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Abstract

Many time-varying phenomena of various fields in science and engineering can be modeled as a
stochastic differential equations, so investigation of conditions for existence of solution and obtain the
analytical and numerical solutions of them are important. In this paper, the Adomian decomposition
method for solution of the stochastic differential equations are improved. Uniqueness and convergence
of their adapted solutions are reviewed. The efficiency of the method is demonstrated through the
two numerical experiments.
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1. Introduction

Stochastic differential equations (SDEs) are applied in many fields, including economics, theoretical
physics, biology, mathematical finance and etc. [3, 13, 15]. Unfortunately, in many cases analytic
solutions are not available, thus numerical methods are needed to approximate them [5, 6, 9, 12, 18].
In numerical approaches investigation on properties of the solutions of SDEs is valuable [4, 11, 13,
15, 17, 18].

The suggested method by George Adomian, so-called Adomian decomposition method (ADM),
has been developed for solving different kinds of equations in recent years [7, 8, 10, 16]. In [2], the
ADM is employed to solve the stochastic problems which have special importance in engineering and
sciences. For some analytical results about the ADM and some other applications of this method,
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the interested reader can see [1, 7, 14]. One major advantage of the ADM is to find the solution
of linear and nonlinear differential equations without dependence on any small parameter like as
perturbation method. In the ADM, the solution is considered as a sum of an infinite series which
rapidly converges to an accurate solution.

In this paper, we present a new approach to prove the convergence of the ADM applied to SDEs
of the form {

dXt = f(t,Xt)dt+ g(t,Xt)dBt, t ∈ I = [0, T ],
X0 = X . (1.1)

Where X is the known random variable, f and g are some given functions, Bt is 1-dimensional
Brownian motion starting at the origin, and Xt is an unknown stochastic process defined on the
probability space (Ω,F ,P). Also, in this study, we give the computational outcomes via the improved
ADM for solving SDEs, to support our theoretical discussion.

The rest of the paper is organized as follows: In next section, we implement the stochastic
Adomian decomposition method (SADM) for the problem (1.1). In Section 3, we show convergence
of the SADM for a general SDE with an iterative process. In Section 4, the suggested SADM is
applied to some numerical experiments. Finally, Section 5 contains a brief conclusion.

2. Basic Idea for SADM and Preliminaries

By considering Eq. (1.1) and applying the usual integration notation we obtain

Xt = X +

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dBs. (2.1)

The ADM expresses the unknown function Xt by an infinite series [1],

Xt =
∞∑
i=0

X
(i)
t ,

where the components X
(i)
t are usually determined recurrently. Substituting this infinite series in

Eq. (2.1) leads to

∞∑
i=0

X
(i)
t = X +

∫ t

0

f(s,
∞∑
i=0

X(i)
s )ds+

∫ t

0

g(s,
∞∑
i=0

X(i)
s )dBs. (2.2)

The Adomian procedure can be presented as the following:{
X

(0)
t = X ,

X
(n+1)
t =

∫ t
0
f(s,X

(n)
s )ds+

∫ t
0
g(s,X

(n)
s )dBs, n = 0, 1, 2, . . . .

(2.3)

Defining the nth partial sum of the generated sequence {X(i)
t }∞i=0 as S

(n)
t =

∑n
i=0X

(i)
t , consequently,

approximate solution of the Eq. (1.1) with the ADM may be obtained by Xt ≈ limn→∞ S
(n)
t .

Lemma 2.1. (The 1-dimensional Itô’s formula)(see [13]) Let h(t, x) : [0,∞) × R → R belongs to
C2([0,∞)× R), and assume that the stochastic process Xt follows of the SDE (1.1), then we have

dh(t,Xt) =

[
∂h

∂t
(t,Xt) + f(t,Xt)

∂h

∂x
(t,Xt) +

1

2
g2(t,Xt)

∂2h

∂x2
(t,Xt)

]
dt+ g(t,Xt)

∂h

∂x
(t,Xt)dBt.
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Lemma 2.2. (Lipschitz condition) For all t ∈ I = [0, T ] and X, Y ∈ L2(I), there exists a function
g(t) > 0 such that

‖f(t,X)− f(t, Y )‖ ≤ g(t)‖X − Y ‖,

where
∫ T
0
g(t)dt <∞.

