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1. Introduction

Let n ∈ N− {1}. In this note, we consider the 2n-th-order boundary-value problem
[(−1)nu(2n) + (−1)n−1u(2n−2) + · · ·+ u(4)]h(x, u′)− u′′

= [λf(x, u) + µg(x, u) + p(u)]h(x, u′), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0 = u(n)(0) = u(n)(1),

(1.1)

where λ is a positive parameter, µ is a nonnegative parameter, f, g : [0, 1] × R → R are two L1-
Carathéodory functions, p : R → (−∞, 0] is a Lipschitz continuous function with the Lipschitz
constant L > 0 i.e., |p(t1)− p(t2)| ≤ L|t1− t2| for every t1, t2 ∈ R, with p(0) = 0, suppose that the
Lipschitz constant L of the function p satisfies 0 < L < π4, and h : [0, 1]×R → [0,+∞) is a bounded
and continuous function with 0 < m := inf(x,t)∈[0,1]×R h(x, t) ≤ h(x, t) ≤ sup(x,t)∈[0,1]×R h(x, t) = M <
∞.
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Many researchers have studied the existance and multiplicity of solutions for such a problem. For
example, authors in [2], using Ricceri’s Variational Principle [9], established the existence of at least
three weak solutions for the problem{

u′′′′ + αu′′ + βu = λf(x, u) + µg(x, u), x ∈ (0, 1),

u(0) = u(1) = 0 = u′′(0) = u′′(1),

where α, β are real constants, f, g : [0, 1]×R → R are L2- Carethéodory functions and λ, µ > 0. Also
the authors in [6], employing Ricceri’s Variational Principle [9], established the existence of at least
three weak solutions for the problem{

u′′′′h(x, u′)− u′′ = [λf(x, u) + µg(x, u) + p(u)]h(x, u′), x ∈ (0, 1),

u(0) = u(1) = 0 = u′′(0) = u′′(1),

where λ > 0, µ ≥ 0 and f, g, p, h are functions with the same conditions in the problem (1.1).
We also refer the reader to the papers [1, 3, 7], in which existence results for boundary value problems
with nonlinear derivative dependence were established.

2. Preliminaries

The aim of this paper is to establish the existence of a non-empty open interval E ⊆ R and
a positive real number q with the following property: for each λ ∈ E and for each Carathéodory
function g : [0, 1]×R → R sach that sup|ζ|≤s |g(., ζ)| ∈ L1(0, 1) for all s > 0, there is δ > 0 such that,

for each µ ∈ [0, δ], the problem (1.1) admits at least three solutions in X = Hn([0, 1]) ∩Hn−1
0 ([0, 1])

whose norms are less than q.
Our analysis is based on the following critical point theorem.

Theorem 2.1 ([9, Ricceri]). Let X be a reflexive real Banach space, I ⊆ R an interval, Φ : X → R
be a sequentially weakly lower semicontinuous C1 functional, bounded on each bounded subset of X,
whose derivative admits a continuous inverse on X∗, J : X → R be a C1 functional with compact
derivative. Assume that lim∥x∥→+∞(Φ(x) + λJ(x)) = +∞ for all λ ∈ I, and there exists ρ ∈ R such
that

sup
λ∈I

inf
x∈X

(Φ(x) + λ(J(x) + ρ)) < inf
x∈X

sup
λ∈I

(Φ(x) + λ(J(x) + ρ)).

Then, there exist a non-empty open set interval E ⊆ I and a positive real number q with the following
property: for every C1functional Ψ : X → R with compact derivative, there exists τ > 0 such that,
for each µ ∈ [0, τ ], the equation

Φ′(u) + λJ ′(u) + µΨ′(u) = 0

has at least three solutions in X whose norms less than q.
In the proof of our main result we also use the next result to verify the minimax inequality in Theo-
rem2.1.

Theorem 2.2 ([4, Bonanno]). Let X be a non- empty set and Φ, J two real functions on X.
Assume that Φ(x) ≥ 0 for every x ∈ X and there exists u0 ∈ X such that Φ(u0) = J(u0) = 0.
Further, assume that there exist u1 ∈ X, r > 0 such that
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(k1) Φ(u1) > r, (k2) supΦ(x)<r(−J(x)) < r
−J(u1)

Φ(u1)
.

