Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 583-595 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

Existence of solutions of system of functional-integral equations using measure of noncompactness

Hemant Kumar Nashine^{*,a,b}, Reza Arab^c, Ravi P. Agarwal^d

^aDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, TN, India ^bDepartment of Pure and Applied Mathematics, University of Johannesburg, Kingsway Campus,Auckland Park 2006, SA ^cDepartment of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran

^dDepartment of Mathematics, Texas A & M University - Kingsville - 78363-8202, Texas, USA

(Communicated by Madjid Eshaghi Gordji)

Abstract

We propose to investigate the solutions of system of functional-integral equations in the setting of measure of noncompactness on real-valued bounded and continuous Banach space. To achieve this, we first establish some new Darbo type fixed and coupled fixed point results for μ -set (ω, ϑ) contraction operator using arbitrary measure of noncompactness in Banach spaces. An example is given in support for the solutions of a pair of system of functional-integral equations.

Keywords: Fixed point, Coupled fixed point, Measure of noncompactness, Functional-integral equations.

2010 MSC: 35K90, 47H10.

1. Introduction and preliminaries

The measure of noncompactness (MNC, in short) is coined by Kuratowski [11] and combined with some algebraic arguments are useful for studying the mathematical formulations, particularly for solving the existence of solutions of some nonlinear problems under certain conditions. Denote by \mathbb{R} the set of real numbers and put $\mathbb{R}_+ = [0, +\infty)$. Let $(E, \|\cdot\|)$ be a real Banach space

with zero element 0. Let $\overline{B}(x,r)$ denote the closed ball centered at x with radius r. The symbol

^{*}Corresponding author

Email addresses: drhknashine@gmail.com, hemant.nashine@vit.ac.in (Hemant Kumar Nashine*,), mathreza.arab@iausari.ac.ir (Reza Arab), agarwal@tamuk.edu (Ravi P. Agarwal)

 \overline{B}_r stands for the ball $\overline{B}(0,r)$. For X, a nonempty subset of E, we denote by \overline{X} and ConvX the closure and the closed convex hull of X, respectively. Moreover, let us denote by \mathfrak{M}_E the family of nonempty bounded subsets of E and by \mathfrak{N}_E its subfamily consisting of all relatively compact subsets of E.

Definition 1.1. [7] A mapping $\mu : \mathfrak{M}_E \longrightarrow \mathbb{R}_+$ is said to be a MNC in E if it satisfies the following conditions:

- (1°) The family $ker\mu = \{X \in \mathfrak{M}_E : \mu(X) = 0\}$ is nonempty and $ker\mu \subset \mathfrak{N}_E$;
- $(2^{\circ}) \ X \subset Y \Longrightarrow \mu(X) \le \mu(Y);$
- (3°) $\mu(\overline{X}) = \mu(X);$
- (4°) $\mu(ConvX) = \mu(X);$
- (5°) $\mu(\lambda X + (1-\lambda)Y) \le \lambda \mu(X) + (1-\lambda)\mu(Y)$ for $\lambda \in [0,1]$;
- (6°) If $\{X_n\}$ is a sequence of closed sets from \mathfrak{M}_E such that $X_{n+1} \subset X_n$ for $n = 1, 2, \cdots$, and if $\lim_{n \to \infty} \mu(X_n) = 0$, then the intersection set $X_{\infty} = \bigcap_{n=1}^{\infty} X_n$ is nonempty.

The subfamily $ker\mu$ defined (1°) represents the kernel of the measure μ of noncompactness and since

$$\mu(X_{\infty}) = \mu(\bigcap_{n=1}^{\infty} X_n) \le \mu(X_n),$$

we see that

$$\mu(\bigcap_{n=1}^{\infty} X_n) = 0$$

Therefore, $X_{\infty} \in ker\mu$.

For a bounded subset A of a metric space (X, d) the Kuratowski MNC is defined as

$$\alpha(A) = \inf\left\{\delta > 0 : A = \bigcup_{i=1}^{n} A_i, \ diam(A_i) \le \delta \text{ for } 1 \le i \le n \le \infty\right\},\$$

where $diam(A_i) = \sup \{d(x, y) : x, y \in A_i\}$. The Hausdorff MNC for a bounded set A is defined by

 $\chi(A) = \inf \left\{ \epsilon > 0 : A \text{ has finite } \epsilon - \text{net in } X \right\}.$

From now onwards unless otherwise specified, we take $\mu(\cdot)$ as an arbitrary MNC in Banach space \mathcal{X} .

In [8], the notion of MNC is very well utilized by Darbo to generalized Schauder's and Banach's fixed point theorems.

We denote $\Gamma = \{C : \emptyset \neq C, \text{ closed, bounded and convex subset of a Banach space } E\}$.

Theorem 1.2. (Schauder's fixed point theorem)[6] Let $C \in \Gamma$ without boundedness. Then every compact, continuous map $T : C \to C$ has at least one fixed point.

Theorem 1.3. (Darbo's fixed point theorem) [5]. Let $C \in \Gamma$ and let $T : C \longrightarrow C$ be a continuous mapping such that \exists a constant $k \in [0, 1)$ with the property

$$\mu(TX) \le k\mu(X)$$

for any $\emptyset \neq X \subset C$. Then T has a fixed point in the set C.

