|2(1-\mu^2-\mu)+2(\mu\gamma+\mu+2\gamma)+\\ (2\mu+\gamma^2-\gamma)A_1^2-2(1+\mu+\gamma)^2A_2|+(1+\mu+\gamma)^2A_1} \end{cases};if|A_2|>A_1$$

Theorem2. Let f(z) be a function, define by (1.4), in the class $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$. Then

$$|c_{2m+1} - \lambda c_{m+1}^2| \le \begin{cases} \frac{A_1}{2m(1 + 2\mu m + \gamma)} & \text{for } 0 \le |q(\lambda)| < \frac{1}{4m(1 + 2\mu m + \gamma)} \\ 2A_1|q(\lambda)| & \text{for } |q(\lambda)| \ge \frac{1}{4m(1 + 2\mu m + \gamma)} \end{cases}$$
(2.17)

where

$$q(\lambda) = \frac{A_1^2(m+1-2\lambda)}{2[2m^2(1-\mu^2m-\mu)+m(2\mu+\gamma^2-\gamma)+2m^2(\mu\gamma m+\mu m+2\gamma)]A_1^2-2m^2(1+\mu m+\gamma)^2A_2}$$

$$c_{m+1}^2 = \frac{A_1^3(b_{2m}+d_{2m})}{[2m^2(1-\mu^2m-\mu)+2m^2(\mu m+\mu m\gamma^2+2\gamma)+m(2\mu+\gamma^2-\gamma)]A_1^2-2m^2(1+\mu m+\gamma)^2A_2}$$
(2.18)

Subtract (2.10) from (2.8), we get

$$c_{2m+1} = \frac{(m+1)A_1^2(b_m^2 + d_m^2)}{4m^2[1 + \mu m + \gamma]^2} + \frac{A_1(b_{2m} - d_{2m})}{4m[1 + 2\mu m + \gamma]}$$
(2.19)

From (2.18) and (2.19), it follows that

$$c_{2m+1} - \lambda c_{m+1}^2 = A_1 \left[\left(q(\lambda) + \frac{1}{4m[1 + 2\mu m + \gamma]} \right) b_{2m} + \left(q(\lambda) - \frac{1}{4m[1 + 2\mu m + \gamma]} \right) d_{2m} \right]$$
(2.20)

where

$$q(\lambda) = \frac{A_1^2(m+1-2\lambda)}{2[2m^2(1-\mu^2m-\mu)+m(2\mu+\gamma^2-\gamma)+2m^2(\mu\gamma m+\mu m+2\gamma)]A_1^2-2m^2(1+\mu m+\gamma)^2A_2}$$

Because each $A_i \in \mathbb{R}$ (real) and $A_i > 0$, this implies that get the equation (2.17).

In cases of onefold functions symmytric, Theorem2 reduces to the next .

Corollary 2. Let f(z) be a function, define by (1.4), in the class $\mathcal{F}_{\sum,1}(\gamma,\mu,\vartheta)$. Then

$$|c_3 - \lambda c_2| \le \begin{cases} \frac{A_1}{2(1 + 2\mu + \gamma)} & \text{for } 0 \le |q(\lambda)| < \frac{1}{4(1 + 2\mu + \gamma)} \\ 2A_1|q(\lambda)| & \text{for } |q(\lambda)| \ge \frac{1}{4(1 + 2\mu + \gamma)} \end{cases}$$

In Theorem 2 in case $\lambda = 1$, we get the following corollary

Corollary3. Let f(z) be a function, define by (.1.4), in a class $\mathcal{F}_{\sum,m}(\gamma,\mu,\vartheta)$. Then

$$|c_{2m+1} - c_{m+1}^2| \le \begin{cases} \frac{A_1}{2m(1 + 2\mu m + \gamma)} & \text{for } 0 \le |q(\lambda)| < \frac{1}{4m(1 + 2\mu m + \gamma)} \\ 2A_1|q(\lambda)| & \text{for } |q(\lambda)| \ge \frac{1}{4m(1 + 2\mu m + \gamma)} \end{cases}$$

In case of onefold symmyric, then Corollary3 reduces to the next Corollary.