Then, for every v > 1 and for every ρ ∈ R satisfying

sup
Φ(x)<r

(−J(x)) +
r−J(u1)

Φ(u1)
− supΦ(x)<r(−J(x))

v
< ρ < r

−J(u1)

Φ(u1)
,

one has
sup
λ∈R

inf
x∈X

(Φ(x) + λ(J(x) + ρ)) < inf
x∈X

sup
λ∈[0,σ]

(Φ(x) + λ(J(x) + ρ)),

where
σ =

vr

r−J(u1)
Φ(u1)

− supΦ(x)<r(−J(x))
.

Let us introduce some notations which will be used later. Define

Hn([0, 1]) :=
{
u ∈ L2([0, 1]) : u′, u′′, · · · , u(n) ∈ L2([0, 1])

}
,

Hn−1
0 ([0, 1]) :=

{
u ∈ L2([0, 1]) : u′, u′′, · · · , u(n−1) ∈ L2([0, 1]) ,

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0
}
.

Take X = Hn([0, 1]) ∩Hn−1
0 ([0, 1]) =

{
u ∈ L2([0, 1]) : u′, u′′, · · · , u(n) ∈ L2([0, 1]), u(0) = u(1)

= u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0
}
,

endowed with the norm

|||u||| :=
(
∥u′′∥22 + ∥u′′′∥22 + · · ·+ ∥u(n)∥22

) 1
2 , where ∥u∥2 :=

(∫ 1

0

|u(x)|2dx
) 1

2

.

We recall the following Poincaré type inequalities ( [8, Lemma 2.3]):

∥u∥2 ≤
1

π2
∥u′′∥2, (2.1)

∥u′∥2 ≤
1

π
∥u′′∥2, (2.2)

for all u ∈ X. For the norm in Cn−1([0, 1]),

∥u∥∞ := max

{
max
x∈[0,1]

|u(x)|, max
x∈[0,1]

|u′(x)|, · · · , max
x∈[0,1]

|u(n−1)(x)|
}
,

since Cn−1([0, 1]) ⊆ C1([0, 1]), we have the well- known inequality ([10]): ∥u∥∞ ≤ 1

2
∥u′∥2, then, by

(2.2), we have

max
x∈[0,1]

|u(x)| ≤ ∥u∥∞ ≤ 1

2π
∥u′′∥2 ≤

1

2π
|||u|||, (2.3)

for all u ∈ X. The norm ||| · |||, is equivalent with the usual norm of Sobolev space Hn((0, 1)) =
W n,2((0, 1)):
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∥u∥Wn,2 :=
(
∥u∥22 + ∥u′∥22 + ∥u′′∥22 + · · ·+ ∥u(n)∥22

) 1
2 . Because by (2.1) and (2.2) we have

|||u||| =
(
∥u′′∥22 + ∥u′′′∥22 + · · ·+ ∥u(n)∥22

) 1
2

≤
(
∥u∥22 + ∥u′∥22 + ∥u′′∥22 + · · ·+ ∥u(n)∥22

) 1
2

≤
(

1

π4
∥u′′∥22 +

1

π2
∥u′′∥22 + ∥u′′∥22 + · · ·+ ∥u(n)∥22

) 1
2

≤
(

1

π4
+

1

π2
+ 1

) 1
2 (

∥u′′∥22 + · · ·+ ∥u(n)∥22
) 1

2

=

(
1

π4
+

1

π2
+ 1

) 1
2

|||u|||.

We recall that f : [0, 1]× R → R is a Carathéodory function if

(a) the mapping x 7→ f(x, t) is measurable for every t ∈ R;
(b) the mapping t 7→ f(x, t) is continuous for almost every x ∈ [0, 1].