2. Fixed point theorems for μ -set (ω, ϑ) -contraction condition

In this section, we propose some new fixed point results for new notion of μ -set (ω, ϑ) -contraction condition in the frame of Banach space. Before introducing μ -set (ω, ϑ) -contraction, we recall following definitions:

Definition 2.1. (Altun and Turkoglu [1]) Let $F([0,\infty))$ be class of all function $f:[0,\infty) \to [0,\infty]$ and let Θ be class of all operators

$$\mathcal{O}(\circ; \cdot) : F([0, \infty)) \to F([0, \infty)), f \to \mathcal{O}(f; \cdot)$$

satisfying the following conditions:

(i) $\mathcal{O}(f;t) > 0$ for t > 0 and $\mathcal{O}(f;0) = 0$, (ii) $\mathcal{O}(f;t) \leq \mathcal{O}(f,s)$ for $t \leq s$, (iii) $\lim_{n\to\infty} \mathcal{O}(f;t_n) = \mathcal{O}(f;\lim_{n\to\infty} t_n)$, (iv) $\mathcal{O}(f;\max\{t,s\}) = \max\{\mathcal{O}(f;t), \mathcal{O}(f;s)\}$ for some $f \in F([0,\infty))$.

Definition 2.2. [12] A function $\varphi : [0, \infty) \to [0, 1)$ is said to be an MT-function if

$$\limsup_{s \to t^+} \varphi(s) < 1 \text{ for all } t \in [0, \infty).$$

Definition 2.3. [10] A function $\vartheta : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is called a GMT function if the following conditions hold:

- (ϑ_1) $0 < \vartheta(t,s) < 1$ for all t,s > 0;
- (ϑ_2) for any bounded sequence $\{t_n\} \subset (0, +\infty)$ and any non-increasing sequence $\{s_n\} \subset (0, +\infty)$, we have

$$\limsup_{n \to \infty} \vartheta(t_n, s_n) < 1.$$

We denote the set of all GMT functions by $\widehat{GMT(R)}$.

Definition 2.4. Let Ω denote the set of all functions $\omega : [0; +\infty) \to [0, +\infty)$ satisfying:

(I) ω is non-decreasing, (II) $\omega(t) = 0 \Leftrightarrow t = 0.$

Now we are in position to establish generalized form of Darbo fixed point theorem.

Theorem 2.5. Let $C \in \Gamma$ and $T : C \to C$ is continuous function and satisfying

$$\omega(\mathcal{O}(f;\mu(TX))) \le \vartheta(\mathcal{O}(f;\mu(TX)),\omega(\mathcal{O}(f;\mu(X))))\omega(\mathcal{O}(f;\mu(X))),$$
(2.1)

for any $\emptyset \neq X \subset C$, where $\mathcal{O}(\circ; \cdot) \in \Theta$, $\vartheta \in GMT(R)$ and $\omega \in \Omega$. Then T has at least one fixed point in C.

Proof. We start with constructing a sequence $\{C_n\}$ such that $C_0 = C$, $C_{n+1} = Conv(TC_n)$, for $n \ge 0$. If $\mu(C_N) = 0$ for some natural number $n_0 \in \mathbb{N}$, then $\mu(C_{n_0}) = 0$, then C_{n_0} is compact and since $T(C_{n_0}) \subseteq Conv(TC_{n_0}) = C_{n_0+1} \subseteq C_{n_0}$. Thus we conclude the result from Theorem 1.2, hence we assume that

$$0 < \mu(C_n), \forall n \ge 1$$

From (2.1), we have

$$\omega(\mathcal{O}(f;\mu(C_{n+1}))) = \omega(\mathcal{O}(f;\mu(Conv(TC_n)))) = \omega(\mathcal{O}(f;\mu(TC_n))) \\ \leq \vartheta(\mathcal{O}(f;\mu(TC_n)),\omega(\mathcal{O}(f;\mu(C_n))))\omega(\mathcal{O}(f;\mu(C_n))),$$
(2.2)

which, by the fact that $\vartheta < 1$ implies

$$\omega(\mathcal{O}(f;\mu(C_{n+1}))) \le \omega(\mathcal{O}(f;\mu(C_n))).$$

Therefore the sequence $\{\omega(\mathcal{O}(f;\mu(C_n)))\}$ is nonincreasing and nonnegative, we suppose that

$$\delta_1 = \lim_{n \to \infty} \omega(\mathcal{O}(f; \mu(C_n))), \quad \delta_2 = \lim_{n \to \infty} \mathcal{O}(f; \mu(C_n)), \quad (2.3)$$

where $\delta_1, \delta_2 \geq 0$ are nonnegative real numbers. We show that $\delta_1 = \delta_2 = 0$. Suppose, to the contrary, that $\delta_1, \delta_2 > 0$. Since $\{\mathcal{O}(f; \mu(C_n))\}$ is a non-increasing sequence and $\{\mathcal{O}(f; \mu(TC_n))\}$ is a bounded sequence. By (ϑ_2) , we have

$$\limsup_{n \to \infty} \vartheta(\mathcal{O}(f; \mu(TC_n)), \omega(\mathcal{O}(f; \mu(C_n)))) < 1.$$

