Existence of solutions of system of functional-integral equations using measure of noncompactness

Hemant Kumar Nashine ${ }^{*, a, b}$, Reza Arab ${ }^{c}$, Ravi P. Agarwal ${ }^{\text {d }}$
${ }^{a}$ Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014,TN, India
${ }^{b}$ Department of Pure and Applied Mathematics, University of Johannesburg, Kingsway Campus,Auckland Park 2006, SA
${ }^{c}$ Department of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran
${ }^{d}$ Department of Mathematics, Texas A \& M University - Kingsville - 78363-8202, Texas, USA

(Communicated by Madjid Eshaghi Gordji)

Abstract

We propose to investigate the solutions of system of functional-integral equations in the setting of measure of noncompactness on real-valued bounded and continuous Banach space. To achieve this, we first establish some new Darbo type fixed and coupled fixed point results for μ-set (ω, ϑ) contraction operator using arbitrary measure of noncompactness in Banach spaces. An example is given in support for the solutions of a pair of system of functional-integral equations.

Keywords: Fixed point, Coupled fixed point, Measure of noncompactness, Functional-integral equations.
2010 MSC: 35K90, 47H10.

1. Introduction and preliminaries

The measure of noncompactness (MNC, in short) is coined by Kuratowski 11 and combined with some algebraic arguments are useful for studying the mathematical formulations, particularly for solving the existence of solutions of some nonlinear problems under certain conditions.
Denote by \mathbb{R} the set of real numbers and put $\mathbb{R}_{+}=[0,+\infty)$. Let $(E,\|\cdot\|)$ be a real Banach space with zero element 0 . Let $\bar{B}(x, r)$ denote the closed ball centered at x with radius r. The symbol

[^0]\bar{B}_{r} stands for the ball $\bar{B}(0, r)$. For X, a nonempty subset of E, we denote by \bar{X} and Conv X the closure and the closed convex hull of X, respectively. Moreover, let us denote by \mathfrak{M}_{E} the family of nonempty bounded subsets of E and by \mathfrak{N}_{E} its subfamily consisting of all relatively compact subsets of E.
Definition 1.1. (7] A mapping $\mu: \mathfrak{M}_{E} \longrightarrow \mathbb{R}_{+}$is said to be a $M N C$ in E if it satisfies the following conditions:
(1) The family ker $\mu=\left\{X \in \mathfrak{M}_{E}: \mu(X)=0\right\}$ is nonempty and ker $\mu \subset \mathfrak{N}_{E}$;
$\left(2^{\circ}\right) X \subset Y \Longrightarrow \mu(X) \leq \mu(Y) ;$
$\left(3^{\circ}\right) \mu(\bar{X})=\mu(X)$;
$\left(4^{\circ}\right) \mu(\operatorname{Conv} X)=\mu(X)$;
$\left(5^{\circ}\right) \mu(\lambda X+(1-\lambda) Y) \leq \lambda \mu(X)+(1-\lambda) \mu(Y)$ for $\lambda \in[0,1]$;
(6°) If $\left\{X_{n}\right\}$ is a sequence of closed sets from \mathfrak{M}_{E} such that $X_{n+1} \subset X_{n}$ for $n=1,2, \cdots$, and if $\lim _{n \rightarrow \infty} \mu\left(X_{n}\right)=0$, then the intersection set $X_{\infty}=\bigcap_{n=1}^{\infty} X_{n}$ is nonempty.
The subfamily $\operatorname{ker} \mu$ defined (1°) represents the kernel of the measure μ of noncompactness and since
$$
\mu\left(X_{\infty}\right)=\mu\left(\bigcap_{n=1}^{\infty} X_{n}\right) \leq \mu\left(X_{n}\right),
$$
we see that
$$
\mu\left(\bigcap_{n=1}^{\infty} X_{n}\right)=0 .
$$

Therefore, $X_{\infty} \in k e r \mu$.
For a bounded subset A of a metric space (X, d) the Kuratowski MNC is defined as

$$
\alpha(A)=\inf \left\{\delta>0: A=\bigcup_{i=1}^{n} A_{i}, \operatorname{diam}\left(A_{i}\right) \leq \delta \text { for } 1 \leq i \leq n \leq \infty\right\}
$$

where $\operatorname{diam}\left(A_{i}\right)=\sup \left\{d(x, y): x, y \in A_{i}\right\}$.
The Hausdorff MNC for a bounded set A is defined by

$$
\chi(A)=\inf \{\epsilon>0: A \text { has finite } \epsilon-\text { net in } X\} .
$$

From now onwards unless otherwise specified, we take $\mu(\cdot)$ as an arbitrary MNC in Banach space \mathcal{X}.
In [8], the notion of MNC is very well utilized by Darbo to generalized Schauder's and Banach's fixed point theorems.
We denote $\Gamma=\{C: \emptyset \neq C$, closed, bounded and convex subset of a Banach space $E\}$.
Theorem 1.2. (Schauder's fixed point theorem) [b] Let $C \in \Gamma$ without boundedness. Then every compact, continuous map $T: C \rightarrow C$ has at least one fixed point.
Theorem 1.3. (Darbo's fixed point theorem) [5]. Let $C \in \Gamma$ and let $T: C \longrightarrow C$ be a continuous mapping such that \exists a constant $k \in[0,1)$ with the property

$$
\mu(T X) \leq k \mu(X)
$$

for any $\emptyset \neq X \subset C$. Then T has a fixed point in the set C.