Also if for every ρ > 0 there exists a function ℓρ ∈ L1([0, 1]) such that

sup
|t|≤ρ

|f(x, t)| ≤ ℓρ(x)

for almost every x ∈ [0, 1], then the Carathéodory function f is called L1-Carathéodory function.
Corresponding to f , g, p and h, we introduce the functions F , G,P and H, respectively, as follows

F : [0, 1]× R → R
(x, t) 7→ F (x, t) :=

∫ t

0
f(x, ζ)dζ,

G : [0, 1]× R → R
(x, t) 7→ G(x, t) :=

∫ t

0
g(x, ζ)dζ,

P : R → [0,+∞)

t 7→ P (t) := −
∫ t

0
p(ζ)dζ,

H : [0, 1]× R → [0,+∞)

(x, t) 7→ H(x, t) :=
∫ t

0

(∫ τ

0

1

h(x, δ)
dδ

)
dτ,

for all x ∈ [0, 1] , t ∈ R.
If the parts of equation in (1.1) divided by h(x, u′) and then multiplied by an arbitrary function v ∈ X
and then integrated in x ∈ [0, 1] then by n times integration by parts we have∫ 1

0

u(n)(x)v(n)(x)dx+

∫ 1

0

u(n−1)(x)v(n−1)(x)dx+ · · ·+
∫ 1

0

u′′(x)v′′(x)dx

+

∫ 1

0

(∫ u′(x)

0

1

h(x, τ)
dτ

)
v′(x)dx− λ

∫ 1

0

f(x, u(x))v(x)dx

− µ

∫ 1

0

g(x, u(x))v(x)dx−
∫ 1

0

p(u(x))v(x)dx = 0 (2.4)

for all v ∈ X. Then we say that function u ∈ X in (2.4) is a weak solution of (1.1).
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3. Main Results

Put A :=
π4 − L

2π4
, B :=

π2 +m(π4 + L)

2mπ4

and suppose that B ≤ 4Aπ2. We formulate our main result as follows.

Theorem 3.1. Assume that there exist a positive constant r and a function w ∈ X such that

(i)
1

2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx > r;

(ii)
∫ 1

0
sup

t∈[−
√

r
B
,
√

r
B ]

F (x, t) < r

∫ 1

0
F (x,w(x))dx

1
2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx

;

(iii)
1

π4A
lim|t|→+∞ sup

F (x, t)

t2
<

1

θ
for almost every x ∈ [0, 1] and for all t ∈ R, and for some θ

satisfying

θ >
1

r
∫ 1
0 F (x,w(x))dx

1
2
|||w|||2+

∫ 1
0 [H(x,w′(x))+P (w(x))]dx

−
∫ 1

0
sup

t∈[−
√

r
B
,
√

r
B ]

F (x, t)dx
.

Then, there exist a non-empty open interval E ⊆ (0, rθ] and a number q > 0 with the following
property: for each λ ∈ E and for an arbitrary L1-Carathéodory function g : [0, 1]× R → R, there is
τ > 0 such that, whenever µ ∈ [0, τ ], problem (1.1) admits at least three weak solutions whose norms
in X are less than q.

Proof . Our aim is to apply Theorem 2.1 to problem (1.1). Taking X = Hn([0, 1]) ∩ Hn−1
0 ([0, 1])

endowed with the norm

|||u||| =
(
∥u′′∥22 + ∥u′′′∥22 + · · ·+ ∥u(n)∥22

) 1
2 , where ∥u∥2 =

(∫ 1

0

|u(x)|2dx
) 1

2

,

for every u ∈ X. We introduce the following functionals:

Φ : X → R
u 7→ Φ(u) := 1

2
|||u|||2 +

∫ 1

0
[H(x, u′(x)) + P (u(x))]dx,

J : X → R
u 7→ J(u) := −

∫ 1

0
F (x, u(x))dx.

Since X is a reflexive real Banach space and X is compactly embedded into C([0, 1]) then by clas-
sical results and that every norm in Banach space X, is a sequentially weakly lower semicontinuous
functional, hence Φ is a sequentially weakly lower semicontinuous functional and Gâteaux differ-
entiable with compact Gâteaux derivative hence by definition with continuous Gâteaux derivative,
also Φ(u) ≥ 0, for every u ∈ X. By classical results, the functional J is well defined and Gâteaux
differentiable whose Gâteaux derivative is compact hence by definition with continuous derivative.
In particular, for each u ∈ X one has Φ′(u) ∈ X∗, J ′(u) ∈ X∗ and