3. Convergence of the SADM

In this section first uniqueness of solution has been demonstrated under some conditions. Then,
convergence of the approximate solution obtained with the SADM to the exact solution of Eq. (1.1)
is shown.

Theorem 3.1. Let f(t,Xt) and g(t,Xt) satisfy in the Lipschitz condition, i.e.

‖f(t,Xt)− f(t, Yt)‖ ≤ g1(t)‖Xt − Yt‖,
‖g(t,Xt)− g(t, Yt)‖ ≤ g2(t)‖Xt − Yt‖.

Then, the SDE (1.1) has a unique solution whenever 0 ≤ ζ < 1, where ζ = M(T + T
1
2 ), and

M = max0≤t≤T{g1(t), g2(t)}.

Proof . Let Xt and X∗t be two different solutions of the Eq. (1.1) or correspondingly the Eq. (2.1),
so

‖ Xt −X∗t ‖≤
∥∥∥∫ t

0

[f(s,Xs)− f(s,X∗s )]ds
∥∥∥+

∥∥∥∫ t

0

[g(s,Xs)− g(s,X∗s )]dBs

∥∥∥
≤ ‖Xt −X∗t ‖

(∫ t

0

g1(s)ds+

∫ t

0

g2(s)dBs

)
≤M‖Xt −X∗t ‖(T +

√
T ) = ζ‖Xt −X∗t ‖.

Namely (1 − ζ)‖Xt − X∗t ‖ ≤ 0, since 0 ≤ ζ < 1, then ‖Xt − X∗t ‖ = 0, implies Xt = X∗t and this
completes the proof. �

Theorem 3.2. If for i = 0, 1, 2, · · · there is 0 ≤ ζ < 1 such that ‖X(i+1)
t ‖ ≤ ζ‖X(i)

t ‖, then
∑∞

i=0X
(i)
t

which is obtained by (2.3) as a solution of the Eq. (1.1), converges to the exact solution Xt.

Proof . We have S0
t = X and S

(n)
t =

∑n
i=0X

(i)
t , now we show that {S(n)

t }∞n=0 is a Cauchy sequence
in the Banach space L2(0, T ). For this purpose, one gets

‖S(n+1)
t − S(n)

t ‖ = ‖X(n+1)
t ‖ ≤ ζ‖X(n)

t ‖ ≤ ζ2‖X(n−1)
t ‖ ≤ · · · ≤ ζn+1‖X(0)

t ‖.

Also for n,m ∈ N , m ≥ n we have

‖S(m)
t − S(n)

t ‖ ≤ ‖S
(m)
t − S(m−1)

t ‖+ ‖S(m−1)
t − S(m−2)

t ‖+ · · ·+ ‖S(n+1)
t − S(n)

t ‖
≤
(
ζm + ζm−1 + · · ·+ ζn+1

)
‖X(0)

t ‖

=
ζn+1 − ζm+1

1− ζ
‖X(0)

t ‖,
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hence, limm,n→+∞ ‖S(m)
t − S(n)

t ‖ = 0, i.e., {S(n)
t }∞n=0 is a Cauchy sequence and it implies that

∃St ∈ L2(0, T ), lim
n→+∞

S
(n)
t = St.

On the other hand St = limn→+∞
∑n

i=0X
(i)
t , therefore St is the desired solution for the Eq. (1.1) which

SADM converges to it, and according to the ADM process, St satisfies in the following equation

St = X +

∫ t

0

f(τ, Sτ )dτ +

∫ t

0

g(τ, Sτ )dBτ .

�

4. Illustrative examples

In order to demonstrate the efficiency and accuracy of the presented method in this study, here we
apply the SADM to solve some SDEs.