2. Fixed point theorems for μ-set (ω, ϑ)-contraction condition

In this section, we propose some new fixed point results for new notion of μ-set (ω, ϑ)-contraction condition in the frame of Banach space. Before introducing μ-set (ω, ϑ)-contraction, we recall following definitions:
Definition 2.1. (Altun and Turkoglu [1]) Let $F([0, \infty)$) be class of all function $f:[0, \infty) \rightarrow[0, \infty]$ and let Θ be class of all operators

$$
\mathcal{O}(\circ ; \cdot): F([0, \infty)) \rightarrow F([0, \infty)), f \rightarrow \mathcal{O}(f ; \cdot)
$$

satisfying the following conditions:
(i) $\mathcal{O}(f ; t)>0$ for $t>0$ and $\mathcal{O}(f ; 0)=0$,
(ii) $\mathcal{O}(f ; t) \leq \mathcal{O}(f, s)$ for $t \leq s$,
(iii) $\lim _{n \rightarrow \infty} \mathcal{O}\left(f ; t_{n}\right)=\mathcal{O}\left(f ; \lim _{n \rightarrow \infty} t_{n}\right)$,
(iv) $\mathcal{O}(f ; \max \{t, s\})=\max \{\mathcal{O}(f ; t), \mathcal{O}(f ; s)\}$ for some $f \in F([0, \infty))$.

Definition 2.2. [12] A function $\varphi:[0, \infty) \rightarrow[0,1)$ is said to be an MT-function if

$$
\limsup _{s \rightarrow t^{+}} \varphi(s)<1 \text { for all } t \in[0, \infty)
$$

Definition 2.3. 10 A function $\vartheta: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is called a GMT function if the following conditions hold:
$\left(\vartheta_{1}\right) 0<\vartheta(t, s)<1$ for all $t, s>0$;
$\left(\vartheta_{2}\right)$ for any bounded sequence $\left\{t_{n}\right\} \subset(0,+\infty)$ and any non-increasing sequence $\left\{s_{n}\right\} \subset(0,+\infty)$, we have

$$
\limsup _{n \rightarrow \infty} \vartheta\left(t_{n}, s_{n}\right)<1
$$

We denote the set of all GMT functions by $\widehat{G M T(R)}$.
Definition 2.4. Let Ω denote the set of all functions ω : $[0 ;+\infty) \rightarrow[0,+\infty)$ satisfying:
(I) ω is non-decreasing,
(II) $\omega(t)=0 \Leftrightarrow t=0$.

Now we are in position to establish generalized form of Darbo fixed point theorem.
Theorem 2.5. Let $C \in \Gamma$ and $T: C \rightarrow C$ is continuous function and satisfying

$$
\begin{equation*}
\omega(\mathcal{O}(f ; \mu(T X))) \leq \vartheta(\mathcal{O}(f ; \mu(T X)), \omega(\mathcal{O}(f ; \mu(X)))) \omega(\mathcal{O}(f ; \mu(X))) \tag{2.1}
\end{equation*}
$$

for any $\emptyset \neq X \subset C$, where $\mathcal{O}(\circ ; \cdot) \in \Theta, \vartheta \in \widehat{G M T(R)}$ and $\omega \in \Omega$. Then T has at least one fixed point in C.

Proof . We start with constructing a sequence $\left\{C_{n}\right\}$ such that $C_{0}=C, C_{n+1}=\operatorname{Conv}\left(T C_{n}\right)$, for $n \geq 0$. If $\mu\left(C_{N}\right)=0$ for some natural number $n_{0} \in \mathbb{N}$, then $\mu\left(C_{n_{0}}\right)=0$, then $C_{n_{0}}$ is compact and since $T\left(C_{n_{0}}\right) \subseteq \operatorname{Conv}\left(T C_{n_{0}}\right)=C_{n_{0}+1} \subseteq C_{n_{0}}$. Thus we conclude the result from Theorem 1.2, hence we assume that

$$
0<\mu\left(C_{n}\right), \forall n \geq 1 .
$$

From (2.1), we have

$$
\begin{align*}
\omega\left(\mathcal{O}\left(f ; \mu\left(C_{n+1}\right)\right)\right) & =\omega\left(\mathcal{O}\left(f ; \mu\left(\operatorname{Conv}\left(T C_{n}\right)\right)\right)\right)=\omega\left(\mathcal{O}\left(f ; \mu\left(T C_{n}\right)\right)\right) \\
& \leq \vartheta\left(\mathcal{O}\left(f ; \mu\left(T C_{n}\right)\right) \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right)\right) \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right) \tag{2.2}
\end{align*}
$$

which, by the fact that $\vartheta<1$ implies

$$
\omega\left(\mathcal{O}\left(f ; \mu\left(C_{n+1}\right)\right)\right) \leq \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right)
$$

Therefore the sequence $\left\{\omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right)\right\}$ is nonincreasing and nonnegative, we suppose that

$$
\begin{equation*}
\delta_{1}=\lim _{n \rightarrow \infty} \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right), \quad \delta_{2}=\lim _{n \rightarrow \infty} \mathcal{O}\left(f ; \mu\left(C_{n}\right)\right), \tag{2.3}
\end{equation*}
$$

where $\delta_{1}, \delta_{2} \geq 0$ are nonnegative real numbers.
We show that $\delta_{1}=\delta_{2}=0$. Suppose, to the contrary, that $\delta_{1}, \delta_{2}>0$.
Since $\left\{\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right\}$ is a non-increasing sequence and $\left.\left\{\mathcal{O}\left(f ; \mu\left(T C_{n}\right)\right)\right)\right\}$ is a bounded sequence. By $\left(\vartheta_{2}\right)$, we have

$$
\limsup _{n \rightarrow \infty} \vartheta\left(\mathcal{O}\left(f ; \mu\left(T C_{n}\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right)\right)<1
$$