Φ′(u)(v) =

∫ 1

0

u(n)(x)v(n)(x)dx+ · · ·+
∫ 1

0

u′′(x)v′′(x)dx

+

∫ 1

0

(∫ u′(x)

0

1

h(x, τ)
dτ

)
v′(x)dx−

∫ 1

0

p(u(x))v(x)dx,

J ′(u)(v) =−
∫ 1

0

f(x, u(x))v(x)dx,
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for all v ∈ X.
Hence Φ′ is a strongly monotone operator, because for every u, v ∈ X we have:

(Φ′(u)− Φ′(v), u− v) =Φ′(u)(u− v)− Φ′(v)(u− v)

=

∫ 1

0

(u(n) − v(n))(u(n) − v(n))dx+ · · ·+
∫ 1

0

(u′′ − v′′)(u′′ − v′′)dx

+

∫ 1

0

(∫ u′(x)

v′(x)

1

h(x, τ)
dτ

)
(u′ − v′)dx−

∫ 1

0

(p(u)− p(v))(u− v)dx

≥
(
∥u(n) − v(n)∥22 + · · ·+ ∥u′′ − v′′∥22

)
+

1

M
∥u′ − v′∥22 − L∥u− v∥22

≥
(
∥u(n) − v(n)∥22 + · · ·+ ∥u′′ − v′′∥22

)
− L∥u− v∥22

≥
(
∥u(n) − v(n)∥22 + · · ·+ ∥u′′ − v′′∥22

)
− L

π4
∥u′′ − v′′∥22

≥(1− L

π4
)
(
∥u(n) − v(n)∥22 + · · ·+ ∥u′′ − v′′∥22

)
=2A

(
∥u(n) − v(n)∥22 + · · ·+ ∥u′′ − v′′∥22

)
=2A|||u− v|||2.

That with the assumption 0 < L < π4 we have Φ′ is a strongly monotone operator. Then by Minty-
Browder theorem [11, Theorem 26.A], Φ′ : X → X∗ admits a Lipschitz continuous inverse. Since p
is Lipschitz continuous and satisfies p(0) = 0, while h is bounded away from zero, we have:

|Φ(u)| =
∣∣∣∣12 |||u|||2 +

∫ 1

0

H(x, u′(x))dx+

∫ 1

0

P (u(x))dx

∣∣∣∣
=

∣∣∣∣∣12 |||u|||2 +
∫ 1

0

∫ u′(x)

0

(∫ τ

0

1

h(x, δ)
dδ

)
dτdx−

∫ 1

0

(∫ u(x)

0

p(ζ)dζ

)
dx

∣∣∣∣∣
≥ 1

2
|||u|||2 +

∫ 1

0

1

2M
(u′(x))2dx−

∫ 1

0

L

2
(u(x))2dx ≥ 1

2
|||u|||2 − L

2
∥u∥22

≥ 1

2
|||u|||2 − L

2π4
∥u′′∥22 ≥

(
1

2
− L

2π4

)(
∥u′′∥22 + · · ·+ ∥u(n)∥22

)
= A|||u|||2.

On the other hand, we have

|Φ(u)| =

∣∣∣∣∣12 |||u|||2 +
∫ 1

0

∫ u′(x)

0

(∫ τ

0

1

h(x, δ)
dδ

)
dτdx−

∫ 1

0

(∫ u(x)

0

p(ζ)dζ

)
dx

∣∣∣∣∣
≤ 1

2
|||u|||2 +

∫ 1

0

1

2m
(u′(x))2dx+

∫ 1

0

L

2
(u(x))2dx

=
1

2
|||u|||2 + 1

2m
∥u′∥22 +

L

2
∥u∥22

≤ 1

2
|||u|||2 + 1

2mπ2
∥u′′∥22 +

L

2π4
∥u′′∥22

≤
(
1

2
+

1

2mπ2
+

L

2π4

)
|||u|||2 = B|||u|||2.
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Since Φ(u) ≥ 0, for all u ∈ X, then we have:

