Int. J. Nonlinear Anal. Appl. 12(2021) No. 1, 718-725 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.4910

On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces

N. M. Ali Abbas^a, Shuker Mahmood Khalil^{b,*}

^aMinistry of Education, Directorate General of Education, Baghdad, Al-Kark, 3, Baghdad, Iraq ^bDepartment of Mathematics, College of Science, Basrah University, Basrah, Iraq

Abstract

The aim of this paper is to investigate some new types of neutrosophic continuous mappings like, neutrosophic α^* -continuous mapping $(N\alpha^* - CM)$, neutrosophic irresolute α^* -continuous mapping $(NI\alpha^* - CM)$, and neutrosophic strongly α^* -continuous mapping $(NS\alpha^* - CM)$ are given and some of their properties are studied. Moreover, new kind of neutrosophic contra continuous mappings is investigated in this work, it is called neutrosophic contra α^* -continuous mapping $(NC\alpha^* - CM)$.

Keywords: neutrosophic sets, neutrosophic topological space, neutrosophic α -open sets, neutrosophic α^* -open set.

1. Introduction

In 1998, the connotation of Contra continuity is investigated by Dontchev [6]. Also, the connotation of α^* -open set ($\alpha^* - OS$) is shown [7]. The idea of neutrosophic sets is presented by Smarandache [35], in 2014, the connotations of "neutrosophic closed set "and" neutrosophic continuous function" are given.

The neutrosophic set is studied in topology, algerbra and other fields. It is one of the non-classical sets, such as soft set, fuzzy sets, nano set, permutation sets and so on, see [1, 3, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36]. In this research, we introduce a new types of neutrosophic mappings, they are said neutrosophic α^* -continuous and neutrosophic contra α^* -continuous mappings. Next, we studied and discussed their basic properties.

2. Preliminaries

Here basic definitions and notations, which are used in this section are referred from the references [2, 5, 9, 32, 34].

^{*}Corresponding author

Email addresses: mali.nadia@yahoo.com (N. M. Ali Abbas), shuker.alsalem@gmail.com (Shuker Mahmood Khalil)

Definition 2.1. Assume that $\Psi \neq \emptyset$. A neutrosophic set (NS) θ is defined as

$$\theta = \langle \alpha, \partial_{\varpi}(\alpha), \omega_{\theta}(\alpha), \ell_{\theta}(\alpha) : \alpha \in \Psi \rangle,$$

where $\partial_{\varpi}(\alpha)$ is the degree of membership, $\omega_{\theta}(\alpha)$ is the degree of indeterminacy and $\ell_{\theta}(\alpha)$ is the degree of nonmembership, for all $\alpha \in \Psi$.

Definition 2.2. We say (Ψ, τ) is a neutrosophic topological space (NTS) if and only if τ is a collection of (NSs) in Ψ and it such that:

- (1) $1_N, 0_N \in \tau$, where $0_N = \{ \langle \alpha, (0, 1, 1) \rangle : \alpha \in \Psi \}$ and $1_N = \{ \langle \alpha, (1, 0, 0) \rangle : \alpha \in \Psi \}$,
- (2) $A \cap \beta \in \tau$ for any $\theta, \beta \in \tau$,
- (3) $\bigcup_{i \in I} A_i \in \tau$ for any arbitrary family $\{A_i \mid i \in I\} \subseteq \tau$.

Moreover, any $A \in \tau$ is called neutrosophic open set (NOS) and we say neutrosophic closed set (NCS) for its complement.

Definition 2.3. Assume A is a neutrosophic set in (NTS) X.

- (i) The neutrosophic closure (resp., neutrosophic α -closure) of A is the intersection of all neutrosophic closed (resp., neutrosophic α -closed) sets containing A and is denoted by Ncl(A) (resp., $Ncl_{\alpha}(A)$).
- (ii) The neutrosophic interior (resp., neutrosophic α -interior) of A is the union of all neutrosophic open (resp., neutrosophic α -open) sets are contained in A and is denoted by Nint(A) (resp., Nint_{α}(A)), where A is neutrosophic α -open set (N α – OS) (resp., neutrosophic semi α -open set (NSe α – OS), neutrosophic α^* -open set (N α^* – OS) if $A \subseteq$ Nint(Ncl(Nint(A))) (resp., $A \subseteq$ Ncl(Nint(Ncl(Nint(A)))) or equivalently $A \subseteq$ Ncl(Nint(A)), $A \subseteq$ Nint_{α} (Ncl (Nint_{α}(A))). Also, their complement are called neutrosophic α -closed set (N α – CS) (resp., neutrosophic semi α -closed set (NSe α – CS), neutrosophic α^* – closed set (N α^* – CS).