Passing to the limit as $n \rightarrow \infty$ in (2.2) and using (2.3) with (iii) property of $\mathcal{O}(\circ ; \cdot)$, we obtain that

$$
\delta_{1} \leq \limsup _{n \rightarrow \infty} \vartheta\left(\mathcal{O}\left(f ; \mu\left(T C_{n}\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right)\right) \delta_{1}<\delta_{1} .
$$

Therefore $\delta_{1}=0$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right)=0 \tag{2.4}
\end{equation*}
$$

Since $\left\{\mu\left(C_{n}\right)\right\}$ is a non-increasing sequence of positive numbers. This implies that there exists $\delta \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\delta \tag{2.5}
\end{equation*}
$$

Since ω is non-decreasing and by the (ii)-(iii) properties of $\mathcal{O}(\circ ; \cdot \cdot$, we have

$$
\begin{equation*}
\omega\left(\mathcal{O}\left(f ; \mu\left(C_{n}\right)\right)\right) \geq \omega(\mathcal{O}(f ; \delta)) \tag{2.6}
\end{equation*}
$$

Passing to the limit as $n \rightarrow \infty$ in (2.6) and using (2.4) with (i) and (iii) properties of $\mathcal{O}(\circ ; \cdot)$, we get $0 \geq \omega(\delta)$ which, by (II) implies that $\delta=0$. Therefore

$$
\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=0
$$

Since $C_{n} \supseteq C_{n+1}$ and $T C_{n} \subseteq C_{n}$ for all $n=1,2, \ldots$, then from $\left(6^{0}\right), X_{\infty}=\bigcap_{n=1}^{\infty} X_{n}$ is nonempty convex closed set, invariant under T and belongs to $\operatorname{Ker} \mu$. Therefore, by Theorem 1.2, we conclude the result.
Following are the some special cases of Theorem 2.5.

Corollary 2.6. Let $C \in \Gamma$ and $T: C \rightarrow C$ is continuous function and satisfying

$$
\omega(\mathcal{O}(f ; \mu(T X))) \leq \lambda \omega(\mathcal{O}(f ; \mu(X)))
$$

for any $\emptyset \neq X \subset C$, where $0 \leq \lambda<1, \mathcal{O}(\circ ; \cdot) \in \Theta$ and $\omega \in \Omega$. Then T has at least one fixed point in C.

Proof. It suffices to take $\vartheta(t, s)=\lambda$ and apply Theorem 2.5.
Corollary 2.7. Let $C \in \Gamma$ and $T: C \rightarrow C$ is continuous function and satisfying

$$
\omega(\mathcal{O}(f ; \mu(T X))) \leq \varphi(\omega(\mathcal{O}(f ; \mu(X)))) \omega(\mathcal{O}(f ; \mu(X)))
$$

for any $\emptyset \neq X \subset C$, where $\varphi:[0, \infty) \rightarrow[0,1)$ be an MT-function, $\mathcal{O}(\circ ; \cdot) \in \Theta$ and $\omega \in \Omega$. Then T has at least one fixed point in C.

Proof . It suffices to take $\vartheta(t, s)=\varphi(s)$ and apply Theorem 2.5.
Corollary 2.8. Let $C \in \Gamma$ and $T: C \rightarrow C$ is continuous function and satisfying

$$
\omega(\mathcal{O}(f ; \mu(T X))) \leq \varphi(\omega(\mathcal{O}(f ; \mu(X))))
$$

for any $\emptyset \neq X \subset C$, where $\mathcal{O}(\circ ; \cdot) \in \Theta, \omega \in \Omega$ and $\varphi:[0, \infty) \rightarrow[0,1)$ be a function such that $\varphi(s)<s$ and $\limsup _{s \rightarrow t^{+}} \frac{\varphi(s)}{s}<1$. Then T has at least one fixed point in C.
Proof . It suffices to take $\vartheta(t, s)=\frac{\varphi(s)}{s}$ and apply Theorem 2.5.

3. Darbo type coupled fixed point

Definition 3.1. [9] An element $\left(u^{*}, v^{*}\right) \in E^{2}$ is called a coupled fixed point of a mapping $G: E^{2} \rightarrow E$ if $G\left(u^{*}, v^{*}\right)=u^{*}$ and $G\left(v^{*}, u^{*}\right)=v^{*}$.

Theorem 3.2. [3] Suppose $\mu_{i}(i=1,2,3, \ldots, n)$ are MNCs in Banach spaces E_{i} respectively. Moreover assume that the function $F:[0, \infty)^{n} \rightarrow[0, \infty)$ is convex and $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ if and only if $x_{i}=0(i=1,2,3, \ldots, n)$. Then

$$
\mu(C)=F\left(\mu_{1}\left(C_{1}\right), \mu_{2}\left(C_{2}\right), \ldots, \mu_{n}\left(C_{n}\right)\right),
$$

defines a MNC in $\prod_{i=1}^{n} E_{1}$ where C_{i} denotes the natural projection of C into E_{i}, for $i=1,2,3, \ldots, n$.
Theorem 3.3. Let $C \in \Gamma$ and $F: C^{2} \rightarrow C$ be a continuous function such that

$$
\begin{aligned}
\omega\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right)\right)\right)\right) \leq & \frac{1}{2} \vartheta\left(\mathcal { O } \left(f ; \mu\left(F\left(X_{1}\right)\right)\right.\right. \\
& \left.\left.+\mu\left(F\left(X_{2}\right)\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right)\right) \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right)
\end{aligned}
$$

for any $\emptyset \neq X_{1}, X_{2} \subset C$, where $\vartheta \in G \widehat{M T(R)}$ and ω is sub-additive and $\omega \in \Omega$. Also $\mathcal{O}(\circ ;.) \in \Theta$ and $\mathcal{O}(f ; t+s) \leq \mathcal{O}(f ; t)+\mathcal{O}(f ; s)$ for all $t, s \geq 0$. Then F has at least a coupled fixed point.

