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Abstract

In this article, the authors introduce two new subclasses of a class m-fold symmetric biunivalent
functions in open unit disk. Coefficient bounds for the Taylor-Maclaurin coefficients |a,,+1| and
|aam+1| are are obtain . Furthermore, we solve Fekete-Szegd functional problems for functions in
Fsm(v, 1, ¥) and Ms~ . (k,m,79) . Also, several certain special improver results for the associated
classes are presented .
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1. Introduction

Indicate by A the class of normalized functions satisfying the condition f(0) = f(0) —1 = 0 and
given by next Taylor expansion :

f(z):z—l—f:anz” , z€D (1.1)
n=2

which are analytic in the open unit disk D = {z € Cand|z| < 1}, where C is complex plane . Further,
let H indicate the class of all functions in A which are univalent in open unit disk . The Koebe one
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— Quarter Theorem [5] ensures that the image of D) under every univalent function f € #H contains

a disk of radius 1 therefore , every univalent functions f has an inverse f~! define z = f~1(f(2))

.(z € D)and

o= 17D, (el < mlPimth) > ) (12)
where
FHw) = w — cw? + (262 — c3)w® — (5¢3 — Beaes + cq)w* + ... (1.3)

If both two functionsf and f~! are univalent in D, f € Ais known to be bi univalent functions.
Indicate for the class of bi-univalent functions in D by ) ,which are normalized by (1.1) .Let f and
g be two analytic functions in D . A function f is subordinate to g if there exist h be a Schwarz
analytic function in D with #(0) = 0 and |h(z)| < 1, (2 € D)satisfying the following condition :

f(z) =g(h(z)) , =z€D

This subordination is indicate by f < g or f(z) < g(2), z € D.
If the function g is univalent in , thenf < g if and only if f(0) = g(0) and f(D) C g(D) (see [20] ) .
Lewin [9] obtained a coefficient bound given by |as| < 1.51 for each f € > and investigated the
class Y of bi-univalent functions .Thereafter, stimulated by the working of Lewin[9] , Clunie and
Brannan [3] guessing that |ay| < v/2 for each f € > .
Actully , in recent years Srivastava et al.[I6] have actually enlivev the study of bi-univalent and
analytic functions, by Bulut [4] it was followed by such work, Adegani and et al.[I], Guney et al. [6],
Srivastava and Wanas [I2] and other (see, for example [2, 8,13,14,15,17,18,19]) . We notice that the

z 1
class > is note empty . For example , the functions z, T —log(1—z)and §log1
j— Z j—
of > . However, the Koebe functions is note a member of . Until now , the coefficient estimate

problem for each the following Taylor-Maclaurin coefficients |a,|, (n € N = {1,2,3,4,....... ,n>3)
for functions f € > is as yet an open problem (see ,for specifics,[16]) .

For allf € H, the function p define byp(z) = ¥/ f(z™) (m € N ={1,2,3...... })is maps and
univalent in D into region with m-fold symmetry .Afunction is called m-fold symmetric (see [10],[11])
if the condition of normalized is hold and written as the form :

z
are members
z

f(Z) :Z+Zamj+lzmj+l ) (m eN= {172737""}’2 E]D) (14)

J=1

The class m-fold symmetric univalent functions indicate by H,, and which are normalized by above
series expansion (1.4) . in particular if m = 1, the function in class H are one-fold symmetric. Similar
to the notion of m-fold symmetric, one can think of the notion of m-fold symmetric biunivalent
functions in a normal way. For all positive integer m, each function f in the class ) creates an
m-fold symmetric biunivalent function. The normalized form of f is define as in (1.4) and f~! is
define as follows:

9(w) =w — ™ + (M +1)c3,, 41 — Compr W™ —

1
[a(m +1)Bm+ 1), — 3m+ L)emprcompr W™ + . (1.5)
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where g = f~ . The class m-fold symmetric biunivalent functions denoted by, . For m = 1, the
formula (1.5) synchronized with the formula (1.3) of the class ) . Indicate by ¢ of the class function
of the form :

h(z) =14+ hiz+hyz* +... (2 €D)
such that
Re(h(z)) >0 (z€D).
Pommerenke [I0] in see of his working, a symmetric m-fold function h in the class ¢ of the form
h(2) =1+ dpz™ + dop 2™ + dap2°™... (1.6)