The symbols of the above neutrosophic sets and their complements are referred as $N\alpha - O(X)$ (resp., NSe $\alpha - O(X), N\alpha^* - O(X)$), $N\alpha - C(X)$ (resp., SNe $\alpha - C(X), N\alpha^* - C(X)$).

Proposition 2.4. (1) If A is $(N\alpha^* - OS)$ and B is (NOS), then $A \cap B$ is $(N\alpha^* - OS)$.

(2) If $\{G_{\lambda}\}_{\lambda\in\Gamma}$ is a collection of $(N\alpha^* - OSs)$, then their union is also $(N\alpha^* - OSs)$.

Theorem 2.5. Assume that X_1 and X_2 are two neutrosophic topological spaces (NTSs), $A_1 \subseteq X_1$ and $A_2 \subseteq X_1$. Then A_1 and A_2 are $(N\alpha^* - OSs)$ (resp., $(N\alpha^* - CSs)$) in X_1 and X_2 , respectively if and only if $A_1 \times A_2$ is $(N\alpha^* - OS)$ (resp., $(N\alpha^* - CS)$) in $X_1 \times X_2$.

Theorem 2.6. Assume that W is a subspace of Z satisfies $G \subseteq W \subseteq Z$. The following assertions hold.

- (i) If $G \in N\alpha^* O(Z)$, then $G \in N\alpha^* O(W)$.
- (ii) If $G \in N\alpha^* O(W)$, then $G \in N\alpha^* O(Z)$, where W is a neutrosophic closed subspace of Z.

Proposition 2.7. (1) Every (NOS) (resp., $N\alpha$ -open, Ncl-open) set is ($N\alpha^* - OS$).

(2) Every $(N\alpha^* - OS)$ is $(NSe\alpha - OS)$.

Definition 2.8. A (NTS) X is called a

- (i) neutrosophic ultra- T_2 (N-ultra- T_2) if for any $t \neq h \in Z$, there are two disjoint neutrosophic closed sets (NDCSs) T, H satisfy $t \in T, h \in H$.
- (ii) neutrosophic ultra normal, if for all neutrosophic closed sets (NCSs) T, F with $T \neq \emptyset \neq F$ and $T \cap F = \emptyset$, there are two (NCSs) D, H with $D \cap H = \emptyset$ and $T \subseteq D, F \subseteq H$.
- (ii) neutrosophic strongly closed if for any homely of (NCSs) that form a cover of X has a finite sub-homely that form a cover of X, too.

3. The new types of neutrosophic α^* -continuity

The new types of neutrosophic α^* -continuity like; neutrosophic irresolute α^* -continuous mapping $(NI\alpha^* - CM)$, neutrosophic stronger α^* -continuous mapping $(NS\alpha^* - CM)$ and neutrosophic contra α^* -continuous mapping $(NC\alpha^* - CM)$ in this work are given. Furthermore, their relationships for these our notions are shown.

Definition 3.1. Assume that W_1 and W_2 are NTSs and $h: W_1 \to W_2$ is any map from W_1 into W_2 . We say h is a neutrosophic α^* -continuous mapping $(N\alpha^* - CM)$ (resp., neutrosophic irresolute α^* continuous mapping $(NI\alpha^* - CM)$, neutrosophic stronger α^* -continuous mapping $(NS\alpha^* - CM)$ mapping if for each G (NOS) (resp. $N\alpha^* - OS$) in W_2 , then $h^{-1}(G)$ is $N\alpha^* - OS$ (resp., (NOS)) in W_1 .

Lemma 3.2. (1) Every $(N\alpha^* - CM)$ is $(NI\alpha^* - CM)$.

(2) Every $(NI\alpha^* - CM)$ is $(NS\alpha^* - CM)$.

Proof. It follows from Proposition 2.7. \Box

Theorem 3.3. Assume that W_1 and W_2 are NTSs and $h: W_1 \to W_2$.