Passing to the limit as $n \to \infty$ in (2.2) and using (2.3) with (iii) property of $\mathcal{O}(\circ; \cdot)$, we obtain that

$$\delta_1 \leq \limsup_{n \to \infty} \vartheta(\mathcal{O}(f; \mu(TC_n)), \omega(\mathcal{O}(f; \mu(C_n)))) \delta_1 < \delta_1.$$

Therefore $\delta_1 = 0$, that is,

$$\lim_{n \to \infty} \omega(\mathcal{O}(f; \mu(C_n))) = 0.$$
(2.4)

Since $\{\mu(C_n)\}\$ is a non-increasing sequence of positive numbers. This implies that there exists $\delta \geq 0$ such that

$$\lim_{n \to \infty} \mu(C_n) = \delta. \tag{2.5}$$

Since ω is non-decreasing and by the (ii)-(iii) properties of $\mathcal{O}(\circ; \cdot)$, we have

$$\omega(\mathcal{O}(f;\mu(C_n))) \ge \omega(\mathcal{O}(f;\delta)). \tag{2.6}$$

Passing to the limit as $n \to \infty$ in (2.6) and using (2.4) with (i) and (iii) properties of $\mathcal{O}(\circ; \cdot)$, we get $0 \ge \omega(\delta)$ which, by (II) implies that $\delta = 0$. Therefore

$$\lim_{n \to \infty} \mu(C_n) = 0.$$

Since $C_n \supseteq C_{n+1}$ and $TC_n \subseteq C_n$ for all n = 1, 2, ..., then from (6⁰), $X_{\infty} = \bigcap_{n=1}^{\infty} X_n$ is nonempty convex closed set, invariant under T and belongs to $Ker\mu$. Therefore, by Theorem 1.2, we conclude the result. \Box

Following are the some special cases of Theorem 2.5.

Corollary 2.6. Let $C \in \Gamma$ and $T : C \to C$ is continuous function and satisfying

$$\omega(\mathcal{O}(f;\mu(TX))) \le \lambda \omega(\mathcal{O}(f;\mu(X))),$$

for any $\emptyset \neq X \subset C$, where $0 \leq \lambda < 1$, $\mathcal{O}(\circ; \cdot) \in \Theta$ and $\omega \in \Omega$. Then T has at least one fixed point in C.

Proof. It suffices to take $\vartheta(t,s) = \lambda$ and apply Theorem 2.5. \Box

Corollary 2.7. Let $C \in \Gamma$ and $T : C \to C$ is continuous function and satisfying

$$\omega(\mathcal{O}(f;\mu(TX))) \le \varphi(\omega(\mathcal{O}(f;\mu(X))))\omega(\mathcal{O}(f;\mu(X))),$$

for any $\emptyset \neq X \subset C$, where $\varphi : [0, \infty) \to [0, 1)$ be an MT-function, $\mathcal{O}(\circ; \cdot) \in \Theta$ and $\omega \in \Omega$. Then T has at least one fixed point in C.

Proof. It suffices to take $\vartheta(t,s) = \varphi(s)$ and apply Theorem 2.5. \Box

Corollary 2.8. Let $C \in \Gamma$ and $T : C \to C$ is continuous function and satisfying

 $\omega(\mathcal{O}(f;\mu(TX))) \le \varphi(\omega(\mathcal{O}(f;\mu(X)))),$

for any $\emptyset \neq X \subset C$, where $\mathcal{O}(\circ; \cdot) \in \Theta$, $\omega \in \Omega$ and $\varphi : [0, \infty) \to [0, 1)$ be a function such that $\varphi(s) < s$ and $\limsup_{s \to t^+} \frac{\varphi(s)}{s} < 1$. Then T has at least one fixed point in C.

Proof. It suffices to take $\vartheta(t,s) = \frac{\varphi(s)}{s}$ and apply Theorem 2.5. \Box

3. Darbo type coupled fixed point

Definition 3.1. [9] An element $(u^*, v^*) \in E^2$ is called a coupled fixed point of a mapping $G : E^2 \to E$ if $G(u^*, v^*) = u^*$ and $G(v^*, u^*) = v^*$.

Theorem 3.2. [3] Suppose μ_i (i = 1, 2, 3, ..., n) are MNCs in Banach spaces E_i respectively. Moreover assume that the function $F : [0, \infty)^n \to [0, \infty)$ is convex and $F(x_1, x_2, ..., x_n) = 0$ if and only if $x_i = 0$ (i = 1, 2, 3, ..., n). Then

$$\mu(C) = F(\mu_1(C_1), \mu_2(C_2), \dots, \mu_n(C_n)),$$

defines a MNC in $\prod_{i=1}^{n} E_1$ where C_i denotes the natural projection of C into E_i , for i = 1, 2, 3, ..., n.

