Perfect 3-colorings Of Heawood Graph

Mehdi Alaeiyan ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16846, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

Perfect coloring is a generalization of the notion of completely regular codes, given by Delsarte. A perfect m -coloring of a graph G with m colors is a partition of the vertex set of G into m parts A_{1}, \ldots, A_{m} such that, for all $i, j \in\{1, \ldots, m\}$, every vertex of A_{i} is adjacent to the same number of vertices, namely, $a_{i j}$ vertices, of A_{j}. The matrix $A=\left(a_{i j}\right) i, j \in\{1,2,, m\}$, is called the parameter matrix. We study the perfect 3 -colorings (also known as the equitable partitions into three parts) of the Heawood graph. In particular, we classify all the realizable parameter matrices of perfect 3 -colorings for the Haywood graphs.

Keywords: perfect coloring; parameter matrices; cubic graph 2010 MSC: 05C12, 05C50.

1. Introduction

The concept of a perfect m-coloring plays an important role in graph theory, algebraic combinatorics, and coding theory (completely regular codes). There is another term for this concept in the literature as "equitable partition" (see [11]).

The existence of completely regular codes in graphs is a historical problem in mathematics. Completely regular codes are a generalization of perfect codes. In 1973, Delsarte conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been done on enumerating the parameter matrices of some Johnson graphs, including $\mathrm{J}(6 ; 3)$, $\mathrm{J}(7 ; 3), \mathrm{J}(8 ; 3)$, J $(8 ; 4)$, and $\mathrm{J}(\mathrm{v} ; 3)(\mathrm{v}$ odd) (see $[4,5,9])$. Fon-Der-Flass enumerated the parameter matrices (perfect 2 -colorings) of n-dimensional hypercube Qn for $n<24$. He also obtained some constructions and a necessary condition for the existence of perfect 2 -colorings of the n -dimensional cube with a given parameter matrix (see $[6,7,8]$). In this article, we enumerate the parameter matrices of all perfect 3 -colorings of the Haywood graph.

[^0]Definition 1.1. For a graph G and an integer m , a mapping $T: V(G) \Rightarrow\{1,2, \ldots, m\}$ is called a perfect m-coloring with matrix $A=(a i j) i ; j\{1,2, \ldots, m\}$, if it is surjective, and for all i, j, for every vertex of color i , the number of its neighbors of color j is equal to aij. The matrix A is called the parameter matrix of a perfect coloring. In the case $\mathrm{m}=3$, we call the first color white that show by W , the second color black that show by B , and the third color red that show by R. In this paper, we generally show a parameter matrix by

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

Remark 1.2 In this paper, we consider all perfect 3 -colorings, up to renaming the colors; i.e. we identify the perfect 3 -coloring with the matrices

$$
\left[\begin{array}{lll}
a & c & b \\
g & i & h \\
d & f & e
\end{array}\right],\left[\begin{array}{lll}
e & d & f \\
b & a & c \\
h & g & i
\end{array}\right],\left[\begin{array}{lll}
e & f & d \\
h & i & g \\
b & c & a
\end{array}\right],\left[\begin{array}{lll}
i & h & g \\
f & e & d \\
c & b & a
\end{array}\right],\left[\begin{array}{lll}
a & g & h \\
c & a & b \\
f & d & e
\end{array}\right],
$$

obtained by switching the colors with the original coloring.
The Heawood graph is 3 -regular, an undirected graph with 14 vertices and 21 edges. It has graph diameter 3, graph radius 3, and girth 6. It is a cubic symmetric graph, nonplanar, and Hamiltonian, and the smallest graph is regular with this intersection number. This graph is named Percy John Heawood.

Figure 1: Heawood graph.

2. PRELIMINARIES AND ANALYSIS

In this section, we present some results concerning necessary conditions for the existence of perfect 3 -colorings of connected graph of order 8 with a given parameter matrix A. The simplest necessary condition for the existence of perfect 3 -colorings of a cubic connected graph with the matrix $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ is

$$
a+b+c=d+e+f=g+h+i=3 .
$$

Also, it is clear that we cannot have $\mathrm{b}=\mathrm{c}=0, \mathrm{~d}=\mathrm{f}=0$, or $\mathrm{g}=\mathrm{h}=0$, since the graph is connected. In addition, $\mathrm{b}=0, \mathrm{c}=0, \mathrm{f}=0$ if $\mathrm{d}=0, \mathrm{~g}=0, \mathrm{~h}=0$, respectively.