A|||u|||2 ≤ Φ(u) ≤ B|||u|||2. (3.1)

Then Φ is bounded on each bounded subset of X. Furthermore from (iii) there exist two constants

γ, τ ∈ R with 0 < γ <
1

θ
such that

1

π4A
F (x, t) ≤ γt2+ τ for a.e. x ∈ (0, 1) and all t ∈ R. Fix u ∈ X,

then

F (x, u(x)) ≤π4A(γ|u(x)|2 + τ) for all x ∈ (0, 1) (3.2)

Then, for any fixed λ ∈ (0, θ], from (3.1) , (3.2) and (2.1) we have

Φ(u) + λJ(u) ≥ A|||u|||2 − λ

∫ 1

0

F (x, u(x))dx

≥ A|||u|||2 − π4Aλ

∫ 1

0

(γ|u(x)|2 + τ)dx ≥ A|||u|||2 − π4Aλ(
γ

π4
∥u′′∥22 + τ)

≥ A|||u|||2 − π4Aθ(
γ

π4
∥u′′∥22 + τ) ≥ A|||u|||2 − π4Aθ(

γ

π4
|||u|||2 + τ)

= A(1− θγ)|||u|||2 − π4Aθτ

for all u ∈ X and so lim|||u|||→+∞(Φ(u) + λJ(u)) = +∞.
We claim that there exist r > 0 and w ∈ X such that

sup
u∈Φ−1((−∞,r))

(−J(u)) < r
−J(w)

Φ(w)
.

From (3.1) and (2.3), we have

Φ−1((−∞, r)) = {u ∈ X : Φ(u) < r} ⊆ {u ∈ X : A|||u|||2 < r}

⊆ {u ∈ X :
B

4π2
|||u|||2 < r} = {u ∈ X : |||u||| < 2π

√
r

B
}

⊆ {u ∈ X : |u(x)| <
√

r

B
}

and it follows that

sup
u∈Φ−1((−∞,r))

(−J(u)) = sup
u∈Φ−1((−∞,r))

∫ 1

0

F (x, u(x))dx ≤
∫ 1

0

sup
t∈[−

√
r
B
,
√

r
B
]

F (x, t)dx.

Now from (ii) we have

sup
u∈Φ−1((−∞,r))

(−J(u)) < r

∫ 1

0
F (x,w(x))dx

1
2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx

= r
−J(w)

Φ(w)
,

also from (i) we have Φ(w) > r. Next recall from (iii) that

θ >
1

r−J(w)
Φ(w)

− supu∈Φ−1((−∞,r))(−J(u))
,
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choose

α = θ

(
r
−J(w)

Φ(w)
− sup

u∈Φ−1((−∞,r))

(−J(u))

)
,

and note α > 1, also, since

θ >
1

r−J(w)
Φ(w)

− supu∈Φ−1((−∞,r))(−J(u))
,

we have

sup
u∈Φ−1((−∞,r))

(−J(u)) +
1

θ
< r

−J(w)

Φ(w)
,

and so with our choice of α we have

sup
u∈Φ−1((−∞,r))

(−J(u)) +
r−J(w)

Φ(w)
− supu∈Φ−1((−∞,r))(−J(u))

α
< r

−J(w)

Φ(w)
.

Now from Theorem 2.2 (with u0 = 0 and u1 = w) for every ρ ∈ R satisfying

sup
u∈Φ−1((−∞,r))

(−J(u)) +
r−J(w)

Φ(w)
− supu∈Φ−1((−∞,r))(−J(u))

α
< ρ < r

−J(w)

Φ(w)
,

with choice σ = rθ and I = [0, rθ], we have

sup
λ∈R

inf
u∈X

(Φ(u) + λJ(u) + λρ) < inf
u∈X

sup
λ∈[0,rθ]

(Φ(u) + λJ(u) + λρ).