Example 4.1. Consider the following SDE with initial condition [9],{
Ẋt = aXt + bXtBt,
X0 = X , (4.1)

where the coefficients a and b are constants. The corresponding integral equation to the above
equation is

Xt = X + a

∫ t

0

Xsds+ b

∫ t

0

XsdBs.

Implementation of the SADM for this equation yields,{
X

(0)
t = X ,

X
(n+1)
t = a

∫ t
0
X

(n)
s ds+ b

∫ t
0
X

(n)
s dBs, n = 0, 1, 2, . . . .

(4.2)

From the recursive relation (4.2) and Lemma 2.1 we derive

X
(1)
t =X

(
at+ bBt

)
,

X
(2)
t =X

(
a2
t2

2
+ abtBt +

b2

2

(
B2
t − t

))
,

X
(3)
t =X

(
a3
t3

3!
+ a2b

t2

2
Bt +

ab2

2

(
tB2

t − t2
)

+
b3

6

(
B3
t − 3tBt

))
,

X
(4)
t =X

(
a4
t4

4!
− a2b2 t

3

4
+ b4

t2

8
+ a3b

t3

3!
Bt + a2b2

t2

4
B2
t +

ab3

6

(
tB3

t − 3t2Bt

)
+
b4

24
(B4

t − 6tB2
t )

)
,
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X
(5)
t =X

(
a5
t5

5!
− a3b2 t

4

12
+ ab4

t3

8
+ a4b

t4

4!
Bt − a2b3

t3

4
Bt + b5

t2

8
Bt + a3b2

t3

12
B2
t

+ a2b3
t2

12
B3
t +

ab4

2

( t

12
B4
t −

t2

2
B2
t

)
+
b5

6

(B5
t

20
− t

2
B3
t

))
,

X
(6)
t =X

(
a6
t6

6!
− a4b2 t

5

48
+ a2b4

t4

16
− b6 t

3

48
+ a5b

t5

5!
Bt − a3b3

t4

12
Bt + ab5

t3

8
Bt

+ a4b2
t4

48
B2
t − a2b4

t3

8
B2
t + b6

t2

16
B2
t + a3b3

t3

36
B3
t + a2b4

t2

48
B4
t

+
ab5

2

(
t

60
B5
t −

t2

6
B3
t

)
+
b6

6

(
B6
t

120
− t

8
B4
t

))
,

...

By continuing this process X
(i)
t and consequently S

(i)
t , i = 1, 2, 3, · · · , can be calculated. Namely

S
(2)
t =X

(
1 +

(
(a− b2

2
)t+ bBt

)
+
a2b2

2
+ ξ

(2)
t

)
,

S
(4)
t =X

(
1 +

(
(a− b2

2
)t+ bBt

)
+

(
(a− b2

2
)t+ bBt

)2
2!

+ ξ
(4)
t

)
,

S
(6)
t =X

(
1 +

(
(a− b2

2
)t+ bBt

)
+

(
(a− b2

2
)t+ bBt

)2
2!

+

(
(a− b2

2
)t+ bBt

)3
3!

+ ξ
(6)
t

)
,

where

ξ
(2)
t =abBt +

b2B2
t

2
,

ξ
(4)
t =− a2b2 t

3

4
+ a4

t4

4!
+ a3

t3

3!

(
1 + bBt

)
+ ab2

t2

2
Bt

(
a− b

)
+ b2

t

4
B2
t

(
2a− b2 + a2t

)
+
b3B3

t

3!

