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Abstract

In this paper, we establish the existence of at least three weak solutions for some one-dimensional
2n-th-order equations in a bounded domain. A particular case and a concrete example are then
presented.
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1. Introduction

Let n € N — {1}. In this note, we consider the 2n-th-order boundary-value problem

[(_ )nu(Qn ( ) (2n 2) 44 u(4)}h(:c,u’) — "

= M (@, u) + pg(z,u) + p(w)]h(z, u'), z€(0,1), (L1)
u(0) = u(1) = /(0) = /(1) = - = w72 (0) = w72 (1) = 0 = u™(0) = ul" (1),

where ) is a positive parameter, p is a nonnegative parameter, f,g : [0,1] x R — R are two L'-
Carathéodory functions, p : R — (—00,0] is a Lipschitz continuous function with the Lipschitz
constant L > 0 1i.e., |p(t;) —p(te)| < L|t; —to| for every t1,t, € R, with p(0) = 0, suppose that the
Lipschitz constant L of the function p satisfies 0 < L < 7*, and h : [0,1] X R — [0, +00) is a bounded
and continuous function with 0 < m := inf(, e xr M2, 1) < h(2,1) < SUP(, pejo1xr M, 1) = M <
0.
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Many researchers have studied the existance and multiplicity of solutions for such a problem. For
example, authors in [2], using Ricceri’s Variational Principle [9], established the existence of at least
three weak solutions for the problem

{u”” + o + fu = Af(z,u) + pg(z,u), =z € (0,1),
u(0) =u(l) =0 =1u"(0) = u"(1),

where a, 3 are real constants, f, g : [0,1] x R — R are L* Carethéodory functions and A, > 0. Also
the authors in [6], employing Ricceri’s Variational Principle [9], established the existence of at least
three weak solutions for the problem

{ul/l/h(x’ W) —u" = [Af(x,u) + pg(z,u) + pu)h(z,u'), z€(0,1),
u(0) = u(1) = 0 = w(0) = w'(1),

where A > 0, x> 0 and f, g, p, h are functions with the same conditions in the problem (1.1)).
We also refer the reader to the papers [1, 3], [7], in which existence results for boundary value problems
with nonlinear derivative dependence were established.

2. Preliminaries

The aim of this paper is to establish the existence of a non-empty open interval £ C R and
a positive real number ¢ with the following property: for each A € E and for each Carathéodory
function g : [0, 1] x R — R sach that supy; <, |9(.,¢)| € L*(0,1) for all s > 0, there is § > 0 such that,
for each p € [0, 0], the problem admits at least three solutions in X = H"([0,1]) N Hy ([0, 1])
whose norms are less than q.
Our analysis is based on the following critical point theorem.

Theorem 2.1 ([9, Ricceri]). Let X be a reflexive real Banach space, I C R an interval, ® : X — R
be a sequentially weakly lower semicontinuous C' functional, bounded on each bounded subset of X,
whose derivative admits a continuous inverse on X*,J : X — R be a C' functional with compact
derivative. Assume that lim g4 (P(z) + AJ(2)) = 400 for all X € I, and there exists p € R such
that

sup inf (®(z) + A(J(x) + p)) < inf sup(P(z) + A(J(z) + p)).

Ael TEX z€X )\gJ
Then, there exist a non-empty open set interval E C I and a positive real number q with the following
property: for every Cfunctional ¥ : X — R with compact derivative, there exists T > 0 such that,
for each p € [0, 7], the equation

O (u) + AJ'(u) + p¥'(u) =0

has at least three solutions in X whose norms less than q.
In the proof of our main result we also use the next result to verify the minimazx inequality in Theo-

rem2.1.