- (i) If h is $(N\alpha^* CM)$, then $h|_G : G \to W_2$ is also, where G is (NOS) of W_1 .
- (ii) If h is $(NI\alpha^* CM)$, then $h|_G : G \to W_2$ is also, where G is (NOS) of W_1 .

(iii) If h is $(NSa^* - CM)$, then $h|_G : G \to W_2$ is also, where G is $(N\alpha^* - OS)$ of W_1 .

Proof. (i) Assume B is an (NOS) in W_2 , since h is $(Na^* - CM)$, $h^{-1}(B)$ is $(N\alpha^* - OS)$ in W_1 , since G is (NOS) in W_1 . Hence, by Proposition 2.4, we have $h^{-1}(B) \cap G$ is $(N\alpha^* - OS)$ in W_1 , but

$$(h|_G)^{-1}(B) = h^{-1}(B) \cap G.$$

Thus by Theorem 2.6, $(h|_G)^{-1}(B)$ is $N\alpha^*$ – open in G. (ii) and (iii) are similar to (i). \Box

Theorem 3.4. Suppose that $h: W_1 \to W_2$ is any mapping and $W_1 = T \cup H$, where T, H are disjoint neutrosophic sets in W_1 . Then,

- (i) h is $(N\alpha^* CM)$ if and only if $h|_T$ and $h|_H$ are also, where T and H are neutrosophic open sets.
- (ii) $h \text{ is } (NI\alpha^* CM) \text{ if and only if } h|_T \text{ and } h|_H \text{ are also, where } T \text{ and } H \text{ are neutrosophic open sets.}$
- (iii) h is ($NS\alpha^* CM$) if and only if $h|_T$ and $h|_H$ are also, where T, H are neutrosophic α^* -open sets.

Proof. (i) Suppose that G is (NOS) in W_2 , since $h|_T$ and $h|_H$ are $(N\alpha^* - CM)$, $(h|_T)^{-1}(G)$ and $(h|_H)^{-1}(G)$ are $(N\alpha^* - OS)$ in W_1 . So, their union is also, see Proposition 2.4. However, $h^{-1}(G) = (h|_T)^{-1}(G) \cup (h|_H)^{-1}(G)$ and hence $h^{-1}(G)$ is $(N\alpha^* - OS)$ in W_1 . Thus h is $(N\alpha^* - CM)$. Sufficiency, follows by using Theorem 3.3. The proofs of (i) and (iii) are the same way of proof (i). \Box

Theorem 3.5. Suppose $h: W_1 \to W_2$ is any mapping and $h_T: h^{-1}(T) \to T$ is defined as $h_T(t) = h(t)$, for any neutrosophic set T in W_2 and $t \in h^{-1}(T)$.

- (i) If h is $(N\alpha^* CM)$, then h_T is also, where T is (NOS) in W_2 .
- (ii) If h is $(NI\alpha^* CM)$ (resp., $(NS\alpha^* CM)$), then h_T is also, where T is neutrosophic closed set (NCS) in W_2 .

Proof. We shall prove the second case. The first case is similar to (ii). Suppose that B is $(N\alpha^* - OS)$ in T. Since T is (NCS) in W_2 , B is $(N\alpha^* - OS)$ in W_2 , see Theorem 2.6(ii). Also, since h is $(NI\alpha^* - CM)$ (resp., $(NS\alpha^* - CM)$), $h^{-1}(B)$ is $(N\alpha^* - OS)$ (resp., (NOS)) in W_1 . Therefore, $h^{-1}(B)$ is $(N\alpha^* - OS)$ (resp., (NOS)) in $h^{-1}(T)$, see Theorem 2.6(i). \Box

Theorem 3.6. Suppose that X_1, X_2, X_3 are three (NTSs) $L : X_1 \to X_2$ and $X_2 \subseteq X_3$. If $L : X_1 \to X_2$ is $(N\alpha^* - CM)$ (resp., (NIa"-CM), $(NS\alpha^* - CM)$), then $L : X_1 \to X_3$ is also.

