Fixed point of set－valued graph contractions in metric spaces

Masoud Hadian Dehkordi ${ }^{1}$ ，Masoud Ghods ${ }^{1, *}$
${ }^{a}$ Department of Mathematics，Faculty of Basic Science，Iran University of Science and Technology，Narmak，Tehran，Iran．

（Communicated by Madjid Eshaghi Gordji）

Abstract

In this paper，we introduce the（G－ψ ）contraction in a metric space by using a graph．Let T be a multivalued mappings on X ．Among other things，we obtain a fixed point of the mapping T in the metric space X endowed with a graph G such that the set of vertices of $G, V(G)=X$ and the set of edges of $G, E(G) \subseteq X \times X$ ．

Keywords：Fixed point，multivalued，$(G-\psi)$ contraction，directed graph．
2010 MSC：Primary 47H10；Secondary 47H09．

1．Introduction and preliminaries

For a given metric space (X, d) ，let T denote a selfmap．According to Petrusel and Rus［9，T is called a Picard operator（PO）if it has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$ ，for all $x \in X$ ， and is a weakly Picard operator（WPO）if for all $x \in X, \lim _{n \rightarrow \infty}\left(T^{n} x\right)$ exists（which may depend on $x)$ and is a fixed point of T ．Let (X, d) be a metric space and G be a directed graph with set $V(G)$ of its vertices coincides with X ，and the set of its edges $E(G)$ is such that $(x, x) \notin E(G)$ ．Assume that G has no parallel edges，we can identify G with the pair $(V(G), E(G))$ ，and can treat it as a weighted graph by assigning to each edge，the distance between its vertices．By G^{-1} we denote the conversion of a graph G ，i．e．，the graph obtained from G by reversing the direction of the edges． Thus we can write

$$
\begin{equation*}
E\left(G^{-1}\right)=\{(x, y) \mid(y, x) \in E(G)\} . \tag{1.1}
\end{equation*}
$$

Let \tilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges．Actually， it will be more convenient for us to treat \tilde{G} as a directed graph for which the set of its edges is symmetric．Under this convention，

$$
\begin{equation*}
E(\tilde{G})=E(G) \cup E\left(G^{-1}\right) \tag{1.2}
\end{equation*}
$$

[^0]We point out the followings:
(i) $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G if $V^{\prime} \subseteq V(G)$ and $E^{\prime} \subseteq E(G)$, for all $(x, y) \in E^{\prime}$, $x, y \in V^{\prime}$.
(ii) If x and y are vertices in a graph G, then a path in G from x to y of length $N(N \in \mathbb{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{N}$ of $N+1$ vertices such that $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1, \ldots, N$.
(iii) Graph G is connected if there is a path between any two vertices, and is weakly connected if \tilde{G} is connected.
(iv) Assume that G is such that $E(G)$ is symmetric and x is a vertex in G, then the subgraph G_{x} consisting x is called component of G, if it consists all edges and vertices which are contained in some path beginning at x. In this case $V\left(G_{x}\right)=[x]_{G}$, where $[x]_{G}$ is the equivalence class of the following relation R defined on $V(G)$ by the rule: $y R z$ if there is a path in G from y to z. Clearly, G_{x} is connected.
(v) The sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$, included in X, are Cauchy equivalent if each of them is a Cauchy sequence and $d\left(x_{n}, y_{n}\right) \longrightarrow 0$.

Let (X, d) be a complete metric space and let $C B(X)$ be a class of all nonempty closed and bounded subset of X. For $A, B \in C B(X)$, let

$$
H(A, B):=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\},
$$

where

$$
d(a, B):=\inf _{b \in B} d(a, b) .
$$

The mapping H is said to be a Hausdorff metric induced by d.
Definition 1.1. Let $T: X \longrightarrow C B(X)$ be a mappings, a point $x \in X$ is said to be a fixed point of the set-valued mapping T if $x \in T(x)$

Definition 1.2. A metric space (X, d) is called a ϵ-chainable metric space for some $\epsilon>0$ if given $x, y \in X$, there is $n \in \mathbb{N}$ and a sequence $\left\{x_{i}\right\}_{i=0}^{n}$ such that $x_{0}=x, x_{n}=y$ and $d\left(x_{i-1}, x_{i}\right)<\epsilon$, for $i=1, \ldots, n$.