Theorem 3.3. Let $C \in \Gamma$ and $F: C^2 \to C$ be a continuous function such that

$$\omega(\mathcal{O}(f; \mu(F(X_1 \times X_2)))) \le \frac{1}{2} \vartheta(\mathcal{O}(f; \mu(F(X_1)) + \mu(F(X_2))), \omega(\mathcal{O}(f; \mu(X_1) + \mu(X_2)))) \omega(\mathcal{O}(f; \mu(X_1) + \mu(X_2))), \omega(\mathcal{O}(f; \mu(X_1) + \mu(X_2)))) \omega(\mathcal{O}(f; \mu(X_1) + \mu(X_2))))$$

for any $\emptyset \neq X_1, X_2 \subset C$, where $\vartheta \in GMT(R)$ and ω is sub-additive and $\omega \in \Omega$. Also $\mathcal{O}(\circ; .) \in \Theta$ and $\mathcal{O}(f;t+s) \leq \mathcal{O}(f;t) + \mathcal{O}(f;s)$ for all $t, s \geq 0$. Then F has at least a coupled fixed point. \mathbf{Proof} . Consider the map $\hat{F}:C^2\to C^2$ defined by the formula

$$\hat{F}(u,v) = (F(u,v), F(v,u))$$

Since F is continuous, \hat{F} is also continuous. We define a new MNC in the space C^2 as

$$\hat{\mu}(X) = \mu(X_1) + \mu(X_2)$$

where X_i , i = 1, 2 denote the natural projections of C. Now let $X \subset C^2$ be a nonempty subset. Hence, due to (3.1) and the condition (2⁰) of Definition 1.1 we conclude that

$$\begin{split} &\omega(\mathcal{O}(f;\hat{\mu}(\hat{F}(X)))) \\ &\leq \omega(\mathcal{O}(f;\hat{\mu}(F(X_{1} \times X_{2}) \times F(X_{2} \times X_{1})))) \\ &\leq \omega(\mathcal{O}(f;\mu(F(X_{1} \times X_{2})))) + \omega(\mathcal{O}(f;\mu(F(X_{2} \times X_{1})))) \\ &\leq \frac{1}{2}\vartheta(\mathcal{O}(f;\mu(F(X_{1})) + \mu(F(X_{2}))),\omega(\mathcal{O}(f;\mu(X_{1}) + \mu(X_{2}))))\omega(\mathcal{O}(f;\mu(X_{1}) + \mu(X_{2}))) \\ &+ \frac{1}{2}\vartheta(\mathcal{O}(f;\mu(F(X_{2})) + \mu(F(X_{1}))),\omega(\mathcal{O}(f;\mu(X_{2}) + \mu(X_{1}))))\omega(\mathcal{O}(f;\mu(X_{2}) + \mu(X_{1}))) \\ &= \vartheta(\mathcal{O}(f;\mu(F(X_{1})) + \mu(F(X_{2}))),\omega(\mathcal{O}(f;\mu(X_{1}) + \mu(X_{2}))))\omega(\mathcal{O}(f;\mu(X_{1}) + \mu(X_{2}))) \\ &= \vartheta(\mathcal{O}(f;\hat{\mu}(\hat{F}(X))),\omega(\mathcal{O}(f;\hat{\mu}(X)))\omega(\mathcal{O}(f;\hat{\mu}(X))), \end{split}$$

that is,

$$\omega(\mathcal{O}(f;\hat{\mu}(\hat{F}(X)))) \le \vartheta(\mathcal{O}(f;\hat{\mu}(\hat{F}(X)))), \omega(\mathcal{O}(f;\hat{\mu}(X)))\omega(\mathcal{O}(f;\hat{\mu}(X)))$$

Theorem 2.5 suggest that \hat{F} has a fixed point, and hence F has a coupled fixed point. \Box

Corollary 3.4. Let $C \in \Gamma$ and $F : C^2 \to C$ be a continuous function such that

$$\omega(\mathcal{O}(f;\mu(F(X_1 \times X_2))))) \le \frac{\lambda}{2}\omega(\mathcal{O}(f;\mu(X_1) + \mu(X_2))), \quad 0 \le \lambda < 1$$

for any $\emptyset \neq X_1, X_2 \subset C$, where ω is sub-additive and $\omega \in \Omega$. Also $\mathcal{O}(\circ; .) \in \Theta$ and $\mathcal{O}(f;t+s) \leq \mathcal{O}(f;t) + \mathcal{O}(f;s)$ for all $t, s \geq 0$. Then F has at least a coupled fixed point.

Corollary 3.5. Let $C \in \Gamma$ and $F : C^2 \to C$ be a continuous function such that

$$\mathcal{O}(f; \mu(F(X_1 \times X_2))) \le \frac{1}{2} \vartheta(\mathcal{O}(f; \mu(F(X_1)) + \mu(F(X_2))), \omega(\mathcal{O}(f; \mu(X_1) + \mu(X_2))))\mathcal{O}(f; \mu(X_1) + \mu(X_2)),$$

for any $\emptyset \neq X_1, X_2 \subset C$, where $\vartheta \in GMT(R)$, $\mathcal{O}(\circ; .) \in \Theta$ and $\mathcal{O}(f; t+s) \leq \mathcal{O}(f; t) + \mathcal{O}(f; s)$ for all $t, s \geq 0$. Then F has at least a coupled fixed point.

Corollary 3.6. Let $C \in \Gamma$ and $F : C^2 \to C$ be a continuous function such that

$$\omega(\mathcal{O}(f;\mu(F(X_1 \times X_2)))) \le \frac{1}{2}\varphi(\omega(\mathcal{O}(f;\mu(X_1) + \mu(X_2))),$$

for any $\emptyset \neq X_1, X_2 \subset C$, where $\mathcal{O}(\circ; \cdot) \in \Theta$, $\omega \in \Omega$ and $\varphi : [0, \infty) \to [0, 1)$ be a function such that $\varphi(s) < s$ and $\limsup_{s \to t^+} \frac{\varphi(s)}{s} < 1$. Then T has at least one fixed point in C.

