
Int. J. Nonlinear Anal. Appl.
Volume 12, Special Issue, Winter and Spring 2021, 97-108
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/IJNAA.2021.4915

Optimizing The Modified Conjugate Gradient
Algorithm
Amel Nashat Shakira∗

aMaster of Mathematics, Technical Institute of Kirkuk, Northern Technical University, Iraq.

(Communicated by Dr. Ehsan Kozegar)

Abstract

In this paper, an efficient GV1-CG is developed to optimizing the modified conjugate gradient algo-
rithm by using a new conjugate property. This is to increase the speed of the convergence and retain
the characteristic mass convergence using the conjugate property. This used property is proposed to
public functions as it is not necessary to be a quadratic and convex function.

The descent sharp property and comprehensive convergence for the proposed improved algo-
rithm have been proved. Numerical results on some test function indicate that the new CG-method
outperforms many of the similar methods in this field.

Keywords: Conjugate gradient, Developed conjugation property, Improved algorithm,
Optimization, Global Convergence, Descent Direction.

1. Introduction

Our interest in the conjugate gradient methods is for two reasons: The first reason is that these
methods are among the oldest and the best techniques to solve large dimensions of the linear equations
systems. The second is that these methods can be adapted to solve problems of the nonlinear
optimizations [13].

There are two types for these methods, the first type is the linear conjugation methods, and it is
also known as quadratic conjugation methods. It is sometimes known as the pure conjugate gradient,
and these methods are used to minimize convex quadratic function.

The second type is known as the nonlinear conjugate gradient method, known as the non-quadratic
conjugate gradient, used to minimize general convex function or nonlinear functions.

The method of linear conjugation was first proposed by Hestenes and Stiefel in 1952 as an iterative
method that was originally used as an alternative to the Gaussian deletion method. Its purpose was
to solve large the linear systems with a matrix of positive parameters on the computer [10].

∗Corresponding Author: Amel Nashat Shakir
Email address: Umayaa75@ntu.edu.com (Amel Nashat Shakira∗)

Received: October 2020 accepted: February 2021

http://dx.doi.org/10.22075/IJNAA.2021.4915

98 Shakir

Both Fletcher and Reeves developed the method of Hestenes and Stiefel, and the method con-
jugate gradient was initially introduced in (1960). It is one of the first known techniques to solving
nonlinear optimization of large dimensions. Over the years, many different methods have been
proposed along the lines of the original formula of this method some of which are widely used in
application [13].

2. Types of Conjugate Gradient Methods

2.1. Classical Conjugate Gradient Methods

The linear conjugate gradient method is an iterative method to solve the problem of miniatur-
ization:

Min f(x) =
1

2
xTGx− bTx+ c (1)

Here, b represents a constant vector, c is a constant value, G is a positive symmetric matrix of type
n× n.

Equation (1) can be obtained in an equivalent manner as a system of linear equations as follows:

Gx = b (2)

This means the unique solution for equation (1) is the same solution for system (2).
Thus, we can prepare the method of gradient conjugation either in an algorithm to solve linear

systems or to find the smallest value for the convex quadratic functions [14].
We note that the gradient of the function f equals the residual which is the negative gradient of

the linear system, i.e.:

f(x) = Gx− b = g(x) (3)

and when x = xk

gx = Gxk − b = g(x) (4)

Also, the conjugate gradient method has the ability to generate a set of vectors with the property
of conjugacy, that it can calculate the new direction dk+1 by using the previous direction dk and the
current gradient gk . It also selects a linearly composition of the steep descent direction (- gk+1the
previous direction dk,we do not need t4o know all the previous directions d0, d1, · · · , dk−1 for the set
of the conjugate; where dk+1 is conjugation with all the previous directions. This property makes
this method require a strong space and calculation:

dk+1 = −gk+1 + βk+1dk (5)

βk+1 represents a numerical quantity and dk+1 and dk conjugate of the matrix G.
The first search direction at the initial pointd0 = −g0[13] is selected. Then, the convergence rate

is linear unless retrieves the iteration [15].
The conjugate gradient method can be extended to include general nonlinear functions using

Tyler´s series in approximation of the function. This use is to show the rank of the objective
function. Near the solution, these functions behave similarly to quadratic functions [9].