Proof. Consider the map $\hat{F}: C^{2} \rightarrow C^{2}$ defined by the formula

$$
\hat{F}(u, v)=(F(u, v), F(v, u)) .
$$

Since F is continuous, \hat{F} is also continuous. We define a new MNC in the space C^{2} as

$$
\hat{\mu}(X)=\mu\left(X_{1}\right)+\mu\left(X_{2}\right)
$$

where $X_{i}, i=1.2$ denote the natural projections of C. Now let $X \subset C^{2}$ be a nonempty subset. Hence, due to (3.1) and the condition $\left(2^{0}\right)$ of Definition 1.1 we conclude that

$$
\begin{aligned}
& \omega(\mathcal{O}(f ; \hat{\mu}(\hat{F}(X)))) \\
& \leq \omega\left(\mathcal{O}\left(f ; \hat{\mu}\left(F\left(X_{1} \times X_{2}\right) \times F\left(X_{2} \times X_{1}\right)\right)\right)\right) \\
& \leq \omega\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right)\right)\right)\right)+\omega\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{2} \times X_{1}\right)\right)\right)\right) \\
& \leq \frac{1}{2} \vartheta\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1}\right)\right)+\mu\left(F\left(X_{2}\right)\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right)\right) \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right) \\
& +\frac{1}{2} \vartheta\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{2}\right)\right)+\mu\left(F\left(X_{1}\right)\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(X_{2}\right)+\mu\left(X_{1}\right)\right)\right)\right) \omega\left(\mathcal{O}\left(f ; \mu\left(X_{2}\right)+\mu\left(X_{1}\right)\right)\right) \\
& =\vartheta\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1}\right)\right)+\mu\left(F\left(X_{2}\right)\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right)\right) \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right) \\
& =\vartheta(\mathcal{O}(f ; \hat{\mu}(\hat{F}(X))), \omega(\mathcal{O}(f ; \hat{\mu}(X))) \omega(\mathcal{O}(f ; \hat{\mu}(X))),
\end{aligned}
$$

that is,

$$
\omega(\mathcal{O}(f ; \hat{\mu}(\hat{F}(X)))) \leq \vartheta(\mathcal{O}(f ; \hat{\mu}(\hat{F}(X)))), \omega(\mathcal{O}(f ; \hat{\mu}(X))) \omega(\mathcal{O}(f ; \hat{\mu}(X)))
$$

Theorem 2.5 suggest that \hat{F} has a fixed point, and hence F has a coupled fixed point.
Corollary 3.4. Let $C \in \Gamma$ and $F: C^{2} \rightarrow C$ be a continuous function such that

$$
\left.\omega\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right)\right)\right)\right)\right) \leq \frac{\lambda}{2} \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right), \quad 0 \leq \lambda<1
$$

for any $\emptyset \neq X_{1}, X_{2} \subset C$, where ω is sub-additive and $\omega \in \Omega$. Also $\mathcal{O}(\circ ;.) \in \Theta$ and $\mathcal{O}(f ; t+s) \leq$ $\mathcal{O}(f ; t)+\mathcal{O}(f ; s)$ for all $t, s \geq 0$. Then F has at least a coupled fixed point.

Corollary 3.5. Let $C \in \Gamma$ and $F: C^{2} \rightarrow C$ be a continuous function such that

$$
\begin{aligned}
& \mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right)\right)\right) \\
& \leq \frac{1}{2} \vartheta\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1}\right)\right)+\mu\left(F\left(X_{2}\right)\right)\right), \omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right)\right) \mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right),
\end{aligned}
$$

for any $\emptyset \neq X_{1}, X_{2} \subset C$, where $\vartheta \in \widehat{G M T(R)}, \mathcal{O}(\circ ;.) \in \Theta$ and $\mathcal{O}(f ; t+s) \leq \mathcal{O}(f ; t)+\mathcal{O}(f ; s)$ for all $t, s \geq 0$. Then F has at least a coupled fixed point.
Corollary 3.6. Let $C \in \Gamma$ and $F: C^{2} \rightarrow C$ be a continuous function such that

$$
\omega\left(\mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right)\right)\right)\right) \leq \frac{1}{2} \varphi\left(\omega\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right)\right.
$$

for any $\emptyset \neq X_{1}, X_{2} \subset C$, where $\mathcal{O}(\circ ; \cdot) \in \Theta, \omega \in \Omega$ and $\varphi:[0, \infty) \rightarrow[0,1)$ be a function such that $\varphi(s)<s$ and $\lim \sup _{s \rightarrow t^{+}} \frac{\varphi(s)}{s}<1$. Then T has at least one fixed point in C.
Proof . It suffices to take $\vartheta(t, s)=\frac{\varphi(s)}{s}$ and apply Theorem 3.3.