The number θ is called an eigenvalue of a graph G , if θ is an eigenvalue of the adjacency matrix of this graph. The number λ is called an eigenvalue of a perfect coloring T into three colors with the matrix A , if λ is an eigenvalue of A . The following theorem demonstrates the connection between the introduced notions.

Theorem 2.1 [10] If T is a perfect coloring of a graph G in m colors, then any eigenvalue of T is an eigenvalue of G.

The next theorem can be useful to find the eigenvalues of a parameter matrix.
Theorem 2.2 Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ be a parameter matrix of a k-regular graph. Then the eigenvalues of A are

$$
\lambda_{1,2}=\frac{\operatorname{tr}(A)-k}{2} \pm \sqrt{\left(\frac{\operatorname{tr} a(A)-k}{2}\right)^{2}-\frac{\operatorname{det}(A)}{k}}, \lambda_{3}=k .
$$

Proof: By using the condition $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{d}+\mathrm{e}+\mathrm{f}=\mathrm{g}+\mathrm{h}+\mathrm{i}=\mathrm{k}$, it is clear that one of the eigenvalues is k. Therefore $\operatorname{det}(A)=k \lambda_{1} \lambda_{2}$. From $\lambda_{2}=\operatorname{tr}(A) \lambda_{1} k$, we get $\operatorname{det}(A)=k \lambda_{1}\left(\operatorname{tr}(A)-\lambda_{1}-\right.$ $k)=-k \lambda_{1}^{2}+k(\operatorname{tr}(A) k) \lambda_{1}$. By solving the equation $\lambda^{2}+(k-\operatorname{tr}(A))+\frac{\operatorname{det}(A)}{k}=0$, we obtain

$$
\lambda_{1,2}=\frac{\operatorname{tr}(A)-k}{2} \pm \sqrt{\left(\frac{\operatorname{tra}(A)-k}{2}\right)^{2}-\frac{\operatorname{det}(A)}{k}},
$$

The eigenvalues of the Haywood graph are stated in the next theorem.
Theorem 2.3 [12] The distinct eigenvalues of the Heawood graph are the numbers $3,1+\sqrt{2},-1-$ $\sqrt{2},-3$.

The next proposition gives a formula for calculating the number of white, black and red vertices, in a perfect 3 -coloring.

Proposition 2.4 [3] Let T be a perfect 3-coloring of a graph G with the matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$

- If $b, c, f \neq 0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{c}{g}},|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{f}{h}},|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{g}{c}}
$$

- If $b=0$, then

$$
|W|=\frac{|V(G)|}{\frac{c}{g}+1+\frac{c h}{f g}},|B|=\frac{|V(G)|}{\frac{f}{h}+1+\frac{f g}{c h}},|R|=\frac{|V(G)|}{\frac{h}{f}+1+\frac{g}{c}}
$$

- If $f=0$, then

$$
|W|=\frac{|V(G)|}{\frac{b}{d}+1+\frac{c}{g}},|B|=\frac{|V(G)|}{\frac{d}{b}+1+\frac{c d}{b g}},|R|=\frac{|V(G)|}{\frac{g}{c}+1+\frac{b g}{c d}}
$$

In all of this paper, without restriction of generality, we assume $|W| \leq|B| \leq|R|$.
Heawood graph is a 3 -regular connected graph of order 14. It can be seen that there are only 109 matrices that can be a parameter matrix corresponding to a perfect 3 -coloring in a Heawood graph. By using Remark 1.2 and easy computation shows that we should consider 22 out of 109 matrices. These matrices are listed below.

$$
\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right],
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 3 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
1 & 2 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 1 & 2 \\
2 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
1 & 2 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
2 & 1 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1 \\
2 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 1 & 1 \\
1 & 2 & 0
\end{array}\right],} \\
& {\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0 \\
2 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right],}
\end{aligned}
$$

By using the Theorems 2.1 and 2.2 , it can be seen that only the following matrices can be parameter ones.

$$
A_{1}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right], A_{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

By using the Proposition 2.4, it can be seen just matrix A1 can be a parameter matrix.
Theorem 2.1 There are no perfect 3 -colorings with the matrix A1 for the graph 5 .