Algorithm (1) (Classical Conjugate Gradient Method) There are many steps for algorithm
(1) and they are summarized as follows:

Optimizing The Modified ...
Volume 12, Special Issue, Winter and Spring 2021, 97-108 99

Step 1: Selecting x0, set d0 = −g0, ε > 0 and k = 0.
Step 2: Computing the step length αk > 0 satisfying the Wolfe line search
f(xk + αdk) ≤ f(xk) + c1αg

T
k dk and gTk+1dk ≥ c2g

T
k dk Since 0 < c1 < c2 < 1.

Step 3: Computing xk+1 = xk + αkdk if‖ gk+1 ‖< 0 , then stop.
Step 4: Computing βk+1 and generate trend dk+1 = −gk+1 + βk+1dk.
Step 5: Put k = k + 1 and then go to step 2.
The associated gradient algorithms differ according to the choices of the different parameter βk+1

in step 4, and the most popular formulas are summarized in the following table:

Table 1: Parameters of the estimation model by (OLS) method

βHS
k+1 =

gTk+1yk

gTk yk
Hestenes – Stiefel (HS) 1952

βFR
k+1 =

gTk+1gk+1

gTk gk
Fletcher – Reeves (RE) 1064

βPR
k+1 =

gTk+1yk

gTk gk
Polak – Ribiere (PR) 1969 – Reeves (RE) 1064

βDY
k+1 =

gTk+1gk+1

gTk yk
Dai – Yuan (DY) 1999

2.2. Properties of Classical Conjugate Gradient Algorithms

Conjugate gradient methods have the following properties when the target function is a quadratic
function, and linear search is exact:

1. Conjugacy dTi Gdj = 0, J = 0, 1, 2. · · · , i− 1. . 2. Orthogonally gTi gi = 0, J = 0, 1, 2. · · · , i− 1.
3. Descent dTi gi = −gTi gi = − ‖ gi ‖2< 0.
4. Exact Line Search, ELS gTk+1dk = 0, k ≥ 0.
5. Quadratic Termination Property [18].
6. Multipliers requiring O(n) of the calculations for each recurrence of the approximation to the

minimum meaning that there is a global convergence algorithms) [9].
7. Spand0, d1, · · · , dk+1 = spang0, g1,, gk+1 = spang0, Gg1,, G

kgk+1 making conjugate
gradient methods (Krylov Subspace) [5].

Global Convergence of Descent Method
Let f(x) is continuous function whose continuously is differentiable and regular in the convex set

: L = {x ∈ Rn : f(x) ≤ f(x1)}. Thus, θ is the angle between the search direction dk and −gk.

Then cosθ =
−gTk+1dk

‖ dk ‖‖ gk ‖
where dk satisfies the descentproperty. Also, the sequence is generated by

xk+1 = xk + αkdk converges to the critical point gk = 0 or f(xk)→ −∞ or gk → 0, if θ ≤ π

2
− µ and

the linear search is Set [12].

2.3. Parametric Conjugate Gradient Method

Conjugate gradient algorithm for the parameter was defined in the same way as the Quasi Newton
methods were collected to get on the Broyden or Huang families. These algorithms were defined as
xk+1 = xk + αkdk, and dk+1 = −gk+1 + βk+1dk where parametric βk is found for example: [4]

βDA
k =

gTk+1(yk − Tsk)

sTk − yk
, t > 0 constant (6)

100 Shakir

or [6].

βk =
‖ gk+1 ‖22

λ ‖ gk ‖22 +(1− λ)dTk yk
, λ ∈ (0, 1) (7)

This method has been extended recently by Dai and Yuan for the interval (−∞,∞) [7].