Theorem 2.2 ([4, Bonanno]). Let X be a non- empty set and ®,J two real functions on X.
Assume that ®(x) > 0 for every x € X and there exists ug € X such that ®(ug) = J(up) = 0.
Further, assume that there exist uy € X, r > 0 such that
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(k1) ®(uq) >, (k2) supg(py<r(—J (7)) < T_Q)J(EZ;)

Then, for every v > 1 and for every p € R satisfying

—J(u1)
r d(ur) Sup@(m)@"(_’](x)) —J(ul)
sup (—J(x)) + <p<r )
@(m)lzr( ( )) v P (I)(u1>
one has
sup inf (®(x) + M(J(z) + p)) < inf sup (®(z) + A(J(z) + p)),
AeR z€X 2€X \e[0,0]
where
ur
o

- —J(u '
r @(Eﬂl)) - Sup¢($)<r(_°]<x>>

Let us introduce some notations which will be used later. Define

H™([0,1]) := {u e L*([0,1]) s /", -+ ,u™ € L*([0,1]) },
H}™ 1([0 1)) := {u € L*([0, 1]) u’, - ™Y e L2([0,1))
u(O):u(l):u(O):u(l):---: "= 2)( ) =u""2(1) =0} .
Take X = H"([0,1]) N Hy7'([0,1]) = {u € L*([0,1]) : v/, 0", - -+ ,u™ € L*([0,1]), u(0) = u(1)
=/ (0) = /(1) = =u2(0) =u""2(1) = 0},

endowed with the norm

1
1 1 2
Ml = (118 + "1+ TR where o= ([ fu(o)ar)
0
We recall the following Poincaré type inequalities ( [8, Lemma 2.3]):

1
lullz < —llall2, (2.1)
1
l'lle < ~ |2, (2:2)

for alluw € X. For the norm in C"~'([0,1]),

— (n—1)
il = e { e o)l s o)+ e [0

) 1
since C"1([0,1]) € C*([0,1]), we have the well- known inequality ([10]): ||uls < §||u’||2, then, by
(2.2)), we have

1 1
max [u(@)] < [lufloe < 5wl < 5lllulll (2.3)

for all w € X. The norm ||| - |||, is equivalent with the usual norm of Sobolev space H™((0,1)) =
wm2((0,1)):
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1
[ullwnz == (Nulls + /[3 + lu”l13 +- - + [[u™]|5)*. Because by R.1) and [2.2) we have

[[lulll

"

1
13 + ™13+ -+ lu®™]13)

I
—

NI

< (I + 3+ + )
1
< 1 2 1 "2 "2 (n)22
< (e I+ 1+
7T s
1
1 1 2 2y
(F+51) (e )
11 \?
= (L 1)

We recall that f :[0,1] x R = R is a Carathéodory function if

(a) the mapping x — f(x,t) is measurable for everyt € R;
(b) the mapping t — f(x,t) is continuous for almost every x € [0, 1].

Also if for every p > 0 there exists a function ¢, € L'([0,1]) such that

sup |f(z,1)| < £,(x)

[t|<p

for almost every x € [0, 1], then the Carathéodory function f is called L'-Carathéodory function.
Corresponding to f, g,p and h, we introduce the functions F, G, P and H, respectively, as follows

F:[01]xR —R G:0,1]xR —R
(r,t) = F(x,t) := [ f(x,)d¢, (z,t) — G(z,t) = [ gl

PR —>[0—|—oo) H:[0,1] xR —[0,+00)
t — Pt :—fo (x,t) +— H(x,t) f0<f0h )dT,
forallx €]0,1], t € R.

If the parts of equation in (1.1)) divided by h(z,u") and then multiplied by an arbitrary function v € X
and then integrated in x € [0, 1] then by n times integration by parts we have

1 1 1
/ u™ ()™ (z)dz + / ™ V()™ Y (z)de + - + / u'(z)v" (x)dx
0 0 0

+/01</OU/(w)h(xT)dT>v ) — A /fxu ))o(z)dz
[ ot ueneie = [ plateyeterie =0 (24)

for allv € X. Then we say that function u € X in (2.4]) is a weak solution of (1.1)).
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3. Main Results

Put A= —_, B .=
2m

and suppose that B < 4A7n%. We formulate our main result as follows.