Throughout our present investigation , it is assumed that analytic function ¥ with positive real part
in D such that ¥(0) = 0 and and J(ID) is symmetric with regard to the real part . Such a function
has a series expansion of the form:

V(2) =14+ Az 4+ A2 + As2® + ..., (A >0) (1.7)
Let two analytic functions ¢(z) and u(w) in D with
t(0) = u(0) and maz|t(z)|, |u(w)| < 1.
Assume that
t(2) = bp2™ + by 2™ 4 by 5™ + .. (1.8)
(W) = dpw™ + domw®™ + dgpw®™ + ..
Observe that
bl < 1, [bom| < 1= [binl?, [din| < 1 [dom| <1 = |din]*. (1.10)
By simple computations , we have

I(t(2)) = 1+ Ay 2™ + Agbgy 2®™ 4+ Ab2 22 + ..., (2] < 1) (1.11)
I(u(w)) = 1+ Adpw™ + Agdgmw®™ + Agd® W™ + ..., (Jw| < 1) (1.12)
In this work, two new classes of m-fold biunivalent functions are introduced for this classes and

obtain boundary for the Taylor-Maclauain coefficients |¢,,41| and |c,41| - Also, in this two new
classes Fekete-Szego functional problems for afunctions are presented .

2. The function class Fs (v, 1, 9)
Definitionl. Let f(z) be a function, given in (1.4) ,be in the classFy (7, 1, 7) if satisfied the

. . 2f N\ (2 (2) + uf ()
following conditions f € ) < 02) ) ((1 )+ p2f )
and v > 0, and

(c«)g'(uf))V <( wy' (w) + pw’g’ (w)

o) ) \T=— gl + uwgm) <OW),  (9) = (@)
where g() be a function define by (1.5) .

Note that the particular cases of above class

)<19(z),wherez€]1]),0§,u§1
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1- whenm = 1 reduce to the classes Fx (7, p, ¥) = Fy 1 (7, i, ).

2- when m =1,y = 0 and p = 0 reduce to the classes Fs~ (7, 1, 9) = Fx1(0, 0, 9)introduce to
the class starlike function [7].

3) when m = 1,7 = 0 and p = 0 reduce to the classes Fs (7, it,9) = Fx1(1,0,9) introduce to
the class convex function [7].

The next Theorem prove to a class Fs> (7, i, 0).
Theoreml. Let f(z) be a function, define by (1.4), in the classFs (7, i, ¥) Then:

‘Cm-&-l‘ g
A2AL
VIRm2(1 = p2m — ) + 2m2(uym + pm + 29) + m2u+~2 = 7)]AT = 2m2(1 + pm + 7)2 Ao| + (1 + pm + 7)2 A
(2.1)
and
|Cm+1| <
( m+1)A )
2 2 2( M 2 yif[ Al < Ax
[2m2(1 — p?m — p) + 2m? (uym + pm + 27y) + m(2p + 9% — )]
((m +D)[[2m*(1 — pPm — ) + 2m>(uym-+
pm + 29) +m(2p 4+~ =) A7 = 2m* (1 + pm + 7)* Aa[] Ay + (m + 1)(1 + pm + 7)?| 4| A1) A > A
[2m2(1 — p2m — ) + 2m2(pym + pm + 2v) + m (2 + 12 — Y)][2m2(L— p2m — p) +2m2 T
\ (pym + pm +2y) +m(2p + 7% = ) AT = 2m* (1 + pm +7)? Ag| + (1 + pm +7)* A
(2.2)

Proof . Let Fs (7, 1, 7). Then there is two analytic functions ¢ : DBD and v : DBD with ¢(0) =
u(0) = 0, satisfying the next conditions:

(M ) (( of (2) + 122 (2) ) _ 9(2)) (2.3)

f(2) 1—p)f(2) + pzf'(2)
and
wg' @)\ (_wg (W) +pig @) N _ o D
() (i sista) ~ 2w = 24
We get