2.4. Modified Conjugate Gradient Methods

Conjugate gradient methods are important in this field because they have an implicit relationship
with Quasi Newton methods. These methods have a square approximate velocity. If the objective
function is quadratic and a linear, the search is exact. Thus, the velocity top linearly in general
function. It needs a matrix and a large arithmetic operation to overcome the Quasi Newton methods
problems. Also, increasing the convergence velocity of the vectors methods conjugate is required.
Thus, it has been a modified version of the conjugation algorithms, for example. Shanno uses the
BFGS formula that is Quasi – Newton as in (8). Here, it is Hk = In×n and calculated as follows:
[17].

dk+1 = −gk+1 +
sTk gk+1

sTk yk
yk +

yTk gk+1

sTk yk
−
(

1 +
yTk yk
sTk yk

)
sTk gk+1

sTk yk
sk (8)

This method is called Memory Less BFGS.
In 2010 Abbo proposed in his thesis [1] another method of conjugate gradient methods called

V 1–CG :

βv1 =

(
1− sTk yk

yTk yk

)
sTk gk+1

sTk yk
(9)

dk+1 = −gk+1 + βv1sk (10)

Shaker (2015) generalized the modified conjugate gradient [16] which was suggested by Abbo in 2010
called V 1–CG and reached the following result:

βGv1 =
yTk gk+1

sTk yk

yTk gk+1

(1 +
θk
sTk yk

)yTk yk

(11)

dk+1 = −gk+1 + βv1sk (12)

2.5. Improved GV1 – CG Algorithm

The objective of improving βGv1 is derived from a convex quadratic function (conditions imposed
on the objective function). In this section, we focus on the GV1– CG Method, where we improve this
it and increase the convergence velocity while maintaining global convergence property [1]. This is
by generalizing a common function which does not have to be a quadratic function and convex. This
generalization is to improve this method and we use developed conjugate property by the world’s
Dai, Liao [8].

dTk+1yk = −tgTk+1sk (13)

Here, the Lipchitz condition yk ≤ Lsk and with L = 1, where Gv2can be written as following:

βGv2 = (1− λ)βHS − λy
T
k gk+1

yTk yk
(14)

Optimizing The Modified ...
Volume 12, Special Issue, Winter and Spring 2021, 97-108 101

where the descent directions of the algorithm is

dTk+1 = gTk+1 + βGv2sTk (15

Here we multiply both side by yk and using equation (13) we find λ as following:

− tgTk+1yk = −gTk+1yk + βGv2sTk yk

− tgTk+1yk = −gTk+1yk +

[
(1− λ)βHS − λy

T
k gk+1

yTk+1yk

]
sTk yk

− tgTk+1yk = −gTk+1yk +

[
(1− λ)

yTk gk+1

sTk yk
− λy

T
k gk+1

yTk yk

]
sTk yk

− tgTk+1yk = −gTk+1yk + yTk gk+1 − λgTk+1yk − λ
gTk+1yks

T
k yk

yTk yk

divide both sides by gTk+1yk to obtain:

− t = −λ− λs
T
k yk
yTk yk

− t = −λ(1 +
sTk yk
yTk yk

)

t = λ(
yTk yk + sTk yk

yTk yk
)

λ =
tyTk yk

yTk yk + sTk yk

1− λ = 1− tyTk yk
yTk yk + sTk yk

=
yTk yk + sTk yk − tyTk yk

yTk yk + sTk yk
=

(1− t)yTk yk + sTk yk
yTk yk + sTk yk

to compensate λ and 1− λ in equation (14) we find βGv2 as follows:

βGv2 =
(1− t)yTk yk + sTk yk

yTk yk + sTk yk

yTk gk+1

sTk yk
− tyTk yk
yTk yk + sTk yk

yTk gk+1

yTk yk

βGv2 = yTk gk+1

[
(1− t)yTk yk + sTk yk
sTk yk(yTk yk + sTk yk)

− t

yTk yk + sTk yk

]
βGv2 = yTk gk+1

[
(1− t)yTk yk + (1− t)sTk yk

sTk yk(yTk yk + sTk yk)

]
βGv2 = (1− t)βHS (16)

Here, t is a positive quantity defined as follows:

t =
(gTk+1sk)2

sTk yk
and that 0 < t < 1

Therefore, the final value of βGv2 and after compensation for t is as follows:

βGv2 =

(
1−

(gTk+1sk)2

sTk yk

)
gTk+1sk

sTk yk
(17)

102 Shakir

Hint, equation (17) indicates a relationship between βGv2 and βHSand βGv2 is a quantity multiplied
by βHS.