Theorem 3.1. Assume that there exist a positive constant v and a function w € X such that

(i) —H|w||!2+fo (z)) + Plw(z ))]dx>7“'

ol fo w(x))dx

2 su - + F(x, :

()fo Pre-y/z.v/3 Fl@t) <r 1||| TP T e ) + Pl
F(z,t)

(iii) A limyg|—s 400 SUP

satzsfymg

2 < 5 for almost every x € [0,1] and for all t € R, and for some 0

1

0 >
fo ))dx

1
" Tl AT H(xw <x>)+P( e o e 7 ) e t)da
Then, there exist a non-empty open interval E C (0,70] and a number ¢ > 0 with the following
property: for each A € E and for an arbitrary L*-Carathéodory function g : [0,1] x R — R, there is
T > 0 such that, whenever y € [0, 7], problem (1.1)) admits at least three weak solutions whose norms
m X are less than q.

Proof . Our aim is to apply Theorem to problem (1.1). Taking X = H"([0,1]) N Hy ([0, 1])
endowed with the norm

1
1 1 2
el = (J12 4+ |3+ -+ Ju™[2)*,  where Hqu=(/0 |u<x>12dx) ,

for every u € X. We introduce the following functionals:

d: X >R J: X — R
u— ®(u) == 3||ul|]* + fol[H(x,u’(:v)) + P(u(z)]dz, uws J(u):=— fo dz.

Since X is a reflexive real Banach space and X is compactly embedded into C([0, 1]) then by clas-
sical results and that every norm in Banach space X, is a sequentially weakly lower semicontinuous
functional, hence ® is a sequentially weakly lower semicontinuous functional and Gateaux differ-
entiable with compact Gateaux derivative hence by definition with continuous Gateaux derivative,
also ®(u) > 0, for every u € X. By classical results, the functional J is well defined and Gateaux
differentiable whose Gateaux derivative is compact hence by definition with continuous derivative.
In particular, for each u € X one has ®'(u) € X*, J'(u) € X* and

' (u)(v) :/0 u™ (2)v™ (z)dz + - -- —1—/0 u" ()" (z)dx

! /o1 (/0“’@) h(:zcl, T)d7> v'(z)dz — /0 1P(U($))v(x)d:):,
_/Olf(i,u(x))v(x)dx,
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Hence @' is a strongly monotone operator, because for every u,v € X we have:

(®'(u) = ' (v), u —v) =P (u)(u —v) -

o'(v)(u —v)

1 1
:/ (u(n) - U(n))(u(n) . U(n))dl’ I / (u// . U”)(u” . v”)dx
0 0

+ /01 (/v::) e dT) (u —v")dx — /Ol(p(u) — p(v))(u — v)dz

Y]

(I
(Hu(n)
(Hu(n)

u—f»mu
=2A (||u

v

v

=2A|u — v|||*.

— M2+ 4|

— v(")llg [

1
—v"[l3) + 7l = vll5 = Ljlu = vll3

o3+ = 0"(3) = Liju = o]}

L

112 1 112
v ||2) - F”U -v ||2

Ca PR (T )
DI+l = ")

That with the assumption 0 < L < 7* we have @’ is a strongly monotone operator. Then by Minty-

Browder theorem [I1, Theorem 26.A], ¢’

: X — X* admits a Lipschitz continuous inverse. Since p

is Lipschitz continuous and satisfies p(0) = 0, while & is bounded away from zero, we have:

|¢wn=\HMMF+/dHummmMm+AU%M@Mx

s [ [ (]
1 + AQM<mw%

H%b_(—

| \/

\/

_—IH 1* =
= Alllul||*.

On the other hand, we have

@ (u)| =

L
274

s [ ([

o dé) drdz — /0 1 ( /0 " p(g)dg> dz
_ / 1 L

|

1
(u(z))*dz = | lull[* = S ull

P N )

a3+ -+ lu™]3)

e 5)d(5) drdx — /01 (/OU(x)p(C)dC> dx

< gl + [ o+ [ )

1
= Sl + o=l

1 1
< Z 2 "
_QMW|+§5;HHf%

IN

ol (P

11 L ) )
S =B :
(2+%mﬂ+2ﬂ)mmn Il
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Since ®(u) > 0, for all u € X, then we have:
Alllull* < @(u) < BllJull]* (3.1)
Then ® is bounded on each bounded subset of X. Furthermore from (iii) there exist two constants