Corollary4. Let f(z) be a function, define by (1.4), be in the class $\mathcal{F}_{\sum,1}(\beta,\mu,\vartheta)$. Then

$$|c_3 - c_2^2| \le \frac{A_1}{2(1 + 2\mu + \gamma)}$$

3. The function class $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$

Definition2. Let f(z) be a function, define by (1.4), in a class $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$ if satisfied next conditions $f \in \sum_{m'} \left(\frac{zf'(z)}{f(z)}\right)^{\kappa} \left((1-\eta)\frac{f(z)}{z} + \eta f'(z)\right) < \vartheta(z)$, where $z \in \mathbb{D}$, $0 \le \eta$ and $\kappa \ge 0$, and $\left(\frac{\omega g'(\omega)}{g(\omega)}\right)^{\kappa} \left((1-\eta)\frac{g(\omega)}{\omega} + \eta g'(\omega)\right) < \vartheta(\omega)$, $(g(\omega) = f^{-1}(\omega))$

where $g(\omega)$ be a function define by (1.5).

Note in above definiation in case m=1 the class $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$ reduce by $\mathcal{M}_{\sum,1}(\kappa,\eta,\vartheta)$.

Theorem3. Let f(z) be a function, define by $(\overline{1}.4)$, in the classe $\mathcal{M}_{\sum,m}(\overline{\kappa},\eta,\vartheta)$. Thens

$$|c_{m+1}| \leqslant$$

$$\frac{A_1\sqrt{2A_1}}{\sqrt{|(\kappa m(\eta m+2m+3)+(1+m)(1+2\eta m)+m(\kappa^2-3\kappa))A_1^2-2(1+m(\eta+\kappa)^2A_2|+2(1+m(\eta+\kappa)^2A_1}}$$
 (3.1)

and

$$\begin{cases}
\frac{(1+m)A_{1}}{(1+m)(1+2\eta m)+2m\kappa(m+1)+\frac{1}{2}m(\kappa^{2}-3\kappa)}; if B_{1} \leqslant \psi(B_{1}) \\
\frac{|(\kappa m(\eta m+2m+3)+m(\kappa^{2}-3\kappa)+(1+m)(1+2\eta m))A_{1}^{2}-}{2(1+m\kappa+m\eta)^{2}|A_{1}+(\kappa^{2}-3\kappa)+(1+m)(1+2\eta m))A_{1}^{3}}; if |A_{2}| > A_{1} \\
\frac{2(1+m\kappa+m\eta)^{2}|A_{1}+(\kappa^{2}-3\kappa)+(1+m)(1+2\eta m))A_{1}^{3}}{(1+2m(\eta+\kappa))a_{2m+1}+\left[\kappa m(1+\eta m)+\frac{1}{2}m(\kappa^{2}-3\kappa)\right]|(\kappa m(\eta m+2m+3)+m(\kappa^{2}-3\kappa)+(1+m)(1+2\eta m))A_{1}^{2}-2(1+m(\eta+\kappa))^{2}A_{2}|+2(1+m(\eta+\kappa))^{2}A_{1}}
\end{cases} (3.2)$$

where

$$\psi(A_1) = \frac{2(m\kappa + m\eta + 1)^2}{2m\kappa(m+1) + (1+m)(1+2\eta m) + \frac{1}{2}m(\kappa^2 - 3\kappa)}$$

Proof. Let $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Then there is two analytic functions $t:\mathbb{D}\to\mathbb{D}$ and $u:\mathbb{D}\to\mathbb{D}$ with t(0)=u(0)=0, such that satisfying the next conditions:

$$f \in \sum_{m'} \left(\frac{zf'(z)}{f(z)}\right)^{\kappa} \left((1-\eta)\frac{f(z)}{z} + \eta f'(z)\right) < \vartheta(t(z))$$
(3.3)

and

$$\left(\frac{\omega g^{'}(\omega)}{g(\omega)}\right)^{\kappa} \left((1-\eta)\frac{g(\omega)}{\omega} + \eta g^{'}(\omega)\right) < \vartheta(\omega), \quad (g(\omega) = f^{-1}(\omega))$$
(3.4)