For any fixed L1- Carathéodory function g : [0, 1]× R → R, set

Ψ : X → R
u 7→ Ψ(u) = −

∫ 1

0

∫ u(x)

0
g(x, t)dtdx.

Since X is a reflexive real Banach space and X is compactly embedded into C([0, 1]) then by classical
results, the functional Ψ is well defined and Gâteaux differentiable whose Gâteaux derivative is
compact and continuous, and Ψ′(u) ∈ X∗, at u ∈ X is given by

Ψ′(u)(v) = −
∫ 1

0

g(x, u(x))v(x)dx

for all v ∈ X. Now, all the assumptions of Theorem 2.1, are satisfied. Hence, applying Theorem
2.1 taking into account that the critical points of the functional Φ + λJ + µΨ are exactly the weak
solutions of the problem (1.1), we have that problem (1.1) admits at least three weak solutions in
X = W n−1,2

0 ([0, 1]) ∩W n,2([0, 1]) whose norms in X are less than q. □

Remark 3.2. In Theorem 3.1, the aim of taking p as a non-positive function, that’s Φ(u) =
1

2
|||u|||2 +

∫ 1

0
[H(x, u′(x)) + P (u(x))]dx be nonnegative. Hence if p : R → R be such that Φ ≥ 0

then Theorem 3.1 is satisfied.
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The following lemma which is motivated from [5], will be used in the proof of next corollary.

Lemma 3.3. Let 0 < α < β < 1 and assume that there exist two positive constants c and d satisfying

c < (n− 1)
d

π

[
1

α3
+

1

(1− β)3

] 1
2

, such that

(j) F (x, t) ≥ 0 for each (x, t) ∈ ([0, α] ∪ [β, 1])× [0, d],

(jj)

∫ 1

0

sup
t∈[−c,c]

F (x, t)dx <min

 π2c2

(n− 1)2d2
[

1
α3 +

1
(1−β)3

] ∫ β

α

F (x, d)dx ,

c2

(n− 1)d2
(

(2n−2)!
(n−2)!

)2 [
1

α2n−1 +
1

(1−β)2n−1

] ∫ β

α

F (x, d)dx

 .

Then there exist r > 0 and w ∈ X such that
1

2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx > r and

∫ 1

0

sup
t∈[−

√
r
B
,
√

r
B
]

F (x, t)dx < r

∫ 1

0
F (x,w(x))dx

1
2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx

.

Proof . We put r = Bc2 and

w(x) =



d
∑n−1

i=0 (−1)n−1−i

(
2n− 3− i

n− 1− i

)(
2n− 2

i

)(x
α

)2n−2−i

, x ∈ [0, α),

d, x ∈ [α, β],

d

(1− β)2n−2

[(
2n− 3

n− 1

)
(2n− 2)

∑2n−3
i=0

(−1)n−1−i

2n− 2− i(∑min{i,n−2}
j=max{0,−n+1+i}

(
n− 2

n− 2− j

)(
n− 1

n− 1− i+ j

)
βi−j

)

x2n−2−i +
∑2n−2

i=n−1(−1)i

(
2n− 2

i

)
β2n−2−i

]
, x ∈ (β, 1].

It is easy to see that w ∈ X and, in particular,

4(n− 1)2d2
[
1

α3
+

1

(1− β)3

]
≤ |||w|||2 ≤ (n− 1)d2

(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1
+

1

(1− β)2n−1

]
.

Since

w′(x) =


(−1)n−1knd

α2n−2
xn−2(x− α)n−1, x ∈ [0, α),

0, x ∈ [α, β],
(−1)n−1knd

(1− β)2n−2
(x− 1)n−2(x− β)n−1, x ∈ (β, 1],
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that kn is a real constant dependent on n, then 0 ≤ w(x) ≤ d for each x ∈ [0, 1]. Hence taking into

account that c < (n− 1)
d

π

[
1

α3
+

1

(1− β)3

] 1
2

and (3.1), one has

r = Bc2 <
Bd2

π2
(n− 1)2

[
1

α3
+

1

(1− β)3

]
≤ B

4π2
|||w|||2 ≤ A|||w|||2

≤ 1

2
|||w|||2 +

∫ 1

0

[H(x,w′(x)) + P (w(x))]dx ≤ B|||w|||2

≤ (n− 1)Bd2
(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1
+

1

(1− β)2n−1

]
.