Proof. Assume that A is(NOS) $(resp., (N\alpha^* - OS))$ in X_3 , then A is (NOS) $(resp., (N\alpha^* - OS))$ in X_2 , see Theorem 2.6(i) and hence $L^{-1}(A)$ is a neutrosophic α^* -open set $(N\alpha^* - OS, neutrosophicopen)$ in X_1 , Now, we recall that the set $\{(x, L(x)), x \in X\} \subseteq X \times Y$ is called the neutrosophic graph of the mapping $L: X \to Y$ and is denoted by NG(L). \Box

Theorem 3.7. Suppose that W_1 and W_2 are two (NTSs), $h : W_1 \to W_2$ is any mapping and $L : W_1 \to W_1 \times W_2$ is a neutrosophic graph mapping of h defined by L(t) = (t, h(t)), for all $t \in W_1$. If L is $(N\alpha^* - CM)$ (resp., (NI $\alpha^* - CM$), $(NS\alpha^* - CM)$), then h is also.

Proof. Assume that K is (NOS) (resp., $(N\alpha^* - OS)$) in W_2 . Since W_1 is (NOS) (resp., $(Na^* - OS)$) in any NTS), $W_1 \times K$ is (NOS) (resp., $(Na^* - oS)$) in $W_1 \times W_2$, see Theorem 2.5. Therefore, $L^{-1}(W_1 \times K) = h^{-1}(K)$ is a neutrosophic a^* -open (resp., $(N\alpha^* - OS)$, (NOS)) in W_1 . Hence, the proof is complete. \Box

4. Neutrosophic contra α^* -continuity:

In this section, we define a new type of neutrosophic α^* -continuity that we call it a neutrosophic contra α^* -continuous mapping ($NC\alpha^*$ -CM) and several propositions related to this new notion are investigated.

Definition 4.1. Assume that W_1 and W_2 are two (NTSs) and $h: W_1 \to W_2$ is a mapping, then h is called a neutrosophic contra α^* -continuous mapping (NC $\alpha^* - CM$). If $h^{-1}(K)$ is (N $\alpha^* - CS$) in W_1 , for any (NOS) K in W_2 .

Theorem 4.2. Let $h: W_1 \to W_2$ be a mapping. The following statements are equivalent:

- (i) h is $(NC\alpha^* CM)$,
- (ii) for each $t \in W_1$ and each (NCS) K in W_2 containing h(t), there exists $(N\alpha^* OS) B$ in W_1 , such that $\in B, h(B) \subseteq K$,
- (iii) for every (NCS) K of W_2 , $h^{-1}(K)$ is $(N\alpha^* OS)$ of W_1 .

Proof. (i) \rightarrow (ii) Assume that $\in W_1$, and K is any (NCS) in W_2 , then K^c is (NOS) in W_2 . Thus $h^{-1}(K^c)$ is $(N\alpha^* - CS)$ in W_1 , but $h^{-1}(K^c) = [h^{-1}(K)]^c$. Hence $h^{-1}(K)$ is $(N\alpha^* - OS)$ in W_1 , and $t \in h^{-1}(K)$. Put $B = h^{-1}(K)$, thus $h(B) \subseteq K$.

(ii) \rightarrow (iii) Assume that K is a neutrosophic closed set in W_2 and $t \in h^{-1}(K)$, then $h(t) \in K$ and hence there exists $(N\alpha^* - OS) B$ containing $t, h(B) \subseteq K$, thus $t \in B = h^{-1}(K)$. So $h^{-1}(K) = \bigcup \{B_t \mid t \in h^{-1}(K)\}$. Hence by Proposition 2.4(1), we get $h^{-1}(K)$ is $(N\alpha^* - OS)$ in W_1 .

(iii) \rightarrow (i) Obviously holds. \Box

Theorem 4.3. The restriction L_A of $(NC\alpha^* - CM)L : X \to Y$ to $(N\alpha^* - CS)A \subseteq X$ is also $(NC\alpha^* - CM)$.

Proof. Assume that B is (NOS) in Y, thus $L^{-1}(B)$ is $(N\alpha^* - CS)$ in X. Since A is $(N\alpha^* - CS)$ in X, $L^{-1}(B) \cap A$ is also $(N\alpha^* - CS)$ in X and hence it is also $(Na^* - CS)$ in A, see Theorem 2.6(i), but $(L|_A)^{-1}(B) = L^{-1}(B) \cap A$, hence the proof is complete. \Box

Theorem 4.4. If $L: X \to Y$ is $(NCa^* - CM)$, then $L_A: L^{-1}(A) \to A$ is also, where A is (NCS) in Y.