Since

$$\left(\frac{zf'(z)}{f(z)}\right)^{\kappa} \left((1-\eta)\frac{f(z)}{z} + \eta f'(z)\right) = 1 + (1+m(\eta+\kappa))c_{m+1}z^{m} + (1+2m(\eta+\kappa))c_{2m+1}z^{2m} + \left[\kappa m(\eta m+1) + \frac{1}{2}m(\kappa^{2}-3\kappa)\right]c_{m+1}^{2}z^{2m} + \dots$$

and

$$\left(\frac{\omega g'(\omega)}{g(\omega)}\right)^{\kappa} \left((1-\eta)\frac{g(\omega)}{\omega} + \eta g'(\omega)\right) = 1 - (1+m(\eta+\kappa))c_{m+1}\omega^{m} + (1+2m(\eta+\kappa))c_{2m+1}\omega^{2m} + \left[(1+m)(1+2\eta m) + 2m\kappa(1+m) + \frac{1}{2}m(\kappa^{2}-3\kappa)\right]c_{m+1}^{2}\omega^{2m} + \dots$$

Now, from (1.11), (1.12), (3.3) and (3.4) we obtain

$$(1 + m\kappa + m\eta)c_{m+1} = A_1b_m \tag{3.5}$$

$$(1 + 2m(\eta + \kappa))c_{2m+1} + \left[\frac{1}{2}m(\kappa^2 - 3\kappa) + \kappa m(1 + \eta m)\right]c_{m+1}^2 = A_1b_{2m} + A_2b_m^2$$
 (3.6)

$$-(1+m\kappa+m\eta)c_{m+1} = A_1 d_m (3.7)$$

and

$$-(1+2m(\eta+\kappa))c_{2m+1} + \left[(1+m)(1+2\eta m) + 2m\kappa(1+m) + \frac{1}{2}m(\kappa^2 - 3\kappa) \right] c_{m+1}^2 = A_1 d_{2m} + A_2 d_m^2$$
(3.8)

From (3.5) and (3.7), we get

$$d_m = -d_m \tag{3.9}$$

adding (3.6) and (3.8) and up on some calculations use (3.5) and (3.9), we obtain

$$|(\kappa m(\eta m + 2m + 3) + (1+m)(1+2\eta m) + m(\kappa^2 - 3\kappa))A_1^2 - 2(1+m(\eta + \kappa)^2 A_2|a_{m+1}^2$$

$$= A_1^3(b_{2m} + d_{2m})$$
(3.10)

Also, from (3.9) and (3.10), jointly with (1.10), implies that

$$|(\kappa m(\eta m + 2m + 3) + (1+m)(1+2\eta m) + m(\kappa^2 - 3\kappa))A_1^2 - 2(1+m(\eta + \kappa)^2 A_2 | a_{m+1}^2 \le A_1^3 (1-|b_m^2|)$$
(3.11)

Now, from (3.5) and (3.11), conclude that

$$|c_{m+1}| \leqslant$$

$$\frac{A_1\sqrt{2A_1}}{\sqrt{|(\kappa m(\eta m+2m+3)+(1+m)(1+2\eta m)+m(\kappa^2-3\kappa))A_1^2-2(1+m(\eta+\kappa)^2A_2|+2(1+m(\eta+\kappa)^2A_1)}}$$

as asserted in (3.1).

Next, subtracting (3.8) from (3.6), we find

$$2(1 + 2m(\eta + \kappa))c_{2m+1} = [(1+m)(1+2\eta m) - m\kappa(1+\eta m) - \kappa m(1+\eta m) + 2\kappa m(m+1)]c_{m+1}^{2} + A_{1}(b_{2m} - d_{2m})$$
(3.12)

By using (1.10) and (3.5) in (3.12), if follows that

$$2(1 + 2m(\eta + \kappa))|c_{2m+1}| \le [2\kappa m(m+1) + (m+1)(1 + 2\eta m) + \kappa m(1 + \eta m)]|c_{m+1}^2| + A_1(|b_{2m}| - |d_{2m}|)$$

Which ,implies that in view (3.5).

By applying (3.1) in (3.13), we get (3.2).

Theorem3 is complete.