Proof . It suffices to take $\vartheta(t,s) = \frac{\varphi(s)}{s}$ and apply Theorem 3.3. \Box

4. Applications

Writing classical Banach space $E = BC(\mathbb{R}^+)$ consisting of all real functions defined, bounded and continuous on \mathbb{R}_+ equipped with the standard norm

$$||x|| = \sup\{|x(t)| : t \ge 0\}$$

Following [5], the MNC in $BC(\mathbb{R}^+)$ is defined in the below.

Let us fix X as a nonempty and bounded subset of $BC(\mathbb{R}^+)$ and T as a positive number. For $x \in X$ and $\epsilon > 0$, denote by $\omega^T(x, \epsilon)$ the modulus of the continuity of function x on the interval [0, T], i.e.,

$$\omega^T(x,\epsilon) = \sup\{|x(t) - x(u)| : t, u \in [0,T], |t - u| \le \epsilon\}$$

Further, let us put

$$\omega^{T}(X,\epsilon) = \sup\{\omega^{T}(x,\epsilon) : x \in X\},\$$
$$\omega_{0}^{T}(X) = \lim_{\epsilon \to 0} \omega^{T}(X,\epsilon)$$

and

$$\omega_0(X) = \lim_{T \to \infty} \omega_0^T(X).$$

Moreover, for two fixed numbers $t \in \mathbb{R}^+$ let us the define the function μ on the family $\mathfrak{M}_{BC(\mathbb{R}^+)}$ by the following formula

$$\mu(X) = \omega_0(X) + \alpha(X),$$

where $\alpha(X) = \limsup_{t \to \infty} diamX(t)$, $X(t) = \{x(t) : x \in X\}$ and $diamX(t) = \sup\{|x(t) - y(t)| : x, y \in X\}$. Following [5] (cf. also [4]), it easy to see the function μ is the MNC in the space $E = BC(\mathbb{R}^+)$. Now we consider the system of integral equations

$$\begin{cases} x(t) = h\left(t, x(t), y(t), \int_{0}^{t} g\left(t, s, x(s), y(s)\right) ds\right) \\ y(t) = h\left(t, y(t), x(t), \int_{0}^{t} g\left(t, s, y(s), x(s)\right) ds\right). \end{cases}$$
(4.1)

Our aim here is to find the existence of solutions of (4.1).

Consider the following assumptions:

 $\begin{array}{l} (a_1) \ \mbox{The function } h: \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \mbox{ is continuous and there exists an upper semicontinuous, nondecreasing and concave function } \varphi \ : \ \mathbb{R}^+ \ \longrightarrow \ [0,1) \mbox{ such that } \varphi(t) \ < \ t \mbox{ for all } t \ > \ 0, \\ \mbox{lim sup}_{s \to t^+} \ \frac{\varphi(s)}{s} < 1 \mbox{ and a non-decreasing continuous function } \psi \ : \ \mathbb{R}^+ \to \mathbb{R} \mbox{ with } \psi(0) = 0, \mbox{ for any } t \ge 0 \mbox{ and for all } x, y, u, v \in \mathbb{R} \end{array}$

$$\mathcal{O}(f; |h(t, x, y, z) - h(t, u, v, w)|) \le \frac{1}{4}\varphi(\mathcal{O}(f; |x - u| + |y - v|) + \psi(|z - w|),$$

where $\mathcal{O}(\circ;.) \in \Theta$ and $\mathcal{O}(f;t+s) \leq \mathcal{O}(f;t) + \mathcal{O}(f;s)$ for all $t, s \geq 0$.

 (a_2) The function defined by $t \to |h(t, 0, 0, 0)|$ is bounded on \mathbb{R}^+ , i.e.

$$M_1 = \sup\{\mathcal{O}(f; |h(t, 0, 0, 0)|) : t \in \mathbb{R}^+\} < \infty,$$

and $\mathcal{O}(f;\epsilon) < \epsilon$.

 (a_3) $g: \mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is continuous and there exists a positive constant M_2 such that

$$M_2 = \sup\{\mathcal{O}(f; \int_0^t |g(t, s, x(s), y(s))| ds) : t \in \mathbb{R}^+, x, y \in E)\}.$$

Morever,

$$\lim_{t \to \infty} \left| \int_0^t [g(t, s, x(s), y(s)) - g(t, s, u(s), v(s))] ds \right| = 0$$

uniformly respect to $x, y \in E$.

(a₄) There exists a positive solution r_0 of the inequality $\frac{1}{4}\varphi(\mathcal{O}(f;2r_0)) + M_1 + \psi(M_2) \le r_0$.

Theorem 4.1. If the assumptions $(a_1) - (a_4)$ are satisfied, then the equation (4.1) has at least one solution $x \in E$.

Proof. Let $F: E \times E \to E$ be defined by,

$$F(x,y)(t) = h\left(t, x(t), y(t), \int_{0}^{t} g(t, s, x(s), y(s)) \, ds\right).$$

We know that $E \times E$ is a Banach space equipped with the norm,

$$|| (x, y) || = || x ||_{BC(\mathbb{R}_+)} + || y ||_{BC(\mathbb{R}_+)}$$

where $|| u ||_{BC(\mathbb{R}_+)} = \sup \{|u(t)| : t \ge 0\}$ and $u \in BC(\mathbb{R}_+)$. It is obvious that F(x, y)(t) is continuous for any $x, y \in BC(\mathbb{R}_+)$.