Since 0 ≤ w(x) ≤ d for each x ∈ [0, 1], condition (j) ensures that∫ α

0

F (x,w(x))dx+

∫ 1

β

F (x,w(x))dx ≥ 0.

Moreover, if
∫ 1

0
sup

t∈[−
√

r
B
,
√

r
B
]
F (x, t)dx ≥ 0, from (jj) and r = Bc2 and the above inequality we

have

0 ≤
∫ 1

0

sup
t∈[−

√
r
B
,
√

r
B
]

F (x, t)dx

<
c2

(n− 1)d2
(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1
+

1

(1− β)2n−1

] ∫ β

α

F (x, d)dx

≤ Bc2

(n− 1)Bd2
(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1
+

1

(1− β)2n−1

] ∫ 1

0

F (x,w(x))dx

≤ r

∫ 1

0
F (x,w(x))dx

1
2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx

.

On the other hand, if
∫ 1

0
sup

t∈[−
√

r
B
,
√

r
B
]
F (x, t)dx < 0, from B ≤ 4Aπ2 we have

∫ 1

0

sup
t∈[−

√
r
B
,
√

r
B
]

F (x, t)dx <
π2c2

(n− 1)2d2
[

1
α3 +

1
(1−β)3

] ∫ β

α

F (x, d)dx

≤ π2Bc2

4Aπ2d2(n− 1)2
[

1
α3 +

1

(1− β)3

] ∫ β

α

F (x, d)dx

≤
Bc2

∫ 1

0
F (x,w(x))dx

4Ad2(n− 1)2
[

1
α3 +

1
(1−β)3

]
≤ r

∫ 1

0
F (x,w(x))dx

1
2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx

.
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Thus ∫ 1

0

sup
t∈[−

√
r
B
,
√

r
B
]

F (x, t)dx < r

∫ 1

0
F (x,w(x))dx

1
2
|||w|||2 +

∫ 1

0
[H(x,w′(x)) + P (w(x))]dx

,

so the proof is complete. □ We prove the following corollary with help of the above lemma.

Corollary 3.4. Let 0 < α < β < 1 and assume that there exist two positive constants c and d

satisfying c < (n− 1)
d

π

[
1

α3
+

1

(1− β)3

] 1
2

, such that:

(j) F (x, t) ≥ 0 for each (x, t) ∈ ([0, α] ∪ [β, 1])× [0, d],

(jj) ∫ 1

0

sup
t∈[−c,c]

F (x, t)dx <min

 π2c2

(n− 1)2d2
[

1
α3 +

1
(1−β)3

] ∫ β

α

F (x, d)dx,

c2

(n− 1)d2
(

(2n−2)!
(n−2)!

)2 [
1

α2n−1 +
1

(1−β)2n−1

] ∫ β

α

F (x, d)dx

 ,

(jjj)
1

π4A
lim|t|→+∞ sup

F (x, t)

t2
<

1

θ
for almost every x ∈ [0, 1] and for all t ∈ R, and for some θ

satisfying

θ >
1

min

{
π2c2

(n−1)2d2
[

1
α3+

1
(1−β)3

] ∫ β
α F (x, d)dx,

c2
∫ β
α F (x,d)dx

(n−1)d2
(

(2n−2)!
(n−2)!

)2[
1

α2n−1+
1

(1−β)2n−1

]
}

−
∫ 1
0 supt∈[−c,c] F (x, t)dx

.

Then, there exist a non-empty open interval E ⊆ (0, rθ] and a number q > 0 with the following
property: for each λ ∈ E and for an arbitrary L1-Carathéodory function g : [0, 1]× R → R, there is
τ > 0 such that, whenever µ ∈ [0, τ ], problem (1.1) admits at least three weak solutions whose norms
in X are less than q.