Remark: in case one-fold symmetric functions, Theorem3 which we recall as next Corollary. Corollary5. Let f(z) be a function, define by (1.4), be in the classe $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Then

$$|c_{2}| \leqslant \frac{A_{1}\sqrt{2A_{1}}}{\sqrt{|(\kappa(\eta+5)+5(1+2\eta 5)+(\kappa^{2}-3\kappa))A_{1}^{2}-2(1+\eta+\kappa)^{2}A_{2}|+2(1+\eta+\kappa)^{2}A_{1}}}$$
(3.13)

and

$$\begin{cases} \frac{A_1}{(1+2\eta)+2\kappa+\frac{1}{4}m(\kappa^2-3\kappa)}; if|A_2| \leq \frac{(1+\eta+\kappa)^2}{(1+2\eta)+2\kappa+\frac{1}{4}m(\kappa^2-3\kappa)} \\ \frac{|(\kappa(\eta+5)+(\kappa^2-3\kappa)+2(1+2\eta))A_1^2-2(1+\eta+\kappa)^2A_2|A_12(1+2\eta)+4\kappa+\frac{1}{2}m(\kappa^2-3\kappa)A_1^3}{2(1+2\eta)+4\kappa+\frac{1}{2}(\kappa^2-3\kappa)|(\kappa(\eta+5)+(\kappa^2-3\kappa)+2(1+2\eta))A_1^2-2(1+\eta+\kappa)^2A_2|+2(1+\eta+\kappa)^2A_1}; \\ if|A_2| \leq \frac{(1+\eta+\kappa)^2}{(1+2\eta)+2\kappa+\frac{1}{4}m(\kappa^2-3\kappa)} \end{cases}$$

Theorem4. Let f(z) be a function, define by (1.4), in aclass $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Then

$$|c_{2m+1} - \lambda c_{m+1}^{2}| \leq \begin{cases} \frac{A_{1}}{(1 + 2m(\eta + \kappa)) + \left[\kappa m(\eta m + 1) + \frac{1}{2}(\kappa^{2} - 3\kappa)\right]} & \text{for } 0 \leq |q(\lambda)| < \frac{1}{2(1 + 2m(\eta + \kappa))} \\ 2A_{1}|q(\lambda)| & \text{for } |q(\lambda)| \geq \frac{1}{2(1 + 2m(\eta + \kappa))} \end{cases}$$

$$(3.14)$$

where

$$q(\lambda) = \frac{A_1^2(m+1-2\lambda)}{2[(\kappa m(\eta m+2m+3)+(1+m)(1+2\eta m)+m(\kappa^2-3\kappa))B_1^2-2(1+m(\eta+\kappa))^2B_2]}$$

Proof. Adding (3.6) and (3.8), we get

$$c_{m+1}^2 = \frac{A_1^3(b_{2m} + d_{2m})}{2[(\kappa m(\eta m + 2m + 3) + (1+m)(1+2\eta m) + m(\kappa^2 - 3\kappa))A_1^2 - 2(1+m(\eta + \kappa))^2 A_2]}$$
(3.15)

Subtract (3.8) from (3.6), we get

$$c_{2m+1} = \frac{(m+1)A_1^2(b_m^2 + d_m^2)}{2(1+m(\eta+\kappa))^2} + \frac{A_1(b_{2m} - d_{2m})}{2(1+2m(\eta+\kappa))}$$
(3.16)

From (3.15) and (3.16), it follows that

$$c_{2m+1} - \lambda c_{m+1}^2 = B_1 \left[\left(q(\lambda) + \frac{1}{2(1 + 2m(\eta + \kappa))} \right) b_{2m} + \left(q(\lambda) - \frac{1}{2(1 + 2m(\eta + \kappa))} \right) d_{2m} \right]$$
(3.17)

where

$$q(\lambda) = \frac{A_1^2(m+1-2\lambda)}{2[(\kappa m(\eta m+2m+3)+(1+m)(1+2\eta m)+m(\kappa^2-3\kappa))A_1^2-2(1+m(\eta+\kappa))^2A_2]}$$

Since all i are real and $A_1 > 0$, which implies the assertion (3.14).

In case of the one- fold symmytric function, Theorem 4 reduce to the next.

Corollary6. Let f(z) be the function, define by (1.4), in a classe $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Then

$$|c_{2m+1} - c_{m+1}^2| \le \begin{cases} \frac{A_1}{(1 + 2(\eta + \kappa)) + \left[\kappa(1 + \eta) + \frac{1}{2}(\kappa^2 - 3\kappa)\right]} & \text{for } 0 \le |q(\lambda)| < \frac{1}{2(1 + 2(\eta + \kappa))} \\ 2A_1|q(\lambda)| & \text{for } |q(\lambda)| \ge \frac{1}{2(1 + 2(\eta + \kappa))} \end{cases}$$

In Theorem in case $\lambda = 1$, we get the following corollary.