Let $\overline{B}_r = \{x \in BC(\mathbb{R}_+) : ||x||_{BC(\mathbb{R}_+)} \leq r\}$. By considering conditions of theorem we infer that F(x, y) is continuous on \mathbb{R}^+ . Now we prove that $F(x, y) \in E$ for any $x, y \in E$. For arbitrarily fixed $t \in \mathbb{R}^+$ and $f \in F([0, \infty))$ we have

$$\begin{aligned} \mathcal{O}(f; |F(x, y)(t)|) \\ &\leq \mathcal{O}\left(f; \left|h(t, x(t), y(t), \int_{0}^{\alpha(t)} g(t, s, x(s), y(s)) \, ds) - h(t, 0, 0, 0)\right|\right) \\ &+ \mathcal{O}(f; |h(t, 0, 0, 0)|) \\ &\leq \frac{1}{4}\varphi(\mathcal{O}(f; |x(t)| + |y(t)|)) + \psi\left(\left|\int_{0}^{t} g(t, s, x(s), y(s)) \, ds\right|\right) + M_{1} \\ &\leq \frac{1}{4}\varphi(\mathcal{O}(f; ||x|| + ||y||)) + \psi(M_{2}) + M_{1}. \end{aligned}$$

Thus F is well defined and condition (a_4) implies that $F(\bar{B}_r \times \bar{B}_r) \subseteq \bar{B}_r$. Now, we have to prove that F is continuous on $\bar{B}_r \times \bar{B}_r$. For this, take $(x, y) \in \bar{B}_{r_0} \times \bar{B}_{r_0}$ and $\varepsilon > 0$ arbitrarily. Moreover consider $(p,q) \in \overline{B}_{r_0} \times \overline{B}_{r_0}$ with $||(x,y) - (p,q)||_{BC(\mathbb{R}_+) \times BC(\mathbb{R}_+)} < \frac{\epsilon}{2}$. Then we have

$$\begin{split} \mathcal{O}(f; |F(x, y)(t) - F(p, q)(t)|) \\ &= \mathcal{O}\left(\left. f; \right| \left| \begin{array}{c} h\left(t, x(t), y(t), \int_{0}^{t} g\left(t, s, x(s), y(s)\right) ds\right) \\ -h\left(t, p(t), q(t), \int_{0}^{t} g\left(t, s, p(s), q(s)\right) ds\right) \\ \end{array} \right| \right) \\ &\leq \frac{1}{4}\varphi\left(\mathcal{O}(f; |x - p| + |y - q|)\right) \\ &+ \psi\left(\left| \int_{0}^{t} \left\{ g\left(t, s, x(s), y(s)\right) - g\left(t, s, p(s), q(s)\right) \right\} ds \right| \right) \\ &\leq \frac{1}{4}\varphi\left(\mathcal{O}(f; ||x - p| |+ ||y - q| ||)\right) \\ &+ \psi\left(\int_{0}^{t} |g\left(t, s, x(s), y(s)\right) - g\left(t, s, p(s), q(s)\right) | ds \right). \end{split}$$

By applying assumption (a_1) and (a_3) we get for $\epsilon > 0$ there exists T > 0 such that if t > T then $\psi\left(\int_0^t |g(t, s, x(s), y(s)) - g(t, s, p(s), q(s))| ds\right) \le \frac{\epsilon}{2}$, for any $x, y, p, q \in BC(\mathbb{R}_+)$. Case 1:

If t > T, then we get

$$\mathcal{O}(f; |F(x,y)(t) - F(p,q)(t)|) \le \frac{1}{4}\varphi(\mathcal{O}(f; \frac{\epsilon}{2} + \frac{\epsilon}{2})) + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Case 2:

If $t \in [0, T]$ then

$$\mathcal{O}(f; |F(x, y)(t) - F(p, q)(t)|) \le \frac{1}{4}\varphi(\mathcal{O}(f; \frac{\epsilon}{2} + \frac{\epsilon}{2})) + \psi(T\hat{\omega}) < \frac{\epsilon}{4} + \psi(T\hat{\omega})$$

where

$$\hat{\omega} = \sup \left\{ \begin{array}{c} |g(t, s, x, y) - g(t, s, p, q)| : t, s \in [0, T], x, y, p, q \in [-r, r], \\ \| (x, y) - (p, q) \| < \frac{\epsilon}{2} \end{array} \right\}.$$

Since g is continuous on $[0,T] \times [0,T] \times [-r,r] \times [-r,r]$ therefore $\hat{\omega} \to 0$ as $\epsilon \to 0$ i.e. since $\epsilon \to 0$ gives $T\hat{\omega} \to 0$ therefore $\psi_2(T\hat{\omega}) \to 0$.

Thus F is a continuous function from $\bar{B}_r \times \bar{B}_r$ into \bar{B}_r .

We have, $T, \epsilon \in \mathbb{R}_+$ and X_1, X_2 are arbitrary non-empty subset of \overline{B}_r and let $t, s \in [0, T]$ such that $|t - s| \leq \epsilon$.