Proof. Assume that B is (NCS) in A. Since A is (NCS) in Y, B is (NCS) in Y. Then $L^{-1}(B)$ is $(N\alpha^* - OS)$ in X. Since $L^{-1}(B) \subseteq L^{-1}(A) \subseteq X$, $L^{-1}(B)$ is $(N\alpha^* - OS)$ in $L^{-1}(A)$, see Theorem 2.6(i). \Box

Theorem 4.5. Assume that X and Y are two (NTSs), $L: X \to Y$ is a mapping and $X = A \cup B$, where A, B are disjoint $(N\alpha^* - CSs)$ in X. Then $L|_A$ and $L|_B$ are $(NC\alpha^* - CMs)$ if and only if L is $(NC\alpha^* - CM)$.

Proof. Necessity follows by using Theorem 4.3. Assume that G is (NCS) in Y. Since $L|_A$ and $L|_B$ are $(NC\alpha^* - CMs)$, $(L|_A)^{-1}(G)$ and $(L|_B)^{-1}(G)$ are $(N\alpha^* - OS)$ in X. So, their union is also, see Proposition 2.4. But $L^{-1}(G) = (L|_A)^{-1}(G) \cup (L|_B)^{-1}(G)$ and hence the proof is complete. \Box

Definition 4.6. An (NTS) W is called:

- (i) an $N -_{a^*} T_2$ (resp., N-ultra- $_{a^*} T_2$) space if, for each $t \neq d \in W$, there exist two disjoint $(N\alpha^* OSs)$ (resp., $(N\alpha^* CSs)$) T, D satisfy $t \in T, d \in D$.
- (ii) $anN \alpha^*$ -ultra normal space if for each pair nonempty (NDCSs) can be separated by disjoint $N\alpha^*$ -clopen).

• (iii) a neutrosophic α^* -compact space (Na*C-space) if for each N α^* -open cover of W has a finite subcover.

Theorem 4.7. Suppose that $h: W_1 \to W_2$ is injective $(NC\alpha^* - CM)$ and W_2 is $N - T_2$ - space. Then W_1 is N-ultra- $\alpha \cdot T_2$ space.

Proof. Assume that $t \neq d \in W_1$. Since h is injective, $h(t) \neq h(d)$ in W_2 and since W_2 is $N - T_2$ - space, there exist two (NDOSs) T, D satisfy $h(t) \in T, h(d) \in D$. Since h is $(NC\alpha^* - CM)$, $h^{-1}(T), h^{-1}(D)$ are $(N\alpha^* - CS)$ in W_1 containing t, d and $h^{-1}(T) \cap h^{-1}(D) = \varphi = h^{-1}(T \cap D)$. Hence W_1 is N-ultra- $\alpha \cdot T_2$ space. \Box

Theorem 4.8. Suppose that $L: X \to Y$ is injective $(NC\alpha^* - CM)$ and Y is an N-ultra T_2 -space. Then X is an $N - _{\alpha^*} T_2$ space.

Proof. Take $x \neq y$ in X. Since L is injective, $f(x) \neq f(y)$ in Y. Since Y is an N-ultra T_2 - space, there exist two (NDCSs) A, B satisfy $L(x) \in A$, $L(y) \in B$. Moreover, from L is $(NCa^* - CM)$, we have $L^{-1}(A), L^{-1}(B)$ are $(N\alpha^* - OSs)$ in X containing x, y and $L^{-1}(A) \cap L^{-1}(B) = \emptyset$. Then X is an $N - a^*T_2$ space. \Box

Theorem 4.9. Suppose that $h: W_1 \to W_2$ is a neutrosophic closed injective $(NC\alpha^* - CM)$ and W_2 is a neutrosophic ultra normal space. Then W_1 is $N - \alpha^* - is$ an ultra normal space.