Therefore, we can define the search direction of the new improved algorithm as follows:

dk+1 = −gk+1 + βGv2sk (18)

2.5.1. Descent property for GV2 – CG algorithm

Theorem1. Theorem 1 can be explained as follows. In theorem, x satisfies the Wolfe condition
f(xk + αdk) ≤ f(xk) + c1αg

T
k dk and gTk+1dk ≥ c2g

T
k dk where 0 < c1 < c2 < 1 and g satisfies

Lipchitz condition ∀x and that 0 < L < 1 while L2(1 − t)(sTk gk+1)
2

yTk yk
< gTk+1gk+1 true. Then GV2 –

CG algorithm fulfills descent property.
Proof . To prove the theorem, we follow the induction. For the initial direction (k = 1), there are

d1 = −g1 → dTk gk = −gT1 g1 = −‖g1‖22 < 0

Suppose dTk gk < 0 ∀k
Proof dTk+1gk+1 < 0 then

dk + 1Tgk+1 = −gTk+1gk+1 + βGv2sTk gk+1

= −gTk+1gk+1 +

(
(1−

(gTk+1sk)2

sTk yk
)
gTk+1yk

sTk yk
)

)
sTk gk+1

= −gTk+1gk+1 + (yTk gk+1)(s
T
k gk+1)

(
1

sTk yk
−

(gTk+1sk)2

(sTk yk)2

)
= −gTk+1gk+1 + (yTk gk+1)(s

T
k gk+1)

(
sTk yk − (gTk+1sk)2

(sTk yk)2

)
From Lipchitz Condition yTk gk+1 ≤ LsTk gk+1

dTk+1gk+1 ≤ −gTk+1gk+1 + L(sTk gk+1)
2

(
sTk yk − (gTk+1sk)2

(sTk yk)2

)
This, we find sTk yk > 0 from Wolfe condition, yTk yk > 0 and yTk yks

T
k yk and to compensate for them in

the above equation we obtain :

dTk+1gk+1 ≤ −gTk+1gk+1 + L(sTk gk+1)
2

L

(
1−

(gTk+1sk)2

sTk yk

)
yTk yk

 < 0 ∀L ∈ (0, 1)

Le that

dTk+1gk+1 ≤ −gTk+1gk+1 + L(sTk gk+1)
2

(
L(1− t)
yTk yk

)
< 0 ∀L ∈ (0, 1)

Where t =
(gTk+1sk)2

sTk yk
and hence dTk+1gk+1 ≤ 0

Therefore, the search direction resulting from the algorithm GV2 – CG is the descent direction
∀k.

Optimizing The Modified ...
Volume 12, Special Issue, Winter and Spring 2021, 97-108 103

2.5.2. Global Convergence of GV2 – CG

Theorem2. In theorem 2, αk satisfies the Wolfe conditions and f bounded below while dk is a
descent direction ∀ki.e. gTk dk < 0. Also, gk satisfies Lipchitz condition in an open set N containing
the level set L so L ≡ {x; f(x) ≤ f(xk)}, where xk is the starting point then the algorithm (GV2 –
CG) is could stop at stationary point i.e. ‖gk‖2=0 or limk→∞inf‖gk‖2=0.
Proof . This theorem is proved by contradiction i.e. if theory is not correct ‖gk‖ 6= 0 , there exists
a positive constant λ > 0 :

‖gk‖ ≥ λ (19)

then

dTk+1gk+1 = −gTk+1gk+1 + βGv2sTk gk+1

= −gTk+1gk+1 +

(
(1−

(gTk+1sk)2

sTk yk
)
yTk gk+1

sTk yk
)