(7)) (e

1
— {m(,um +1)% = m?y(um + 1) — §m(72 - 37)} 2+ (2.5)

) =1+ m(l+ pm +Y)cmer 2™ 4 2m(1 + 2um + ) comer 22"

and

<wg'(w)>7 (( wg (W) + pw’g’ (@)

g(w) 1= p)g(w) + pwg'(w)

) =1 —m(1+ pm +7)cmpw™ — 2m(1 + 2um + 7)o w™™

1
" {m(2m +1)? = pn(2m? = pm? 4 2) + ym? (L4 pm) + 2m(1+m) + 5m(y* = 37)| @™ +
(2.6)
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from (1.11),(1.12),(2,5) and (2.6), we find that

m(1+ pm + ¥)cmi1 = Arbp, (2.7)
2m(1 + 2pm + ) camir — |m(pm +1)% = m*y(um +1) — %m(’yz = 39) | Cpa
= Aybgy, + Agb?, (2.8)
—m(1 4+ pum+y)cmr1 = Ardp, (2.9)
and
—2m(1 + 2pm + ¥)Camy1
+ [m@2m 4+ 12 + ym?(1 + pm) + pm(2m? — pm? +2) + 2m(1 +m) + %m(vQ —37) c72n+1
= Aidoy + Asdl, (2.10)
From (2.7) and (2.9), we get
d,, = —b,, (2.11)

and
2m*(1+ pm +)*c, 1 = Aj(by, + dy)
By adding (2.8) and (2.10) and , up on some calculations using (2.7) and (2.11), we obtain

[[2m®(1 = pm — p) + 2m®(uym + pm + 29) + m(2u +7° = 7)]AT = 2m* (1 + pm +7)*As] ¢, 4,
= A} (bgy, + day) (2.12)

Moreover, the equations (2.11) , (2.12), jointly with (1.10), yield

|[2m?(1 = pPm — p) + m(y? + 2 — 7)2m* (prym + pm + 2)] A} = 2m*(1 + pm + 7)* Ay |
< 245(1 — [bn]?) (2.13)

Now, from (2.7) and (2.13), we get

lemt1] <

Ay/2A]
VIRm2(1 = p2m — p) + m2p + 72 =) + 2m2(pym + pm + 29)] A7 = 2m2(1 + pm + 7)2 Ag| + (1 + pm + 7)2 A

as certain in (2.1).
Subtracting (2.10) from (2.8), and using (2.11) and (2.7), we get

1
p(2m® — pm® 4 2) + (2m + 1) + ym(pm +1) + 2y(m + 1) + 5(v° = 37) Aaban,

1
+ | m*y(pm + 1) = m(pm +1)° = Sm(y* = 37) | Audag +2(m + 1)[1+ 2um + 1) Asby,

= 4m?[1 4+~ + 2um][1 + pum + v]comi1 (2.14)
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Therefore, by using equation (1.10) in (2.14) , we obtain
2m?[1 + pm +A][1 + pm + ]| camya]|

1
< p(2m? —pm? +2) + 2m + 1) +ym(pm + 1) + 2y(m + 1) + 5(72 —37)4;
1
— (2m + 1) + p(2m® — pm? + 2) + ym(um + 1) + 2(1 +m) + 3 7 — 37) Ap|bm|?
= +(1 4+ m)(1 4 2um + 7)|As||b|? (2.15)
Since
|bm|? <
[1 4+ pm 4+ A

VIRm2(1 = p2m — p) + m2p + 2 — ) + 2m?(uym + pm + 29)] AT — 2m2(1 + pm + 7)2 A| + (1 + pm + )24,

(2.16)

Up on substituting from (2.16) into (2.15), we are led easily to the asertion (2.2) of Theorem].