3. PERFECT 3-COLORINGS OF HEAWOOD GRAPH

By using the Theorems 2.1 and 2.2 , it can be seen that only the following matrices can be parameter ones.

$$
A_{1}=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right], A_{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

By using the Proposition 2.4, it can be seen just matrix A1 can be a parameter matrix.
Theorem 3.1 There are perfect 3-colorings with the matrix A1 for the Heawood graph.
Proof: As it has been shown in the above paragraph only the matrix A1 can be parameter matrix. By using Proposition 2.4, we can see $|W|=2,|B|=|R|=6$. The Heawood graph has perfect 3colorings with the matrix A1. We label the vertices of Heawood graph clockwise by $a_{1}, a_{2}, \ldots a_{14}$. Consider to the mappings T as follows:

$$
\begin{gathered}
T\left(a_{1}\right)=T\left(a_{6}\right)=1, \\
T\left(a_{3}\right)=T\left(a_{4}\right)=T\left(a_{8}\right)=T\left(a_{9}\right)=T\left(a_{12}\right)=T\left(a_{13}\right)=2,
\end{gathered}
$$

$$
T\left(a_{2}\right)=T\left(a_{5}\right)=T\left(a_{7}\right)=T\left(a_{10}\right)=T\left(a_{11}\right)=T\left(a_{14}\right)=3 .
$$

It is clear that T is a perfect 3 -colorig with the matrix A 1 .
Consider the following figure.

Figure 2: Perfect 3-colorings Heawood graph.

References

[1] Alaeiyan M, and Abedi AA, "Perfect 2-colorings of Johnson graphs J(4, 3), J(4, 3), J(6,3) and Petersen graph," Ars Combinatorial, 2018.
[2] Alaeiyan M, Karami H, "Perfect 2-colorings of the generalized Petersen graph, " Proceedings Mathematical Sciences. Vol 126pp. 1-6, 2016.
[3] Alaeiyan M and Mehrabani A. "Perfect 3-colorings of cubic graphs of order 10, " Electronic Journal of Graph Theory and Applications (EJGTA), (to apear)
[4] Avgustinovich S. V., Mogilnykh I. Yu. "Perfect 2-colorings of Johnson graphs J $(6,3)$ and $J(7,3)$," Lecture Notes in Computer Science. 5228: pp.11-19, 2008.
[5] Avgustinovich S. V., Mogilnykh I. Yu. " Perfect colorings of the Johnson graphs J(8, 3) and J(8, 4) with two colors. Journal of Applied and Industrial Mathematics, vol 5, pp.19-30, 2011.
[6] Fon-Der-Flaass D. G. "A bound on correlation immunity," Siberian Electronic Mathematical Reports Journal, vol 4, pp. 133-135, 2007.
[7] Fon-Der-Flaass D. G. "Perfect 2-colorings of a hypercube, "Siberian Mathematical Journal, vol 4, pp.923-930, 2007.
[8] Fon-Der-Flaass D. G, "Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity". Siberian Mathematical Journal, vol 4, pp: 292-295, 2007.
[9] Gavrilyuk A. L. and Goryainov S.V. On perfect 2-colorings of Johnson graphs J(v,3). Journal of Combinatorial Designs, vol 21pp. 232-252, 2013.
[10] Godsil C and Gordon R. Algebraic graph theory. Springer Science+Business Media, LLC, 2004.
[11] Godsil C., "Compact graphs and equitable partitions," Linear Algebra and Its Application, 1997, pp. 255-266.

[^0]: *Corresponding author
 Email address: alaeiyan@iust.ac.ir (Mehdi Alaeiyan)