(
1 + at

)
+
b4

4!
B4
t ,

ξ
(6)
t =

(
(a2 − 2ab2)2 + a4 − a2b2

) t4
48

+ ab
(

(a− 3b2)2 − 3(a2 + 2b4)
) t3

3!
Bt + (2ab− b3)2 t

2

16
B2
t

+ b3(2a− b2) t
12
B3
t + b4(2 + a2t2)

B4
t

48
+ a5

t5

5!
(1 + bBt) + a3b(a− 2b2)

t4

4!
Bt

+ a2b2(2a+ 3b2)
t3

4!
B2
t + ab3(a− b2) t

2

12
B3
t + b4(2a− b2) t

48
B4
t

+
B5
t b

5

5!
(1 + at) + a6

t6

6!
− a4b2 t

5

48
+ a4b2

t4

48
B2
t + a3b3

t3

36
B3
t +

b6

6!
B6
t ,

are the noise terms. By computing S
(i)
t for sufficiently large value of i, it seems to be reasonable for

approximate the exact solution,

Xt = X exp

(
(a− 1

2
b2)t+ bBt

)
.
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Example 4.2. Let us consider the following SDE,{
Ẋt = 2(t+ 1)Xt + 2XtBt,
X0 = X . (4.3)

Iterative process of the SADM for Eq. (4.3) is{
X

(0)
t = X ,

X
(n+1)
t = 2

∫ t
0
(s+ 1)X

(n)
s ds+ 2

∫ t
0
X

(n)
s dBs, n = 0, 1, 2, . . . .

Using above approach and the 1-dimensional Itô’s formula provide the following successive approxi-
mations,

X
(1)
t =X

(
t2 + 2t+ 2Bt

)
,

X
(2)
t =X

(
t4

2
+ 2t3 + 2t2 − 2t+Bt

(
2t2 + 4t

)
+ 2B2

t

)
,

X
(3)
t =X

(
t6

6
+ t5 + 2t4 − 2t3

3
− 4t2 +Bt

(
t4 + 4t3 + 4t2 − 4t

)
+B2

t

(
2t2 + 4t

)
+

4

3
B3
t

)
,

X
(4)
t =X

(
t8

4!
+
t7

3
+ 4t6 +

t5

3
− 10t4

3
− 4t3 + 2t2 +Bt

(t6
3

+ 2t5 + 4t4 − 4t3

3
− 8t2

)
+B2

t

(
t4 + 4t3 + 4t2 − 4t

)
+B3

t

(4t2

3
+

8t

3

)
+

2

3
B4
t

)
,

...

Thus,

S
(1)
t =X

(
1 +

(
t2 + 2Bt

)
+ 2t

)
,

S
(2)
t =X

(
1 +

(
t2 + 2Bt

)
+

(
t2 + 2Bt

)2
2!

+ 2t2(t+ 1) + 4tBt

)
,

S
(3)
t =X

(
1 +

(
t2 + 2Bt

)
+

(
t2 + 2Bt

)2
2!

+

(
t2 + 2Bt

)3
3!

+ 2t4 +
4

3
t3 − 2t2

+Bt(4t
3 + 4t2) +B2

t

(
2t2 + 4t

)
+

4

3
B3
t

)
,
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S
(4)
t =X

(
1 +

(
t2 + 2Bt

)
+

(
t2 + 2Bt

)2
2!

+

(
t2 + 2Bt

)3
3!

+

(
t2 + 2Bt

)4
4!

+
t7

3
+ 4t6 +

t5

3
− 4t4

3
− 8t3

3
+Bt

(
2t5 + 4t4 +

8t3

3
− 4t2

)
+B2

t

(
4t3 + 6t2

)
+B3

t

(8t

3
+

4

3

)
+

2

3
B4
t

)
,

...

From above results, it is observed that S
(i)
t , i = 1, 2, 3, . . . , have a proper solidarity with the exact

solution Xt = X exp (t2 + 2Bt) of Eq. (4.3) as a part of Maclurin expansion.

5. Conclusion

The Adomian decomposition method has been known to be a powerful scheme for solving many
functional equations. Here, we used a stochastic version of this method for solving some stochastic
differential equations. Also, the uniqueness and convergence of solution established in a special case
of stochastic differential equations under some appropriate assumptions. Finally, two examples are
given to demonstrate the powerfulness of the proposed method.
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