1 1
v, 7€ Rwith0 < v < 7 such that 4—AF(x,t) <~t?+ 7 forae z € (0,1)and allt € R. Fixu € X,
T
then

F(z,u(z)) <r*A(ylu(z)]* +7) forallz € (0,1) (3.2)

Then, for any fixed A € (0, 6], from (3.1)) , (3.2) and (2.1)) we have
1
() + AT(w) > All[ul||? - /\/ Fla, u(z))da
0

1
g
> Allfull]® - 7T4AA/O (Ylu(@)* + 7)de > Alffull]* = 7 AN u"[l5 + 7)
g gl
> Alllel|l” = 7 A6l [l3 + 7) = Allfull]* = 7* A [[ull* + 7)
= A(L = 09)l|[ul|]* — =*Aor

for all v € X and so limj|jy||j— 4o (®(u) + AJ (1)) = +00.
We claim that there exist r > 0 and w € X such that

sup  (—=J(u)) <r .
u€d~1((—o0,r)) d(w)

From (3.1)) and ({2.3)), we have
P ((—o0,r) = {ueX:®u)<r} C{uecX: Al <r}

B
C {ueX: Slllulll’ <r}={ueX:lulll < 27?\/%}

C {ueX:|u) <\/g}

and it follows that

1 1
sup  (=J(u)) = sup / F(z,u(z))dz < / sup  F(z,t)dz.
ue®—1((—oo,r)) ue®—1((—o0,r)) JO 0 te[—\/%,\/%]
Now from (ii) we have
1
F(z, w(z))dz —J(w
sup (= J(u)) <7y 5 {0 , :Tq)( ),
ued=1((~o0,1)) sl + [y [H(z, w'(z)) + P(w(z))|dz (w)

also from (i) we have ®(w) > r. Next recall from (iii) that

1
0 > 5

—J(w
r @(Eu)) - Supuefb—l((—oo,r))(_‘]<u))
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choose

and note o > 1, also, since

0 > !
—_J(w )
r @(Eu)) - Supuefl’*l((—oo,r))(_“](u))
we have
1 —J(w)
sup —J(u)+-<r ,
uE@*l((foo,r))< () 0 ®(w)
and so with our choice of o we have
—J(w)
"Dty — SUPyucd—1((—oo,r (—J(U)) —J
sup (=J(u)) + P(w) €D~ 1((~o0,m)) < (w)
u€d—1((—o0,r)) o P (w)

Now from Theorem (with ug = 0 and u; = w) for every p € R satisfying

—J(w)
"Sw) ~ SUPeq1((—o0,r)) (— (1)) —J(w)
sup  (=J(u)) + <p<r :
u€d—1((—o0o,r)) « D(w)

with choice o = rf and I = [0, 0], we have

sup inf (®(u) + AJ(u) + Ap) < inf sup (P(u) + AJ(u) + Ap).
AeR uEX uEX Ae[0,r6)

For any fixed L!- Carathéodory function ¢ : [0,1] x R — R, set

v:X —R
u = V() =— fol fou(@ g(z,t)dtdz.

Since X is a reflexive real Banach space and X is compactly embedded into C'([0, 1]) then by classical
results, the functional ¥ is well defined and Gateaux differentiable whose Gateaux derivative is
compact and continuous, and ¥'(u) € X*, at u € X is given by

for all v € X. Now, all the assumptions of Theorem [2.1] are satisfied. Hence, applying Theorem
taking into account that the critical points of the functional ® + A\J + puW¥ are exactly the weak
solutions of the problem (|I.1)), we have that problem admits at least three weak solutions in
X =Wy 2([0,1]) nW™2([0,1]) whose norms in X are less than ¢. O

Remark 3.2. In Theorem the aim of taking p as a mon-positive function, that’s ®(u) =

1
§H|u]|\2 + fol[H(x,u’(:L')) + P(u(x))]dx be nonnegative. Hence if p : R — R be such that ® > 0
then Theorem [3.1) is satisfied.
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The following lemma which is motivated from [5], will be used in the proof of next corollary.
Lemma 3.3. Let0 < a < 8 < 1 and assume that there exist two positive constants ¢ and d satisfying

dl|1 1 2
c < (n— 1); |:$+ m] B such that

(j) F(x,t) >0 for each (x,t) € ([0,a] U [B,1]) x [0,d],
(77)

1 1202 B
/ sup F(z,t)dz <min / F(z,d)dx
0 tel-ed (n =102 | & + | Vo

c? B
-2\ [ 1 ) / F(z,d)dx
(n — 1)d2 <( ) |:a2"*1 + (1—6)2"*1} @

(n—2)!