In case of one-fold symmetric functions of Theorem1 we get the next results.
Corollaryl. Let f(z) be a function, define by (1.4), in the clas Fy~ (v, it,¥) . Then

lca| <
AV2A;
VIROL= 12 — ) +2(uy + o+ 29) + (2u+92 = 9)]A2 — 22(1 + p+ )2 Aa| + (1 + p+7)2 4,
and
les| <
( 244

yif]Az| < Ay

201 — g2 — ) + 2(py + p+26) + 2p + 92 — )]

21201 = 42 = p) +2(py + p + 27)
+2u+ 9% = 7)A? = 2(1 + p+ )2 A A1 +2(1 + p + 7)?|A2| A1)
201 —p® = p) +2(py + o+ 29) + Cu 4% = V]2(1 — 2 — p) +2(py + p+27)+
2u+7% = VAT =200+ p+9)* Ao + (1 + p+7)* A

,Zf|A2‘ > Al

\

Theorem?2. Let f(z) be a function, define by (1.4), in the class Fs~ (7, ¢, ¥) . Then
Ay 1
0<lg(N)| <
2m(1 + 2pm + ) for 0= la)l Am(1 + 2pm +7) (2.17)
2A41lg(N)] for a(A)

|Comi1 — Ah | <

>
'z 4m(1 + 2um + )

where
) = A2(m 41— 2))
TN T 2Rm2 (1= 2m — 1) + m2p 72 — ) + 2 (uym + jim + 27)]A7 — 2m2(1+ pm + )24,
2 = A3 (bym + do)
T 2m2 (1 = pPmo— p) + 2m2 (pm + pmey? 4 29) + m(2p + 92 = y)]A} = 2m2(1+ pm + )2 A,
(2.18)
Subtract (2.10) from (2.8), we get
1)A2(b2 + d? Aqi(by,, — d
Comat = (m + 1) Aj(by, + d77) 1(b2m — dam) (2.19)

Am2[1 + pm+~]2  4m[l + 2um + 7]
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From (2.18) and (2.19), it follows that

1 1
— 2 — —
Comt1 = Alay = A1 {(q()\) + 4ml[l + 2pum + ’y]) bam + (q()\) 4ml[l + 2um + ”y]) de} (2.20)

where

() = A2(m +1 —2)\)
PN T 2m2 (1= w2m — ) + m(2u+ 72 — ) + 2m2(uym + pim + 29)] A7 — 2m2(1 + pm + )2 A;

Because each A; € R(real )and ; > 0, this implies that get the equation (2.17) .
In cases of onefold functions symmytric, Theorem?2 reduecs to the next .
Corollary2. Let f(z) be a function, define by (1.4), in the class Fs~1(7, p, ). Then

Ay 1
s Jor 0< gV <

2A1lq(N)| for |g(N)] > M+ 2017

In Theorem?2 in case A = 1, we get the following corollary
Corollary3. Let f(z) be a function, define by (.1.4), in a classFy (v, it,¥) . Then

D for 0< lg(N)] < :
or
om(1 + 2um + ) =1 am(1 + 2um + )

2A41]q(M)] for [g(A)

|02m+1 - 0371+1| S

>
|2 4m (1 + 2pm + )

In case of onefold symmyric, then Corollary3 reduecs to the next Corollary.
Corollary4. Let f(z) be a function, define by (1.4), be in the class Fs~1(8, it,¥) . Then

A
5 — 3| < s
2(1+2p+7)

3. The function class My (K, 1, V)
Definition2. Let f(z) be a function, define by (1.4) , in a classMy ,,,(x, 7, ¥) if satisfied next

conditions f € Y (%S)) ((1 - n)%z) + nf’(z)> < ¥(z), where z € D, 0 < nand x > 0, and
(‘ﬁiﬁ))“ ((1 - n)@ + ng'(w)) <V(w), (gw)=f"1w))

whereg(w) be a function define by (1.5) .
Note in above definiation in case m = 1 the class My~ ,,(k, 7, ?) reduce by Mx~1(k,n,7) .
Theorem3 . Let f(z) be a function , define by (1.4), in the classe My~ ,,(k,7,7) . Thens

|Cm+1| <

Ay JIA;
VIEm(nm +2m + 3) + (1 +m)(1+ 2nm) + m(k2 — 3x))A? — 2(1 + m(n + k)2 As] + 2(1 + m(n + k)2 A,