Without loss of generality we can assume that t < s. Also let $x \in X_1, y \in X_2$ and

$$\begin{split} \hat{K} &= T \sup \left\{ |g(t, s, x(s), y(s)| : t, s \in [0, T], x, y \in [-r, r] \right\}, \\ \omega^{T}(x, \epsilon) &= \sup \left\{ |x(t) - x(s)| : t, s \in [0, T], |t - s| \leq \epsilon, \right\}, \\ \omega^{T}(y, \epsilon) &= \sup \left\{ |y(t) - y(s)| : t, s \in [0, T], |t - s| \leq \epsilon, \right\}, \\ \omega^{T}_{r}(h, \epsilon) &= \sup \left\{ \begin{array}{c} |h(t, x, y, z) - h(s, x, y, z)| : t, s \in [0, T], \\ |t - s| \leq \epsilon, x, y \in [-r, r], z \in [-\hat{K}, \hat{K}] \end{array} \right\}, \\ \omega^{T}_{r}(g, \epsilon) &= \sup \left\{ \begin{array}{c} |g(t, u, x(u), y(u)) - g(s, u, x(u), y(u))| : t, s, u \in [0, T], \\ |t_{2} - t_{1}| \leq \epsilon, x, y \in [-r, r], z \in [-\hat{K}, \hat{K}], \end{array} \right\}. \end{split}$$

Then we get

$$\begin{split} \mathcal{O}(f; |F(x, y)(t) - F(x, y)(s)|) \\ &= \mathcal{O}\left(\begin{array}{c} f; \\ h\left(t, x(t), y(t), \int_{0}^{t} g\left(t, u, x(u), y(u)\right) du\right) \\ -h\left(s, x(s), y(s), \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du\right) \\ -h\left(t, x(t), y(t), \int_{0}^{t} g\left(t, u, x(u), y(u)\right) du\right) \\ -h\left(t, x(s), y(s), \int_{0}^{t} g\left(t, u, x(u), y(u)\right) du\right) \\ -h\left(s, x(s), y(s), \int_{0}^{t} g\left(t, u, x(u), y(u)\right) du\right) \\ -h\left(s, x(s), y(s), \int_{0}^{t} g\left(t, u, x(u), y(u)\right) du\right) \\ -h\left(s, x(s), y(s), \int_{0}^{t} g\left(s, u, x(u), y(u)\right) du\right) \\ -h\left(s, x(s), y(s), \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du\right) \\ + \mathcal{O}\left(\begin{array}{c} f; \\ h\left(s, x(s), y(s), \int_{0}^{t} g\left(s, u, x(u), y(u)\right) du \\ -h\left(s, x(s), y(s), \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du \\ -h\left(s, x(s), y(s), \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du \\ \end{array} \right) \\ + \mathcal{O}\left(\begin{array}{c} f; \\ h\left(s, x(s), y(s), \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du \\ -h\left(s, x(s), y(s), \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du \\ \end{array} \right) \\ \\ \leq \frac{1}{4}\varphi(\mathcal{O}(f; |x(t) - x(s)| + |y(t) - y(s)|)) + \mathcal{O}(f; \omega_{r}^{T}(h, \epsilon)) \\ + \psi\left(\left| \int_{0}^{t} g\left(s, u, x(u), y(u)\right) du - \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du \right| \right) \\ \end{array} \right) \end{split}$$

$$\leq \frac{1}{4}\varphi\left(\mathcal{O}(f;\omega^{T}(x,\epsilon)+\omega^{T}(y,\epsilon))\right)+\mathcal{O}(f;\omega^{T}_{r}(h,\epsilon))+\psi\left(\hat{\alpha}\omega^{T}_{r}(g,\epsilon)\right)$$
$$+\psi\left(\left|\int_{0}^{t}g\left(s,u,x(u),y(u)\right)du-\int_{0}^{s}g\left(s,u,x(u),y(u)\right)du\right|\right).$$

By the uniform continuity of h on $[0, T] \times [-r, r] \times [-r, r] \times [-\hat{K}, \hat{K}]$ and g on $[0, T] \times [0, T] \times [-r, r] \times [-r, r] \times [-r, r]$ we have as $\epsilon \to 0$, gives $\omega_r^T(g, \epsilon) \to 0, \omega_r^T(h, \epsilon) \to 0$. Thus as $\epsilon \to 0$ we have

$$\left|\int_{0}^{t} g\left(s, u, x(u), y(u)\right) du - \int_{0}^{s} g\left(s, u, x(u), y(u)\right) du\right| \to 0$$

which gives

$$\psi\left(\left|\int_{0}^{t}g\left(s,u,x(u),y(u)\right)du-\int_{0}^{s}g\left(s,u,x(u),y(u)\right)du\right|\right)\to 0.$$

Now taking the limit as $\epsilon \to 0$ we have

$$\mathcal{O}(f;\omega_0^T(F(X_1 \times X_2))) \le \frac{1}{4}\varphi(\mathcal{O}(f;\omega_0^T(X_1) + \omega_0^T(X_2))).$$