Corollary 7. Let f(z) be a function, define by (1.4), in a clas $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Then

$$|c_{2m+1} - c_{m+1}^2| \le \begin{cases} \frac{A_1}{(1 + 2m(\eta + \kappa)) + \left[\kappa m(1 + \eta m) + \frac{1}{2}m(\kappa^2 - 3\kappa)\right]} & \text{for } 0 \le |q(\lambda)| < \frac{1}{2(1 + 2m(\eta + \kappa))} \\ 2A_1|q(\lambda)| & \text{for } |q(\lambda)| \ge \frac{1}{2(1 + 2m(\eta + \kappa))} \end{cases}$$

In case of one-fold symmyric, then Corollary 7 reduces to the next Corollary.

Corollary 8. Let f(z) be a function, define by (1.4), in a class $\mathcal{M}_{\sum,m}(\kappa,\eta,\vartheta)$. Then

$$|c_3 - c_2^2| \le \frac{A_1}{(1 + \eta(2 + \kappa)) + \frac{1}{2}m(\kappa^2 + 3\kappa)}$$

4. Conclusions

We conclude from this study, in the case of applying the two new classes m-fold symmetric bi-univalent to the geometric functions, it was determine $|c_{m+1}|$ and $|c_{2m+1}|$ for all class m-fold symmetric bi-univalent, it is useful in complex analysis, also derived the Fekete-Szegö functional problems for functions are obtains and several many improver results for this two new classes are presented inside new open unit disk

References

- [1] E. A. Adegani, S. Bulut, A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions. Bulletin of the Korean Mathematical Society, 55(2), (2018)405-413.
- [2] S.Altınkaya, S. Yalçın , On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ . Boletín de la Sociedad Matemática Mexicana, 25(3),(2019) 567-575.
- [3] A. Baernstein, D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis. Analytic functions of bounded mean oscillation., (1980) 2-26.
- [4] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions. Turkish Journal of Mathematics, 40(6), (2016) 1386-1397.
- [5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo. (1983).
- [6] H. Ö. Güney, G. Murugusundaramoorthy, J. Sokół, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Universitatis Sapientiae, Mathematica, 10(1), (2018) 70-84.
- [7] M. Haji Mohd, M. Darus, Fekete-Szegö problems for quasi-subordination classes. In Abstract and Applied Analysis (Vol. 2012). Hindawi.(2012).
- [8] A. R. S. Juma, M. H. Saloomi, Coefficient Estimates for Subclasses of Regular Functions. Iraqi Journal of Science, (2018) 1710-1716.
- [9] M. Lewin, On a coefficient problem for bi-univalent functions. Proceedings of the American mathematical society, 18(1), (1967)63-68.

- [10] C. Pommerenke, On the coefficients of close-to-convex functions. The Michigan Mathematical Journal, 9(3), (1962) 259-269.
- [11] H. M. Srivastava ,N. Tuneski , E. Georgieva-Celakoska, Some distortion and other properties associated with a family of n-fold symmetric Koebe type functions, Austral. J. Math. Anal. Appl. 9 (2) , Article 1,(2012) 1–17.
- [12] H. M. Srivastava, A. K. Wanas, Initial Maclaurin Coefficient Bounds for New Subclasses of Analytic and m-Fold Symmetric Bi-Univalent Functions De-fined by a Linear Combination. Kyungpook Math. J, 59, (2019) 493-503.
- [13] H. M., Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society, 44(1),(2018) 149-157.
- [14] H. M., Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society, 44(1),(2018) 149-157...
- [15] H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Matematika, 28(5-6), (2017)693-706.
- [16] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions. Applied mathematics letters, 23(10),(2010) 1188-1192.
- [17] A. K. Wanas, A. L. Alina, Applications of Horadam Polynomials on Bazilevic Bi-Univalent Function Satisfying Subordinate Conditions. In Journal of Physics: Conference Series (Vol. 1294, No. 3, p. 032003). IOP Publishing. (2019, September).
- [18] A. K. Wanas, A. H. Majeed, Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Applied Mathematics E-Notes, 19,(2019) 14-21.
- [19] A. K. Wanas, S. Yalçın, Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric biunivalent functions. Malaya Journal of Matematik (MJM), 7(3, 2019), (2019). 472-476.
- [20] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters, 25(6), (2012)990-994.