1
Then there exist r > 0 and w € X such that §|Hw]|\2 + fol [H(z,w'(x)) + P(w(z))]dx > r and

fol F(z,w(x))dz

/1 sup  F(z,t)dz <r- i .
0 tel-\/Z/El sllfwll?+ fo [H(z, w'(x)) + P(w(z)))de

Proof . We put r = Bc? and

13 >”“(i”_‘f’_‘j)(f””)(gf””‘i, re0.a)

d, z € [a, ],
d =3\, on_g (—1)n7 1
w(z) = (1—5)2"2[<n—1 >(2 220 305

min{i,n—2} n—2 n—1 =
<Zj:max{0,—n+1+i} ( n—2 —J > ( n—1 _Z+J ) ﬁ

B Y

]

\

It is easy to see that w € X and, in particular,

T |

Since

—1)"k,d
()",

2n—2 _2(93 - a)n_1> T < [0’ Oz),
w/($) — O YIS [0575]’
(( . )21:5 D e 2w g, e (5,1),
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that k, is a real constant dependent on n, then 0 < w(x) < d for each x € [0,1]. Hence taking into
1
d| 1 1 2
account that ¢ < (n —1)— [5 + i 5)3} and (3.1]), one has

v
Bd? 1 1 B
— B <% (12|~
r c<7r(n ){&34—(1_@1_42

S%H!U}HI“/O [H (z,w'(2)) + P(w(x))]dz < Bl|Jw|||*

<o (22 [k ]

Since 0 < w(x) < d for each x € [0, 1], condition (j) ensures that

llwll]* < Alffwl]]*

/Oa F(z,w(z))dz + /ﬁl F(x,w(z))dz > 0.

Moreover, if f01 SUDye_ /7 /7] F(x,t)dx > 0, from (jj) and r = Bc? and the above inequality we
B> B

have

1
0< / sup  F(z,t)dx
0

tel=/5V/5]
= (2n — 2)! 52 1 1 / ﬂ Flo e
(n—1)d? ( (n— 2){> [azn—l = 5)2"—1} ) 1
- (z, w(z))dz
(n —1)Bd? ( = 2)1') [oﬂn L ;)2”_1} /0 F d

i Jo F (@, wl@)d |
=l Ty G w ) + Plalo))de

On the other hand, if fol SUPe_ /z /) F(x,t)dz < 0, from B < 4A7n? we have
B> B

1 1202 B
/ sup  F(z,t)dz < F(z,d)dx
0 tel—\/5/E (n—1)%d? [% + ﬁ]
2 B2 B
< Toe . / F(z,d)dx
AAT2d2(n — 1)2 | 4 @
=1 [+ (12

Bc? fol F(x,w(z))d
" 4AR (- 12 [ + ]

. fol F(x,w(x))dx |
T Il + fy [H (2w (2)) + Plw(x)))da
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Thus
1
))d
/ sup  F(x,t)dr <r- fo w(z))dz 7
0 tel-y/F /B! S[[wl[[2+ fo [ (2, w!(2)) + Pw(x))]dz

so the proof is complete. [1 We prove the following corollary with help of the above lemma.