)
sTk gk+1

= −gTk+1gk+1 +
yTk gk+1

sTk yk
sTk gk+1 −

(gTk+1sk)2

sTk yk

yTk gk+1

sTk yk
sTk gk+1

The second (standard) Wolfe condition gTk+1dk ≥ c2g
T
k dk for sTk gk+1 and Lipchitz condition are used

for:

yTk yk ≤ LsTk yk →
L

yTk yk
≥ 1

sTk yk

Therefore:

dTk+1gk+1 ≥ −gTk+1gk+1 + σL
yTk gk+1

yTk yk
sTk gk

− σL
(gTk+1sk)2

sTk yk

yTk gk+1

yTk yk
sTk gk

= −gTk+1gk+1 + σL

(
1−

(gTk+1sk)2

sTk yk

)
yTk gk+1

yTk yk
sTk gk

we have :

yTk yk = gTk+1gk+1 − 2gTk+1gk+1 + gTk+1gk+1 ≥ gTk+1gk+1 − gTk+1gk+1 = yTk+1gk+1

1 ≥ yTk gk+1

yTk yk

dTk+1gk+1 ≥ −‖gk+1‖2 + ωsTk gk (20)

when ω = σL

(
1−

(gTk+1sk)2

sTk yk

)
divided both side of (20) by ‖gk+1‖22 and square we get :

1

ω2

[
dTk+1gk+1

‖gk+1‖22
+ 1

]2
≥ (gTk sk)2

‖gk+1‖42

We then multiply both sides by ‖gk+1‖42 and use the fact

(gTk sk)2 =‖sk‖22‖gk+1‖22cos2θk

104 Shakir

then

1

ω2

‖gk+1‖42
‖sk‖22

[
dTk+1gk+1

‖gk+1‖22
+ 1

]2
≥ (gTk sk)2

(gTk sk)2
=‖gk‖22cos2θk ≥ λcos2θk

Then the sum for k ≥ 1 is caclculated:

1

ω2

∞∑
k=1

‖gk+1‖22
‖sk‖22

[
dTk+1gk+1

‖gk+1‖22
+ 1

]2 ∞∑
k=1

(gTk sk)2

(gTk sk)2

∞∑
k=1

‖gk‖22cos2θk
∞∑
k=1

λ2cos2θk =∞

Contradiction with Zoutendijk condition [19], therefore‖gk‖2 = 0 or limk→∞ inf‖gk‖2 = 0.

3. Numerical Experiments

In this paragraph, the performed FORTRAN implement for the new term algorithm GV2-CG
is performed in a set of unconstructive optimizing test problems [3]. Then we selected (10) large-
scale test problems forms (see the Appendix). For each function, there is a number of variables for
numerical experiments when n = 100 and n = 1000. Tis is followed by comparing the performance
of GV2 – CG algorithm mentioned in equation (17) with the GV1 – CG algorithm mentioned in
equation (11) [11].

This algorithms in the Wolfe line search conditions are implemented with c1 = 0.001 and c2 = 0.09

where the initial step size α1 =
1

‖g1‖
and initial guess for other iterations i.e. (k > 1x);αk =

αk−1∗
‖dk+1‖
‖dk‖

.

All cases stopping criterion are ‖dk+1‖ < 10−6 ∗ max[1, |fk+1|] and the maximum number of
iteration is 2000.

Our comparison includes the following:
1- NOI: the number of iteration.
2- FGN: number of function and gradient evaluations which are same in these algorithms.
3- LINS: number of calling line search subroutine.
Table (2) shows numerical results for employing (10) test functions of n = 100, and Table (3)

reveals numeric results using (10) test functions when n is1000.
In Table (4), there is a comparison between the percentage of the new algorithm with the GV1

– CG algorithm when n = 100 and when NOI; FGN, and LINS are taking over the GV1-CG tools
as 100%.

Table (5) depicts the same comparison as table (5) but when n equals 1000.