(3.1)
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and

lcamt1] <
( (1+m)A

1 ;ifBl < ¢(Bl)
(14+m)(1+2nm) +2me(m + 1) + §m(/<;2 —3k)

|(km(nm + 2m + 3) + m(k? — 3k) + (1 +m)(1 + 2nm)) A3 —
2(1 4+ mk +mn)?|A1 + (k% = 3k) + (1 +m)(1 + 2nm)) A3

,Zf|A2| > A1

2
L m(k? — 3k) + (1 +m)(1+2nm))A2 — 2(1 + m(n + k))?Aa| + 2(1 + m(n + K))2A;

(14 2m(n+ K))azm+1 + |:I€m(1 +nm) + 1m(ﬁ;2 - 3/{)} |(km(nm + 2m + 3)+

(3.2)
where

B(Ay) = 2(mk +mn + 1)?

2mr(m+ 1) + (1 +m)(1 4+ 2nm) + %m(li2 — 3K)

Proof . Let My ,,(k,1,9). Then there is two analytic functions ¢ : D — D and v : D — I with
t(0) = u(0) = 0, such that satisfying the next conditions:

S () e
and
(wj(lo(;;))ﬂ ((1 - 77)# + ng/(w)) <dw), (9(w) =) (3.4)
Since
<%S)>H ((1 - n)@ + nf’(z)) =1+ (1+mn+K))emz™ + (1 +2m(n + K))camer1 22

1
+ [Iim(nm +1)+ §m(m2 - 3/1)} AT S

and

+ [(1 +m)(1+ 2nm) + 2mrk(1 +m) + %m(li2 — 3/{)} W™+
Now,frome (1.11) ,(1.12),(3.3) and (3.4) we obtain
(1 +mk +mn)cmir = Arby, (3.5)
(14 2m(n + K))cams1 + [%m(nQ —3kr) + km(l + nm)} 21 = Arbont = A2, (3.6)

— (1 +mk +mn)cpe1 = Ardp, (3.7)



Coefficient Bounds of m-Fold Symmetric Bi-Univalent Functions for Certain Subclasses
Volume 12, Special Issue, Winter and Spring 2021, 71-82 79

and

1
— (1 +2m(n+ K))comsr + [ (1 +m)(1 4 2nm) + 2mk(1 +m) + im(m2 —3K) |y = Ardoy, + Asd?,

(3.8)
From (3.5) and (3.7), we get
dyy = —d,, (3.9)
adding (3.6) and (3.8) and up on some calculations use (3.5) and (3.9),we obtain
|(km(nm + 2m + 3) 4+ (1 +m)(1 + 2nm) + m(k* — 3k)) AT — 2(1 + m(n + £)*As|aZ,
= A (bam + dam) (3.10)

Also , from (3.9) and (3.10), jointly with (1.10), implies that

|(km(nm +2m + 3) + (1 +m)(1 + 2pm) +m(k* — 3r)) AT — 2(1 + m(n + k)*Asfag, . < AF(1 — [b7,])
(3.11)

Now , from (3.5) and (3.11), conclude that

lem+1] <

A1v24;
VIEm(mm +2m + 3) + (1 +m)(1 + 2nm) + m(k2 — 3k))A? — 2(1 + m(n + k)2Az] + 2(1 + m(n + k)2 A;

as asserted in (3.1).
Next, subtracting (3.8) from (3.6), we find

2(1+2m(n + K))cams1 = [(1 4+ m)(1 4+ 2nm) — mi(1 4+ nm) — km(1 + nm) + 2em(m + 1)] ¢,
+ Ay (boy, — dam) (3.12)

By using (1.10) and (3.5) in (3.12), if follows that

2(1+ 2m(n + K))|cams| < [2m(m + 1) + (m + 1)(1 + 2nm) + km(1 + nm)] |c2, 4]
+ A1 (|bam| — |dam])

Which ,implies that in view (3.5).
By applying (3.1) in (3.13),we get (3.2).
Theorem3 is complete .