Corollary 3.4. Let 0 < a < [ < 1 and assume that there exist two positive constants ¢ and d

1 1 2
satisfying ¢ < (n — 1)% [5 + m] , such that:

(j) F(x,t) >0 for each (z,t) € ([0,a] U [B,1]) x [0,d],

(i)
1 1202 B
/ sup F(z,t)dr <min / F(x,d)dz,
0 te[-c,d (n — 1)2a2 [% + (1_15)3} N
c2 B
5 / F(z,d)dx p ,
2n—2)! o
(n - 1)d2 <((n_2))1 ) |:a2i71 + (1_5;%71}
F(x,t) 1
‘i My 4 00 SUP — for almost every x , 1] and for a , and for some
(777) Al 1] 2 < — for almost € [0,1] and for all t € R, and f 0
satzsfymg
1
0> .
. 12c2 8 c2 fﬁ F(z,d)dz 1
min [L F(z,d)dz, - — | supser_c.oq F(z, t)da
{(n 1)2d2[ Stas 5)3] (n1)d2<(<2:_22))!'>2[a2%1+(1_ﬁ)12n1}} 0 teled

Then, there exist a non-empty open interval E C (0,r0] and a number ¢ > 0 with the following
property: for each X\ € E and for an arbitrary L'-Carathéodory function g : [0,1] x R — R, there is
7 > 0 such that, whenever y € [0, 7], problem (1.1)) admits at least three weak solutions whose norms

m X are less than q.

Proof . From Lemma we see that assumptions (i) and (ii) of Theorem are fulfilled for w
given in the first of proof of Lemma Also from (jjj), one has that (iii) is satisfied. Hence, the

conclusion follows directly from Theorem [3.1] O
Example 3.5. Consider the problem
(=)™ 4 (=1)" =2 4w — 4 [(2 4 ) cos u! + sinu'] + 3u

= )\f(l‘, u) + ,U,g(ﬂi, u),
u(0) = u(1) = /(0) = (1) = - = u0=D(0) = uB(1) = 0 = u(0) = u(1),

xz € (0,1),

(3.3)

where
F:0,]xR =R
—et+et (z,t) €]0,1] x (1, 400),
(z,t) — f(z,t) =10, (z,t) €10,1] x [0,1],
—e't?(t +10), (x,t) € [0,1] x (=00, 0),
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and g :[0,1] x R — R is a fived L*-Carathéodory function.
Here, p(t) = —3t and h(z,t) = [(2+ ) cost 4+ sint] " for all z € [0,1] and t € R. Hence we have

o) = 5llullF + [ (@t (w) + Plu(o)] do

— Sl + /l/ (/ 2+mﬂ%t+$nﬂ&)mﬂm+ll(Aww%mﬁdm

1
:—|||u|||2 // [(2+x) smT—COST—I—l]dea:—I—/ g(u(x))gdx
0
2 ) : 312
Z§WMH+* (2 +2)sinr]drdz + Z|ull;
1 2 0 Jo
=jWM|+A[@+wX cos(u (N+UN$+4W%

1 3
> Slllll® + 5l = o.

Note that
. (-2, (z,t) €0,1] x (1, 400),
F(z,t) —/ f(z,¢)d¢ =<0, (x,t) € [0,1] x [0, 1],
‘ —ett10, (z,t) € [0,1] X (—00,0).
By choosing ¢ = 1 and d = 5, it is clear that F(z,t) > 0 for all 0 < a < f < 1 and (z,t) €
1 1 2
([0,a] U [B,1]) x [0,d], i-e. (j) is satisfied. Also we have ¢ < (n — 1)7(i {043 + a7 5)3} , for all

n € N—{1}. On the other hand
1 1
/ sup F(z,t)dx = / max { sup (0), sup (—et'?) 3 dx
0 te[—cq 0 te[0,q] te[—c,0)

1
:/ Odx =0
0

(e +3e (B - a)

< N2
25(n 1) (G5 ) " [a=r + qegmer)

m2c? ff F(x,d)dz c? ffF z,d)dx

) 2
(n—12d? | &5 + 253 _ (2n —2)! 1 1
|: (1-p8) } (7’L 1)d2 (n — 2)| [a2n71 + (1—5)2"71]

=0, then (jjj) holds. Now we can apply Corollary

= min

F(z,t)

So (jj)is satisfied. Also since limy_, 4o SUpP

13.4] for every
(2n —2)! ’ 1 1
25(77, - 1) < (n — 2)' [azn—l + (1_B)Qn—1i|

(e®+3e H)(B—a)
Then problem ({3.3)), admits at least three weak solutions.

0 >
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