Optimizing The Modified ...
Volume 12, Special Issue, Winter and Spring 2021, 97-108 105

Table 2: Comparison between (NOI; FGN & LINS) methods for the total of (10) Problems with n = 100

Prop.
GV1 – CG GV2 – CG

NOI FGN LINS NOI FGN LINS
1 9 24 8 6 19 6
2 34 53 18 27 50 22
3 7 14 6 4 8 3
4 60 100 39 55 101 45
5 13 23 9 10 19 8
6 63 118 54 30 57 25
7 58 87 28 37 57 19
8 219 438 218 42 74 31
9 14 26 11 13 24 10
10 75 106 30 71 110 38

Total 552 989 421 297 519 207

Table 3: Comparison between (NOI; FGN & LINS) methods for the total of (10) Problems with n = 1000

Prop.
GV1 – CG GV2 – CG

NOI FGN LINS NOI FGN LINS
1 2 5 2 2 5 2
2 69 105 32 14 59 21
3 7 14 6 4 8 3
4 80 148 67 69 127 57
5 10 20 9 19 31 11
6 78 139 60 32 58 24
7 52 82 28 62 97 33
8 519 1024 504 141 247 105
9 15 27 11 14 25 10
10 75 501 195 254 411 156

Total 305 2065 914 611 1068 422

Table 4: N = 100
Tools GV1 – CG GV2 – CG
NOI 100 53.44
FGN 100 52.24
LINS 100 49.16

106 Shakir

Table 5: N = 1000
Tools GV1 – CG GV2 – CG
NOI 100 53.73
FGN 100 51.71
LINS 100 46.17

4. Discussions

Table (4) shows that when n = 100, we take a 100% for the GV1 – CG method. The new
method (GV2 – CG) is an improved version for (47) %NOI; (48) % FGN; (51) % LINS.

Also, in Table(5), n is1000 with a 100% for the GV1 – CG method. The proposed method (GV2
– CG) is an improvement for (47) %NOI; (49) % FGN; (54) % LINS.

In general, the results indicate that the new algorithm generally improved largely.
Appendix.
1 - Extended Penalty Function

f(x) =
n−1∑
i=1

(xi−1)
2 + (

n∑
j=1

x2j − 0.25)2, x0 = [1, 2, · · · , n]T

2 - DENSCHNA Function

f(x) =

n

2∑
i=1

x42i−1 +
n∑

j=1

(x2i−1 + x2i)
2 + (−1− exp(x2i))2, x0 = [8, 8, · · · , 8]

3 - Diagonal 3

f(x) =
n∑

i=1

(exp(xi)− isin(xi)), x0 = [1, 1, · · · , 1]T

4 – Extending Powell Function

f(x) =

n

2∑
i=1

(x22i−1 + x22i + x2i−1x2i)
2 + sin2(x2i−1) + cos2(x2i), x0 = [3,−1, 0, 1, · · · , 3,−1, 0, 1]

5 - Extended Himmelblan Function

f(x) = (xi − 5)2
n∑

i=1

(x1 + x1 + · · ·+ xi−1)
2, x0 = [0.01, 0.01, · · · , 0.01]

6 – Quadratic Diagonal Perturbed

f(x) = (
n∑

i=1

xi)
2 +

n∑
i=1

i

100
x2i , x0 = [0, 5, 0, 5, · · · , 0, 5]

Optimizing The Modified ...
Volume 12, Special Issue, Winter and Spring 2021, 97-108 107

7 – Generalized Tridiagonal 2 Function

f(x) =((5− 3xi − x2i)xi − 3x2 + 1)2 +
n−1∑
i=1

(5− 3xi − x2i)xi − xi−1 − 3xi+1 + 1)2

+ (5− 3xi − x2i)xi − xn−1 + 1)2, xi = [−1,−1, · · · ,−1]

8 - Extended Cliff Function

f(x) =

n

2∑
i=1

(
x2i−1 − 3

100

)2

− (x2i−1 − x2i) + exp(20(x2i−1 − x2i)), x0 = [0,−1, · · · , 0, 1]