4. Applications

Writing classical Banach space $E=B C\left(\mathbb{R}^{+}\right)$consisting of all real functions defined, bounded and continuous on \mathbb{R}_{+}equipped with the standard norm

$$
\|x\|=\sup \{|x(t)|: t \geq 0\}
$$

Following [5], the MNC in $B C\left(\mathbb{R}^{+}\right)$is defined in the below.
Let us fix X as a nonempty and bounded subset of $B C\left(\mathbb{R}^{+}\right)$and T as a positive number. For $x \in X$ and $\epsilon>0$, denote by $\omega^{T}(x, \epsilon)$ the modulus of the continuity of function x on the interval $[0, T]$, i.e.,

$$
\omega^{T}(x, \epsilon)=\sup \{|x(t)-x(u)|: t, u \in[0, T],|t-u| \leq \epsilon\} .
$$

Further, let us put

$$
\begin{gathered}
\omega^{T}(X, \epsilon)=\sup \left\{\omega^{T}(x, \epsilon): x \in X\right\} \\
\omega_{0}^{T}(X)=\lim _{\epsilon \rightarrow 0} \omega^{T}(X, \epsilon)
\end{gathered}
$$

and

$$
\omega_{0}(X)=\lim _{T \rightarrow \infty} \omega_{0}^{T}(X)
$$

Moreover, for two fixed numbers $t \in \mathbb{R}^{+}$let us the define the function μ on the family $\mathfrak{M}_{B C\left(\mathbb{R}^{+}\right)}$by the following formula

$$
\mu(X)=\omega_{0}(X)+\alpha(X)
$$

where $\alpha(X)=\limsup \operatorname{diam} X(t), X(t)=\{x(t): x \in X\}$ and $\operatorname{diam} X(t)=\sup \{|x(t)-y(t)|: x, y \in$ $X\}$. Following $[5]^{t \rightarrow \infty}(\mathrm{cf}$. also $[4])$, it easy to see the function μ is the MNC in the space $E=B C\left(\mathbb{R}^{+}\right)$. Now we consider the system of integral equations

$$
\left\{\begin{array}{l}
x(t)=h\left(t, x(t), y(t), \int_{0}^{t} g(t, s, x(s), y(s)) d s\right) \tag{4.1}\\
y(t)=h\left(t, y(t), x(t), \int_{0}^{t} g(t, s, y(s), x(s)) d s\right) .
\end{array}\right.
$$

Our aim here is to find the existence of solutions of (4.1).
Consider the following assumptions:
$\left(a_{1}\right)$ The function $h: \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exists an upper semicontinuous, nondecreasing and concave function $\varphi: \mathbb{R}^{+} \longrightarrow[0,1)$ such that $\varphi(t)<t$ for all $t>0$, $\lim \sup _{s \rightarrow t^{+}} \frac{\varphi(s)}{s}<1$ and a non-decreasing continuous function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ with $\psi(0)=0$, for any $t \geq 0$ and for all $x, y, u, v \in \mathbb{R}$

$$
\mathcal{O}(f ;|h(t, x, y, z)-h(t, u, v, w)|) \leq \frac{1}{4} \varphi(\mathcal{O}(f ;|x-u|+|y-v|)+\psi(|z-w|)
$$

where $\mathcal{O}(\circ ;.) \in \Theta$ and $\mathcal{O}(f ; t+s) \leq \mathcal{O}(f ; t)+\mathcal{O}(f ; s)$ for all $t, s \geq 0$.
$\left(a_{2}\right)$ The function defined by $t \rightarrow|h(t, 0,0,0)|$ is bounded on \mathbb{R}^{+}, i.e.

$$
M_{1}=\sup \left\{\mathcal{O}(f ;|h(t, 0,0,0)|): t \in \mathbb{R}^{+}\right\}<\infty
$$

and $\mathcal{O}(f ; \epsilon)<\epsilon$.
$\left(a_{3}\right) g: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and there exists a positive constant M_{2} such that

$$
\left.M_{2}=\sup \left\{\mathcal{O}\left(f ; \int_{0}^{t}|g(t, s, x(s), y(s))| d s\right): t \in \mathbb{R}^{+}, x, y \in E\right)\right\}
$$

Morever,

$$
\lim _{t \rightarrow \infty}\left|\int_{0}^{t}[g(t, s, x(s), y(s))-g(t, s, u(s), v(s))] d s\right|=0
$$

uniformly respect to $x, y \in E$.
$\left(a_{4}\right)$ There exists a positive solution r_{0} of the inequality $\frac{1}{4} \varphi\left(\mathcal{O}\left(f ; 2 r_{0}\right)\right)+M_{1}+\psi\left(M_{2}\right) \leq r_{0}$.
Theorem 4.1. If the assumptions $\left(a_{1}\right)-\left(a_{4}\right)$ are satisfied, then the equation (4.1) has at least one solution $x \in E$.

Proof . Let $F: E \times E \rightarrow E$ be defined by,

$$
F(x, y)(t)=h\left(t, x(t), y(t), \int_{0}^{t} g(t, s, x(s), y(s)) d s\right)
$$

We know that $E \times E$ is a Banach space equipped with the norm,

$$
\|(x, y)\|=\|x\|_{B C\left(\mathbb{R}_{+}\right)}+\|y\|_{B C\left(\mathbb{R}_{+}\right)}
$$

where $\|u\|_{B C\left(\mathbb{R}_{+}\right)}=\sup \{|u(t)|: t \geq 0\}$ and $u \in B C\left(\mathbb{R}_{+}\right)$. It is obvious that $F(x, y)(t)$ is continuous for any $x, y \in B C\left(\mathbb{R}_{+}\right)$.