Proof. Assume that A_1, A_2 are two (NCSs) in W_1 with $A_1 \cap A_2 = \varphi$. Since h is a neutrosophic closed mapping, $h(A_1), h(A_2)$ are (NCSs) in W_2 . Since, W_2 is a neutrosophic ultra normal space, there exist two disjoint neutrosophic clopen sets B_1, B_2 in W_2 satisfy $h(A_1) \subseteq B_1, h(A_2) \subseteq B_2$. Hence $A_1 \subseteq h^{-1}(B_1), A_2 \subseteq h^{-1}(B_2)$. From injectivity of h, we get $h^{-1}(B_1), h^{-1}(B_2)$ are disjoint neutrosophic α^* -clopen sets. Thus W_1 is a neutrosophic α^* -ultra normal space. \Box

Theorem 4.10. Suppose that $h: W_1 \to W_2$ is a neutrosophic closed surjective $(NC\alpha^* - CM)$ and W_1 is $(N\alpha^*C - space)$. Then W_2 is a neutrosophic strongly closed space.

Proof. Assume that $\{V_i \mid i \in I\}$ is any neutrosophic closed cover of W_2 . Since h is $(NC\alpha^* - CM)$, $\{h^{-1}(V_i) \mid i \in I\}$ is a neutrosophic α^* -open cover of W_1 , but W_1 is $(N\alpha^*C - \text{space})$, thus W_1 has finite subcover. This means that $W_1 = \bigcup_{i \in I_0} h^{-1}(V_i)$, where $I_0 = \{1, \ldots, n\}$. Since h is neutrosophic surjective, we have

$$h(W_1) = h\left(\bigcup_{j=1}^n h^{-1}(V_i)\right) = \bigcup_{j=1}^n hh^{-1}(V_i)$$

Hence, $W_2 = \bigcup_{i \in I_0} V_i$. Thus W_2 is a neutrosophic strongly closed space. \Box

References

- S. A. Abdul-Ghani, S. M. Khalil, M. Abd Ulrazaq and A. F. Al-Musawi, New branch of intuitionistic fuzzification in algebras with their applications, Inte J. Math. Math. Sci. (2018), Article ID 5712676, 6 pages.
- [2] N. M. Ali Abbas, S. M. Khalil and M. Vigneshwaran, *The neutrosophic strongly open maps in neutrosophic bi-topological spaces*, J. Interdis. Math. to appear.
- [3] N. M. Ali Abbas and S. M. Khalil, On α^{*}-open sets in topological spaces, IOP Conference Series: Materials Science and Engineering, 571 (2019), 012021.
- [4] A. M. Al Musawi, S. M Khalil, M. A. Ulrazaq, Soft (1,2)-strongly open maps in bi-topological spaces, IOP Conference Series: Materials Science and Engineering, 571 (2019), 012002.