9 – Almost Perturbed Quadratic

f(x) =
n∑

i=1

ix2i +
x2i−1 − 3

100
(xi + xn)2, x1 = [0.5, · · · , 0.5]

10 – ENGVALI Function (CUTE)

f(x) =
n−1∑
i=1

(x2i + x2i+1)
2 +

n−1∑
i=1

(−4xi + 3), x1 = [2, 2, · · · , 2]

References

[1] K.K. Abbo, Developing of Gradient Algorithm for Solving Unconstrained Non-Linear Problem with Artificial
Neural Networks, Doctoral thesis Faculty of Computing and Mathematics University of Mosul Sciences, (2010).

[2] N. Andrei, Conjugate Gradient Algorithms for Molecular Formation under Pair Wise Potential Minimization,
Center for Advanced Modeling and Optimization, (2007c).

[3] N. Andrei, An Unconstrained Optimization Test Function collection, Advance Model Optimization, Vol. (10),
(2008) 147 -161 .

[4] A.G. Buckley, A combined Conjugate Gradient Quasi – Newton Minimization Algorithm. Math, Prog. 15, (1987)
200 – 210.

[5] E.K.P. Chong and S.H. Zak, An Introduction to Optimization, Jon Wiley & Sons, Inc., Canada (2001).
[6] Y. Dai and Y. Yuan,A three Parameter family of hybrid conjugate gradient method, Mathematics of Computation,

70, (2001).
[7] Y. Dai and Y. Yuan, An Extended Class of Non – Linear CG Methods, to appear, Fifth International Conference

of Optimization, Hong – Kong (2010).
[8] Y. Dai and L.Z. Liao, New Conjugacy Conditions and Related Non- Linear Conjugate Gradient Methods, Applied

Mathematics and Optimization, Springer – Verlag, 43, New York, USA (2001)87- 101.
[9] R. Fletcher, Practical methods of optimization, A Wiley Inter Science Publication, Johan-Wiley & Sons, Inc.,

New York (1987).
[10] M.R. Hestenes and E. Stiefel, Method of Conjugate gradient for solving linear systems, Journal of Research of

the National Bureau of Standards, Vol. (5), No. (49), (1952) 409-436.
[11] Y. Hiroshi and S. Naoki, Anew Nonlinear Conjugate Gradient Method for Unconstrained Optimization, Journal

of the Optimization Research, Vol. (48), No. (4), (2005) 284-296.
[12] J. Kinsella, Course Notes for MS4327 Optimization, http://Jkcray. Maths.ul.ie/ms4327/slides.pdf 2011. INT [1],

(2009).
[13] J. Nocedal and J.S. Wright, Numerical optimization series in operation research, 2nd edition, Springer-Verlag,

New York (2006).
[14] P. Pedregal, Introduction to Optimization, Springer-Verlag, Inc., New York, USA (2004).
[15] M.J.D. Powell, Restart Procedure for conjugate gradient method, Mathematical Programming, 12, (1977) 241-

254.

108 Shakir

[16] A.N. Shaker, Development of Modified Conjugate Gradient Algorithm, (2015).
[17] D.F. Shanno, On the convergence of a Conjugate Gradient Algorithm, SIAM. J. Number. Anal, 15 (1978).
[18] W. Sun and y. Yuan, Optimization Theory and Methods, Nonlinear Programming, Springer Science, Business

Media, LIC., New York (2006).
[19] G. Zoutendijk, Nonlinear Programming, Computational Methods, In: Integer and Nonlinear Programming, J.

Abadie Ed., North – Holland (1970) 37-86.

	Introduction
	Types of Conjugate Gradient Methods
	Classical Conjugate Gradient Methods
	Properties of Classical Conjugate Gradient Algorithms
	Parametric Conjugate Gradient Method
	Modified Conjugate Gradient Methods
	Improved GV1 – CG Algorithm
	Descent property for GV2 – CG algorithm
	 Global Convergence of GV2 – CG

	Numerical Experiments
	Discussions