As $T \to \infty$ we get

$$\mathcal{O}(f;\omega_0(F(X_1 \times X_2))) \le \frac{1}{4}\varphi(\mathcal{O}(f;\omega_0(X_1) + \omega_0(X_2))).$$

$$(4.2)$$

For arbitrary $(x, y), (p, q) \in X_1 \times X_2$ and $t \in \mathbb{R}_+$ we have,

$$\mathcal{O}(f; |F(x, y)(t) - F(p, q)(t)|) \\\leq \frac{1}{4}\varphi(\mathcal{O}(f; |x(t) - p(t)| + |y(t) - q(t)|) \\+ \psi\left(\left|\int_{0}^{t} \left\{g(t, u, x, y) - g(t, u, p.q)\right\} du\right|\right) \\\leq \frac{1}{4}\varphi(\mathcal{O}(f; diam\left(X_{1}(t)\right) + diam\left(X_{2}(t)\right))) \\+ \psi\left(\left|\int_{0}^{t} \left\{g(t, u, x, y) - g(t, u, p.q)\right\} du\right|\right).$$

Since (x, y), (p, q) and t are arbitrary, therefore we have,

$$\mathcal{O}(f; diamF(X_1 \times X_2)(t)) \leq \frac{1}{4}\varphi(\mathcal{O}(f; diam(X_1(t)) + diam(X_2(t)))) + \psi\left(\left|\int_0^t \left\{g(t, u, x, y) - g(t, u, p.q)\right\} du\right|\right)$$

As $t \to \infty$, by applying (a_3) we get

$$\mathcal{O}(f; \limsup_{t \to \infty} diam F(X_1 \times X_2)(t))$$

$$\leq \frac{1}{4} \varphi(\mathcal{O}(f; \limsup_{t \to \infty} diam (X_1(t)) + \limsup_{t \to \infty} diam (X_2(t)))).$$
(4.3)

From (4.2) and (4.3) we have

$$\begin{aligned} \mathcal{O}(f;\mu(F(X_1 \times X_2)) &= \mathcal{O}(f;\omega_0\left(F(X_1 \times X_2)\right) + \limsup_{t \to \infty} diamF(X_1 \times X_2)(t)) \\ &\leq \mathcal{O}(f;\omega_0\left(F(X_1 \times X_2)\right) + \mathcal{O}(f;\limsup_{t \to \infty} diamF(X_1 \times X_2)(t))) \\ &\leq \frac{1}{4}\varphi(\mathcal{O}(f;\omega_0(X_1) + \omega_0(X_2))) \\ &\quad + \frac{1}{2}\phi(\mathcal{O}(f;\limsup_{t \to \infty} diam\left(X_1(t)\right) + \limsup_{t \to \infty} diam\left(X_2(t)\right))) \\ &\leq \frac{1}{4}\varphi(\mathcal{O}(f;\omega_0(X_1) + \omega_0(X_2) + \limsup_{t \to \infty} diam\left(X_1(t)\right) + \limsup_{t \to \infty} diam(X_2(t)))) \\ &\quad + \frac{1}{4}\varphi(\mathcal{O}(f;\limsup_{t \to \infty} diam\left(X_1(t)\right) + \limsup_{t \to \infty} diam(X_2(t))) + \omega_0(X_1) + \omega_0(X_2)))) \\ &= \frac{1}{2}\varphi(\mathcal{O}(f;\mu(X_1) + \mu(X_2)). \end{aligned}$$

Therefore

$$\mathcal{O}(f; \mu(F(X_1 \times X_2) \le \frac{1}{2}\varphi(\mathcal{O}(f; \mu(X_1) + \mu(X_2))))$$

Therefore by Corollary 3.6, F has at least a coupled fixed point in the space $E \times E$. Thus, the system of equation (4.1) has at least a solution in $E \times E$. \Box

References

- I. Altun, and D. Turkoglu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput. Anal. Appl., 9 (1) (2007), 9–14.
- [2] A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 20(2)(2013), 345–358.
- [3] A. Aghajani, and N. Sabzali, A coupled fixed point theorem for condensing operators with application to system of integral equations, J. Nonlinear Convex Anal., 15(5)(2014), 941–952.
- [4] J. Banas, Measures of noncompactness in the space of continuous tempered functions, Demonstratio Math., 14 (1981), 127–133.
- [5] J. Banas, and K. Goebel, Measures of noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, p. 60. Dekker, New York (1980).
- [6] J. Banaś, and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, New Delhi, 2014.
- [7] J. Banaś, D. O'Regan, and K. Sadarangani, On solutions of a quadratic hammerstein integral equation on an unbonded interval, Dynam. Systems Appl., 18 (2009), 251–264.
- [8] G. Darbo, Punti uniti i transformazion a condominio non compatto, Rend. Sem. Math. Univ. Padova, 4 (1995), 84–92.
- [9] D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, vol. 373 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
- [10] M. Javahernia, A. Razani, and F. Khojasteh, Common fixed point of the generalized Mizoguchi-Takahashi's type contractions, Fixed Point Theory and Applications, (2014). doi:10.1186/1687-1812-2014-195

- [11] K. Kuratowski, Sur les espaces completes, Fund. Math., 15 (1930), 301-309.
- [12] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141(1) (1989), 177-188.
- [13] M. Mursaleen, and S.A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in l_p spaces, Nonlinear Analysis: Theory, Methods & Appl., 75(2012), 2111–2115.
- [14] M. Mursaleen, and Syed M. H. Rizvi, Solvability of infinite systems of second order differential equations in c_0 and ℓ_1 by Meir-Keeler condensing operators, Proc. Amer. Math. Soc., 144(10)(2016), 4279–4289.