Remark: in case one-fold symmetric functions, Theorem3 which we recall as next Corollary.
Corollary5 . Let f(z) be a function , define by (1.4), be in the classe Ms~ . (x,7,7). Then

|ca| <

A1/2A]
V(&M +5) +5(1 +205) + (k2 — 3k))AT — 2(1 + 1 + k)2 A + 2(1 +n + k)2 A,

(3.13)




80 Hameed Shehab, Rahman S. Juma

and

|es] <

A 1 2
! 14 < SRR

1 1
(14 2n) + 2k + Zm(/iQ —3K) (1+2n) 42k + Zm(,'-c2 —3K)

1
|(k(n +5) + (k% — 3k) +2(1 + 277))A% —2(1 +n+k)2Az|A12(1 +27) + 4k + §m(/<52 — 3/1)A:{’

1 ;
2(1+2n) + 4k + 5(f@ —36)|(k(n+5) + (k2 —3r) +2(1 +2n)) A —2(1 + n+ k)2 A2 + 2(1 + n + k)2 A,
(1+n+k)?

if|Az| <

1
(142n)+2x+ Zm(,k;2 —3K)

\

Theorem4. Let f(z) be a function, define by (1.4), in aclass My~ ,,(k,7,?). Then

Ay 1

for 0 <lq(MN)] <
(1+2m(n+k))+ |km(npm +1) + %(/{2 — 3K) 2(1+2m(n + r))

241100V for |a(V)] = 5

2
Comt1 — ACppiq| <
1

(14 2m(n+k))

(3.14)

A2(m+1—2))
2[(km(nm +2m + 3) + (1 + m)(1 4 2nm) + m(k? — 3k)) B} — 2(1 + m(n + k))?By)

q(\) =

Proof . Adding (3.6) and (3.8), we get

02 — A?(b?ﬂl + dzm) (3 15)
"= 3G+ 9m + 3) (L m) (1 + 2nm) + m(s2 — 3m) & — 201+ mly & 0)PA;]
Subtract (3.8) from (3.6), we get
21,2 2 _
Comi1 = (m + 1)A1 (bm + dm> Al <b2m d2m) (316)

2(1+m(n+ k))? 2(142m(n+k))
From (3.15) and (3.16), it follows that

camin = = B (094 gy ) o (09~ sy ) ] @17

where

A3(m+1—2X)
2[(km(nm +2m + 3) + (1 + m)(1 + 2nm) + m(k? — 3k))A? — 2(1 + m(n + k))%As)

q(A) =

Since all i are real and A; > 0, which implies the assertion (3.14) .
In case of the one- fold symmytric function , Theorem4 reduce to the next .



Coefficient Bounds of m-Fold Symmetric Bi-Univalent Functions for Certain Subclasses
Volume 12, Special Issue, Winter and Spring 2021, 71-82 81

Corollary6. Let f(z) be the function , define by (1.4), in a classe My, (k,7,7). Then

Ay
for 0 < Jg(N)] < 2(1+ 2177 + K))

(I1+2(n+k)+ |k(1+n)+ %(/@2 — 3K)

2A:11g(N)| for |qg(N)| = 5

2
Com+1 — Cm_|_1| S
1

(1+2(n+k))

In Theorem4 in case A = 1, we get the following corollary.
Corollary7. Let f(z) be a function, define by (1.4), in a clas My ,,(x,7n,7). Then

Ay 1

for 0 <lq(N)| <
1 2(1+2m(n+ k)
+ + + +1m) + = 2
Com+1 C$n+1| S (1 277’1,(?7 K)) K/m(l n ) Qm(ﬁ 3/‘?)

1
(14+2m(n+k))

2A1lq(N)| for |g(N)| > 5

In case of one-fold symmyric, then Corollary7 reduces to the next Corollary.
Corollary8. Let f(z) be a function, define by (1.4), in a class My, (x,1,7) . Then

A

|C3 - C%| < 1
(1+n(24+k))+ ém(/# + 3kK)

4. Conclusions

We conclude from this study, in the case of applying the two new classes m-fold symmetric bi
univalent to the geometric functions, it was determine |¢;, 41| and |¢g,,+1| for all class m-fold symmetric
bi-univalent , it is useful in complex analysis ,also derived the Fekete-Szego functional problems for
functions are obtains and several many improver results for this two new classes are presented inside
new open unit disk
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