Let $\bar{B}_{r}=\left\{x \in B C\left(\mathbb{R}_{+}\right):\|x\|_{B C\left(\mathbb{R}_{+}\right)} \leq r\right\}$. By considering conditions of theorem we infer that $F(x, y)$ is continuous on \mathbb{R}^{+}. Now we prove that $F(x, y) \in E$ for any $x, y \in E$. For arbitrarily fixed $t \in \mathbb{R}^{+}$and $f \in F([0, \infty))$ we have

$$
\begin{aligned}
& \mathcal{O}(f ;|F(x, y)(t)|) \\
& \leq \mathcal{O}\left(f ;\left|h\left(t, x(t), y(t), \int_{0}^{\alpha(t)} g(t, s, x(s), y(s)) d s\right)-h(t, 0,0,0)\right|\right) \\
&+\mathcal{O}(f ;|h(t, 0,0,0)|) \\
& \leq \frac{1}{4} \varphi(\mathcal{O}(f ;|x(t)|+|y(t)|))+\psi\left(\left|\int_{0}^{t} g(t, s, x(s), y(s)) d s\right|\right)+M_{1} \\
& \leq \frac{1}{4} \varphi(\mathcal{O}(f ;||x||+||y||))+\psi\left(M_{2}\right)+M_{1} .
\end{aligned}
$$

Thus F is well defined and condition $\left(a_{4}\right)$ implies that $F\left(\bar{B}_{r} \times \bar{B}_{r}\right) \subseteq \bar{B}_{r}$.
Now, we have to prove that F is continuous on $\bar{B}_{r} \times \bar{B}_{r}$. For this, take $(x, y) \in \bar{B}_{r_{0}} \times \bar{B}_{r_{0}}$ and $\varepsilon>0$
arbitrarily. Moreover consider $(p, q) \in \bar{B}_{r_{0}} \times \bar{B}_{r_{0}}$ with $\|(x, y)-(p, q)\|_{B C\left(\mathbb{R}_{+}\right) \times B C\left(\mathbb{R}_{+}\right)}<\frac{\epsilon}{2}$. Then we have

$$
\begin{aligned}
\mathcal{O} & (f ;|F(x, y)(t)-F(p, q)(t)|) \\
= & \mathcal{O}\left(\left.\begin{array}{c}
f ; \\
h\left(t, x(t), y(t), \int_{0}^{t} g(t, s, x(s), y(s)) d s\right) \\
-h\left(t, p(t), q(t), \int_{0}^{t} g(t, s, p(s), q(s)) d s\right)
\end{array} \right\rvert\,\right) \\
\leq & \frac{1}{4} \varphi(\mathcal{O}(f ;|x-p|+|y-q|)) \\
& +\psi\left(\left|\int_{0}^{t}\{g(t, s, x(s), y(s))-g(t, s, p(s), q(s))\} d s\right|\right) \\
\leq & \frac{1}{4} \varphi(\mathcal{O}(f ;\|x-p\|+\|y-q\|)) \\
& +\psi\left(\int_{0}^{t}|g(t, s, x(s), y(s))-g(t, s, p(s), q(s))| d s\right)
\end{aligned}
$$

By applying assumption $\left(a_{1}\right)$ and $\left(a_{3}\right)$ we get for $\epsilon>0$ there exists $T>0$ such that if $t>T$ then $\psi\left(\int_{0}^{t}|g(t, s, x(s), y(s))-g(t, s, p(s), q(s))| d s\right) \leq \frac{\epsilon}{2}$, for any $x, y, p, q \in B C\left(\mathbb{R}_{+}\right)$.
Case 1:
If $t>T$, then we get

$$
\mathcal{O}(f ;|F(x, y)(t)-F(p, q)(t)|) \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \frac{\epsilon}{2}+\frac{\epsilon}{2}\right)\right)+\frac{\epsilon}{2}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Case 2:
If $t \in[0, T]$ then

$$
\mathcal{O}(f ;|F(x, y)(t)-F(p, q)(t)|) \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \frac{\epsilon}{2}+\frac{\epsilon}{2}\right)\right)+\psi(T \hat{\omega})<\frac{\epsilon}{4}+\psi(T \hat{\omega})
$$

where

$$
\hat{\omega}=\sup \left\{\begin{array}{c}
|g(t, s, x, y)-g(t, s, p, q)|: t, s \in[0, T], x, y, p, q \in[-r, r] \\
\|(x, y)-(p, q)\|<\frac{\epsilon}{2}
\end{array}\right\}
$$

Since g is continuous on $[0, T] \times[0, T] \times[-r, r] \times[-r, r]$ therefore $\hat{\omega} \rightarrow 0$ as $\epsilon \rightarrow 0$ i.e. since $\epsilon \rightarrow 0$ gives $T \hat{\omega} \rightarrow 0$ therefore $\psi_{2}(T \hat{\omega}) \rightarrow 0$.

Thus F is a continuous function from $\bar{B}_{r} \times \bar{B}_{r}$ into \bar{B}_{r}.
We have, $T, \epsilon \in \mathbb{R}_{+}$and X_{1}, X_{2} are arbitrary non-empty subset of \bar{B}_{r} and let $t, s \in[0, T]$ such that $|t-s| \leq \epsilon$.

Without loss of generality we can assume that $t<s$. Also let $x \in X_{1}, y \in X_{2}$ and