Proof . From Lemma 3.3 we see that assumptions (i) and (ii) of Theorem 3.1 are fulfilled for w
given in the first of proof of Lemma 3.3. Also from (jjj), one has that (iii) is satisfied. Hence, the
conclusion follows directly from Theorem 3.1. □

Example 3.5. Consider the problem
(−1)nu(2n) + (−1)n−1u(2n−2) + · · ·+ u(4) − u′′ [(2 + x) cosu′ + sinu′] + 3u

= λf(x, u) + µg(x, u), x ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = · · · = u(n−2)(0) = u(n−2)(1) = 0 = u(n)(0) = u(n)(1),

(3.3)

where

f : [0, 1]× R → R

(x, t) 7→ f(x, t) =


−e−t + e−1, (x, t) ∈ [0, 1]× (1,+∞),

0, (x, t) ∈ [0, 1]× [0, 1],

−ett9(t+ 10), (x, t) ∈ [0, 1]× (−∞, 0),
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and g : [0, 1]× R → R is a fixed L1-Carathéodory function.
Here, p(t) = −3t and h(x, t) = [(2 + x) cos t+ sin t]−1 for all x ∈ [0, 1] and t ∈ R. Hence we have

Φ(u) =
1

2
|||u|||2 +

∫ 1

0

[H(x, u′(x) + P (u(x))] dx

=
1

2
|||u|||2 +

∫ 1

0

∫ u′(x)

0

(∫ τ

0

[(2 + x) cos t+ sin t] dt

)
dτdx+

∫ 1

0

(∫ u(x)

0

3ζdζ

)
dx

=
1

2
|||u|||2 +

∫ 1

0

∫ u′(x)

0

[(2 + x) sin τ − cos τ + 1] dτdx+

∫ 1

0

3

2
(u(x))2dx

≥ 1

2
|||u|||2 +

∫ 1

0

∫ u′(x)

0

[(2 + x) sin τ ] dτdx+
3

2
∥u∥22

=
1

2
|||u|||2 +

∫ 1

0

[(2 + x)(− cos(u′(x)) + 1)] dx+
3

2
∥u∥22

≥ 1

2
|||u|||2 + 3

2
∥u∥22 ≥ 0.

Note that

F (x, t) =

∫ t

0

f(x, ζ)dζ =


e−t + (t− 2)e−1, (x, t) ∈ [0, 1]× (1,+∞),

0, (x, t) ∈ [0, 1]× [0, 1],

−ett10, (x, t) ∈ [0, 1]× (−∞, 0).

By choosing c = 1 and d = 5, it is clear that F (x, t) ≥ 0 for all 0 < α < β < 1 and (x, t) ∈

([0, α] ∪ [β, 1]) × [0, d], i.e. (j) is satisfied. Also we have c < (n − 1)
d

π

[
1

α3
+

1

(1− β)3

] 1
2

, for all

n ∈ N− {1}. On the other hand∫ 1

0

sup
t∈[−c,c]

F (x, t)dx =

∫ 1

0

max

{
sup
t∈[0,c]

(0), sup
t∈[−c,0)

(−ett10)

}
dx

=

∫ 1

0

0dx = 0

<
(e−5 + 3e−1)(β − α)

25(n− 1)
(

(2n−2)!
(n−2)!

)2 [
1

α2n−1 +
1

(1−β)2n−1

]

= min


π2c2

∫ β

α
F (x, d)dx

(n− 1)2d2
[

1
α3 +

1
(1−β)3

] , c2
∫ β

α
F (x, d)dx

(n− 1)d2
(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1 +
1

(1−β)2n−1

]
 .

So (jj)is satisfied. Also since lim|t|→+∞ sup
F (x, t)

t2
= 0, then (jjj) holds. Now we can apply Corollary

3.4 for every

θ >

25(n− 1)

(
(2n− 2)!

(n− 2)!

)2 [
1

α2n−1 +
1

(1−β)2n−1

]
(e−5 + 3e−1)(β − α)

.

Then problem (3.3), admits at least three weak solutions.
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