- [5] K. Damodharan, M. Vigneshwaran and S. M. Khalil, $N_{\delta * g\alpha}$ -continuous and irresolute functions in neutrosophic topological spaces, Neutrosophic Sets Syst. 38(1) (2020), 439-452.
- [6] J. Dontchev, Survey on preopen sets, Proc. Yatsushiro Topological Conference, (1998), 1-8.
- [7] M. A. Hasan, N. M. Ali Abbas and S. M. Khalil, On soft α^* -open sets and sSoft contra α^* -continuous mappings in soft topological spaces, J. Interdis. Math., to appear.
- [8] M. A. Hasan, S. M. Khalil, and N. M. A. Abbas, Characteristics of the soft-(1, 2)-gprw closed sets in soft bi-topological spaces, Conference, IT-ELA 2020, 9253110, (2020), 103–108.
- Q. H. Imran, F Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi alpha open sets, Neutrosophic Sets Syst. 18 (2017), 37-42.
- [10] S. M. Khalil, Decision making using algebraic operations on soft effect matrix as new category of similarity measures and study their application in medical diagnosis problems, J. Intel. Fuzzy Syst. 37 (2019), 1865-1877.
- S. M. Khalil, Decision making using new category of similarity measures and study their applications in medical diagnosis problems, Afr. Mat. (2021). DOi-10.1007/s13370-020-00866-2
- [12] S. M. Khalil, Dissimilarity fuzzy soft points and their applications, Fuzzy Info. Engin. 8(3) (2016), 281-294.
- [13] S. M. Khalil, Enoch Suleiman and Modhar M. Torki, generated new classes of permutation I/B-algebras, J. Discrete Math. Sci. Crypt. to appear, (2021).
- [14] S. M. Khalil, New category of the fuzzy d-algebras, J. Taibah Univer. Sci. 12(2) (2018), 143-149.
- [15] S. M. Khalil, Soft regular generalized b-closed sets in soft topological spaces, J. Linear Topo. Alg. 3(4) (2014), 195-204.
- [16] S. M. Khalil, The permutation topological spaces and their bases, Basrah J. Sci. (A) 32(1) (2014), 28-42.
- [17] S. M. Khalil and N. M. A. Abbas, On nano with their applications in medical field, AIP Conference Proceedings 2290, 040002 (2020).
- [18] S. M. Khalil and N. M. A. Abbas, Characteristics of the number of conjugacy classes and P-regular classes in finite symmetric groups, IOP Conference Series: Materials Science and Engineering, 571 (2019) 012007.
- [19] S. M. Khalil and N. M. Abbas, Applications on new category of the symmetric groups, AIP Conference Proceedings 2290, 040004 (2020).
- [20] S. M. Khalil, S. A. Abdul-Ghani, Soft M-ideals and soft S-ideals in soft S-algebras, IOP Conf. Series: J. Phys. 1234 (2019) 012100.
- [21] [22] S. M. Khalil and M. Abud Alradha, Soft edge ρ-algebras of the power sets, Inter. J. Appl. Fuzzy Sets Artif. Intel. 7 (2017), 231-243.
- [22] S. M. Khalil and F. Hameed, An algorithm for the generating permutation algebras using soft spaces, J. Taibah Univer. Sci. 12(3) (2018), 299-308.
- [23] S. M. Khalil and F. Hameed, Applications on cyclic soft symmetric groups, IOP Conf. Series: J. Phys. 1530 (2020) 012046.
- [24] S. M. Khalil, F. Hameed, Applications of fuzzy ρ-ideals in ρ-algebras, Soft Comput. 24(18) (2020), 13997-14004.
- [25] S. M. Khalil and F. Hameed, An algorithm for generating permutations in symmetric groups using soft spaces with general study and basic properties of permutations spaces, J. Theor. Appl. Inform. Technol. 96(9) (2018), 2445-2457.
- [26] S. M. Khalil and M. H. Hasab, Decision making using new distances of intuitionistic fuzzy sets and study their application in the universities, INFUS, Adv. Intel. Syst. Comput. 1197 (2020), 390-396.
- [27] S. M. Khalil, and A. N. Hassan, New class of algebraic fuzzy systems using cubic soft sets with their applications, IOP Conf. Series: Materials Science and Engineering, 928 (2020) 042019.
- [28] S. M. Khalil and A. Hassan, Applications of fuzzy soft ρ-ideals in ρ-algebras, Fuzzy Inf. Engin., 10(4) (2018), 467–475.
- [29] S. M. Khalil and A. Rajah, Solving the class equation $x^d = \beta$ in an alternating group for each $\beta \in H \cap C^{\alpha}$ and $n \notin \theta$, J. Assoc. Arab Univer. Basic and Appl. Sci. 10 (2011), 42-50.
- [30] S. M. Khalil and A. Rajah, Solving class equation $x^d = \beta$ in an alternating group for all $n \in \theta \& \beta \in H_n \cap C^{\alpha}$, J. Assoc. Arab Univer. Basic and Appl. Sci. 16 (2014), 38-45.
- [31] S. M. Khalil, M. Ulrazaq, S. Abdul-Ghani and A. F. Al-Musawi, σ-algebra and σ-Baire in fuzzy soft setting, Adv. Fuzzy Syst. (2018), Article ID 5731682, 10 pages.
- [32] A. R. Nivetha, M. Vigneshwaran, N. M. Ali Abbas and S. M. Khalil, On $N_{*g\alpha}$ -continuous in topological spaces of neutrosophy, J. Interdis. Math. to appear (2021).
- [33] S. M. Saied and S. M. Khalil, Gamma ideal extension in gamma systems, J. Discrete Math. Sci. Crypt. to appear (2021).
- [34] A. A. Salama, F. Samarandache and K. Valeri, Neutrosophic closed set and neutrosophic continuous functions, Neutrosophic Sets Syst. 4 (2014), 4-8.

- [35] F. Smarandache, A unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press: Rehoboth, NM, USA, 1999.
- [36] M. M. Torki and S. M. Khalil, New types of finite groups and generated algorithm to determine the integer factorization by excel, AIP Conference Proceedings 2290, 040020 (2020).