$$
\begin{aligned}
\hat{K} & =T \sup \{\mid g(t, s, x(s), y(s) \mid: t, s \in[0, T], x, y \in[-r, r]\}, \\
\omega^{T}(x, \epsilon) & =\sup \{|x(t)-x(s)|: t, s \in[0, T],|t-s| \leq \epsilon,\}, \\
\omega^{T}(y, \epsilon) & =\sup \{|y(t)-y(s)|: t, s \in[0, T],|t-s| \leq \epsilon,\}, \\
\omega_{r}^{T}(h, \epsilon) & =\sup \left\{\begin{array}{c}
|h(t, x, y, z)-h(s, x, y, z)|: t, s \in[0, T], \\
|t-s| \leq \epsilon, x, y \in[-r, r], z \in[-\hat{K}, \hat{K}]
\end{array}\right\}, \\
\omega_{r}^{T}(g, \epsilon) & =\sup \left\{\begin{array}{c}
|g(t, u, x(u), y(u))-g(s, u, x(u), y(u))|: t, s, u \in[0, T], \\
\left|t_{2}-t_{1}\right| \leq \epsilon, x, y \in[-r, r], z \in[-\hat{K}, \hat{K}]
\end{array}\right\} .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& \mathcal{O}(f ;|F(x, y)(t)-F(x, y)(s)|) \\
& =\mathcal{O}\left(\left.\begin{array}{c}
f ; \\
\\
-h\left(t, x(t), y(t), \int_{0}^{t} g(t, u, x(u), y(u)) d u\right) \\
\left.-h(s), y(s), \int_{0}^{s} g(s, u, x(u), y(u)) d u\right)
\end{array} \right\rvert\,\right) \\
& \leq \mathcal{O}\left(\left.\begin{array}{c|c}
f ; & h\left(t, x(t), y(t), \int_{0}^{t} g(t, u, x(u), y(u)) d u\right) \\
-h\left(t, x(s), y(s), \int_{0}^{t} g(t, u, x(u), y(u)) d u\right)
\end{array} \right\rvert\,\right) \\
& +\mathcal{O}\left(\left.\begin{array}{c}
f ;
\end{array} \begin{array}{c}
h\left(t, x(s), y(s), \int_{0}^{t} g(t, u, x(u), y(u)) d u\right) \\
-h\left(s, x(s), y(s), \int_{0}^{t} g(t, u, x(u), y(u)) d u\right)
\end{array} \right\rvert\,\right) \\
& +\mathcal{O}\left(f ;\left|\begin{array}{c}
h\left(s, x(s), y(s), \int_{0}^{t} g(t, u, x(u), y(u)) d u\right) \\
-h\left(s, x(s), y(s), \int_{0}^{t} g(s, u, x(u), y(u)) d u\right)
\end{array}\right|\right) \\
& +\mathcal{O}\left(f ;\left|\begin{array}{c}
h\left(s, x(s), y(s), \int_{0}^{t} g(s, u, x(u), y(u)) d u\right) \\
-h\left(s, x(s), y(s), \int_{0}^{s} g(s, u, x(u), y(u)) d u\right)
\end{array}\right|\right) \\
& \leq \frac{1}{4} \varphi(\mathcal{O}(f ;|x(t)-x(s)|+|y(t)-y(s)|))+\mathcal{O}\left(f ; \omega_{r}^{T}(h, \epsilon)\right) \\
& +\psi\left(\left|\int_{0}^{t}(g(t, u, x(u), y(u))-g(s, u, x(u), y(u))) d u\right|\right) \\
& +\psi\left(\left|\int_{0}^{t} g(s, u, x(u), y(u)) d u-\int_{0}^{s} g(s, u, x(u), y(u)) d u\right|\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \omega^{T}(x, \epsilon)+\omega^{T}(y, \epsilon)\right)\right)+\mathcal{O}\left(f ; \omega_{r}^{T}(h, \epsilon)\right)+\psi\left(\hat{\alpha} \omega_{r}^{T}(g, \epsilon)\right) \\
& +\psi\left(\left|\int_{0}^{t} g(s, u, x(u), y(u)) d u-\int_{0}^{s} g(s, u, x(u), y(u)) d u\right|\right)
\end{aligned}
$$

By the uniform continuity of h on $[0, T] \times[-r, r] \times[-r, r] \times[-\hat{K}, \hat{K}]$ and g on $[0, T] \times[0, T] \times[-r, r] \times$ $[-r, r]$ we have as $\epsilon \rightarrow 0$, gives $\omega_{r}^{T}(g, \epsilon) \rightarrow 0, \omega_{r}^{T}(h, \epsilon) \rightarrow 0$. Thus as $\epsilon \rightarrow 0$ we have

$$
\left|\int_{0}^{t} g(s, u, x(u), y(u)) d u-\int_{0}^{s} g(s, u, x(u), y(u)) d u\right| \rightarrow 0
$$

which gives

$$
\psi\left(\left|\int_{0}^{t} g(s, u, x(u), y(u)) d u-\int_{0}^{s} g(s, u, x(u), y(u)) d u\right|\right) \rightarrow 0
$$

Now taking the limit as $\epsilon \rightarrow 0$ we have

$$
\mathcal{O}\left(f ; \omega_{0}^{T}\left(F\left(X_{1} \times X_{2}\right)\right)\right) \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \omega_{0}^{T}\left(X_{1}\right)+\omega_{0}^{T}\left(X_{2}\right)\right)\right)
$$

As $T \rightarrow \infty$ we get

$$
\begin{equation*}
\mathcal{O}\left(f ; \omega_{0}\left(F\left(X_{1} \times X_{2}\right)\right)\right) \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \omega_{0}\left(X_{1}\right)+\omega_{0}\left(X_{2}\right)\right)\right) \tag{4.2}
\end{equation*}
$$

For arbitrary $(x, y),(p, q) \in X_{1} \times X_{2}$ and $t \in \mathbb{R}_{+}$we have,

$$
\begin{aligned}
\mathcal{O} & (f ;|F(x, y)(t)-F(p, q)(t)|) \\
\leq & \frac{1}{4} \varphi(\mathcal{O}(f ;|x(t)-p(t)|+|y(t)-q(t)|) \\
& +\psi\left(\left|\int_{0}^{t}\{g(t, u, x, y)-g(t, u, p \cdot q)\} d u\right|\right) \\
\leq & \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \operatorname{diam}\left(X_{1}(t)\right)+\operatorname{diam}\left(X_{2}(t)\right)\right)\right) \\
& +\psi\left(\left|\int_{0}^{t}\{g(t, u, x, y)-g(t, u, p \cdot q)\} d u\right|\right)
\end{aligned}
$$

Since $(x, y),(p, q)$ and t are arbitrary, therefore we have,

$$
\begin{aligned}
\mathcal{O}\left(f ; \operatorname{diam} F\left(X_{1} \times X_{2}\right)(t)\right) \leq & \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \operatorname{diam}\left(X_{1}(t)\right)+\operatorname{diam}\left(X_{2}(t)\right)\right)\right) \\
& +\psi\left(\left|\int_{0}^{t}\{g(t, u, x, y)-g(t, u, p \cdot q)\} d u\right|\right)
\end{aligned}
$$

As $t \rightarrow \infty$, by applying $\left(a_{3}\right)$ we get

$$
\begin{align*}
& \mathcal{O}\left(f ; \limsup _{t \rightarrow \infty} \operatorname{diam} F\left(X_{1} \times X_{2}\right)(t)\right) \tag{4.3}\\
& \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \limsup _{t \rightarrow \infty} \operatorname{diam}\left(X_{1}(t)\right)+\limsup _{t \rightarrow \infty} \operatorname{diam}\left(X_{2}(t)\right)\right)\right)
\end{align*}
$$

From (4.2) and (4.3) we have

$$
\begin{aligned}
& \mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right)\right.\right. \\
&= \mathcal{O}\left(f ; \omega_{0}\left(F\left(X_{1} \times X_{2}\right)\right)+\limsup _{t \rightarrow \infty} \operatorname{diam} F\left(X_{1} \times X_{2}\right)(t)\right) \\
& \leq \mathcal{O}\left(f ; \omega_{0}\left(F\left(X_{1} \times X_{2}\right)\right)+\mathcal{O}\left(f ; \limsup _{t \rightarrow \infty} \operatorname{diam} F\left(X_{1} \times X_{2}\right)(t)\right)\right) \\
& \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \omega_{0}\left(X_{1}\right)+\omega_{0}\left(X_{2}\right)\right)\right) \\
&+\frac{1}{2} \phi\left(\mathcal{O}\left(f ; \limsup _{t \rightarrow \infty} \operatorname{diam}\left(X_{1}(t)\right)+\underset{t \rightarrow \infty}{\limsup } \operatorname{diam}\left(X_{2}(t)\right)\right)\right. \\
& \leq \frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \omega_{0}\left(X_{1}\right)+\omega_{0}\left(X_{2}\right)+\underset{t \rightarrow \infty}{\lim \sup _{\operatorname{diam}}}\left(X_{1}(t)\right)+\limsup _{t \rightarrow \infty} \operatorname{diam}\left(X_{2}(t)\right)\right)\right) \\
&+\left.\frac{1}{4} \varphi\left(\mathcal{O}\left(f ; \limsup _{t \rightarrow \infty} \operatorname{diam}\left(X_{1}(t)\right)+\underset{t \rightarrow \infty}{\limsup } \operatorname{diam}\left(X_{2}(t)\right)\right)+\omega_{0}\left(X_{1}\right)+\omega_{0}\left(X_{2}\right)\right)\right) \\
&= \frac{1}{2} \varphi\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right) .\right.
\end{aligned}
$$

Therefore

$$
\mathcal{O}\left(f ; \mu\left(F\left(X_{1} \times X_{2}\right) \leq \frac{1}{2} \varphi\left(\mathcal{O}\left(f ; \mu\left(X_{1}\right)+\mu\left(X_{2}\right)\right)\right.\right.\right.
$$

Therefore by Corollary 3.6, F has at least a coupled fixed point in the space $E \times E$. Thus, the system of equation (4.1) has at least a solution in $E \times E$.

References

[1] I. Altun, and D. Turkoglu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput. Anal. Appl., 9 (1) (2007), 9-14.
[2] A. Aghajani, J. Banas, and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 20(2)(2013), 345-358.
[3] A. Aghajani, and N. Sabzali, A coupled fixed point theorem for condensing operators with application to system of integral equations, J. Nonlinear Convex Anal., 15(5)(2014), 941-952.
[4] J. Banas, Measures of noncompactness in the space of continuous tempered functions, Demonstratio Math., 14 (1981), 127-133.
[5] J. Banas, and K. Goebel, Measures of noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, p. 60. Dekker, New York (1980).
[6] J. Banaś, and M. Mursaleen, Sequence spaces and measures of noncompactness with applications to differential and integral equations, Springer, New Delhi, 2014.
[7] J. Banaś, D. O'Regan, and K. Sadarangani, On solutions of a quadratic hammerstein integral equation on an unbonded interval, Dynam. Systems Appl., 18 (2009), 251-264.
[8] G. Darbo, Punti uniti i transformazion a condominio non compatto, Rend. Sem. Math. Univ. Padova, 4 (1995), 84-92.
[9] D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, vol. 373 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
[10] M. Javahernia, A. Razani, and F. Khojasteh, Common fixed point of the generalized Mizoguchi-Takahashi's type contractions, Fixed Point Theory and Applications,(2014). doi:10.1186/1687-1812-2014-195
[11] K. Kuratowski, Sur les espaces completes, Fund. Math., 15 (1930), 301-309.
[12] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141(1) (1989), 177-188.
[13] M. Mursaleen, and S.A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in l_{p} spaces, Nonlinear Analysis: Theory, Methods \& Appl., 75(2012), 2111-2115.
[14] M. Mursaleen, and Syed M. H. Rizvi, Solvability of infinite systems of second order differential equations in c_{0} and ℓ_{1} by Meir-Keeler condensing operators, Proc. Amer. Math. Soc., 144(10)(2016), 4279-4289.

[^0]: *Corresponding author
 Email addresses: drhknashine@gmail.com, hemant.nashine@vit.ac.in (Hemant Kumar Nashine*,), mathreza.arab@iausari.ac.ir (Reza Arab), agarwal@tamuk.edu (Ravi P. Agarwal)