Property A[6]. For any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, if $x_{n} \longrightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in \mathbb{N}$, then $\left(x_{n}, x\right) \in E(G)$.

Lemma 1.3. [1] Let (X, d) be a complete metric space and $A, B \in C B(X)$. Then for all $\epsilon>0$ and $a \in A$ there exists a point $b \in B$ such that $d(a, b) \leq H(A, B)+\epsilon$.

Lemma 1.4. [1] Let $\left\{A_{n}\right\}$ be a sequence in $C B(X)$ and $\lim _{n \rightarrow \infty} H\left(A_{n}, A\right)=0$ for $A \in C B(X)$. If $x_{n} \in A_{n}$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$, then $x \in A$.

Lemma 1.5. Let $A, B \in C B(X)$ with $H(A, B)<\epsilon$, then for each $a \in A$ there exists an element $b \in B$ such that $d(a, b)<\epsilon$.

Definition 1.6. Let us define the class $\Psi=\{\psi:[0,+\infty) \longrightarrow[0,+\infty) \mid \psi$ is nondecreasing $\}$ which satisfies the following conditions:
(i) for every $\left(t_{n}\right) \in \mathbb{R}^{+}, \psi\left(t_{n}\right) \longrightarrow 0$ if and only if $t_{n} \longrightarrow 0$;
(ii) for every $t_{1}, t_{2} \in \mathbb{R}^{+}, \psi\left(t_{1}+t_{2}\right) \leq \psi\left(t_{1}\right)+\psi\left(t_{2}\right)$;
(iii) for any $t>0$ we have $\psi(t) \leq t$.

Lemma 1.7. Let $A, B \in C B(X), a \in A$ and $\psi \in \Psi$. Then for each $\epsilon>0$, there exists $b \in B$ such that $\psi(d(a, b)) \leq \psi(H(A, B))+\epsilon$.

2. Main results

We begin with the following theorem the gives the existence of a fixed point for set valued mappings (not necessarily unique) in metric spaces endowed with a graph.

Definition 2.1. Let (X, d) be a complete metric space and $T: X \longrightarrow C B(X)$ be a mappings, T is said to be a $(G-\psi)$ contraction if there exists $k \in(0,1)$ such that

$$
\begin{equation*}
\psi(H(T(x), T(y)) \leq k \psi(d(x, y)) \text { for all }(x, y) \in E(G) \tag{2.1}
\end{equation*}
$$

and for all $(x, y) \in E(G)$ if $u \in T(x)$ and $v \in T(y)$ are such that $\psi(d(u, v)) \leq k \psi(d(x, y))+\epsilon$, for each $\epsilon>0$, then $(u, v) \in E(G)$.

Theorem 2.2. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property A. Let $F: X \longrightarrow C B(X)$ be a $(G-\psi)$ contraction and $X_{F}=\{x \in X:(x, u) \in$ $E(G)$ for some $u \in F(x)\}$. Then the following statements hold:

1. for any $x \in X_{F},\left.F\right|_{[x]_{G}}$ has a fixed point.
2. if $X_{F} \neq \emptyset$ and G is weakly connected, then F has a fixed point in X.
3. if $F \subseteq E(G)$, then F has a fixed point.
4. Fix $F \neq \emptyset$ if and only if $x \in X_{F} \neq \emptyset$.

Proof . 1. Let $x_{0} \in X_{F}$. Then there exists $x_{1} \in F\left(x_{0}\right)$ for which $\left(x_{0}, x_{1}\right) \in E(G)$. Since F is a ($G-\psi$) contraction, we should have

$$
\psi\left(H\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)\right) \leq k \psi d\left(x_{0}, x_{1}\right) .
$$

By Lemma 1.4, it ensures that there exists $x_{2} \in F\left(x_{1}\right)$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{1}, x_{2}\right) \leq \psi\left(H\left(F\left(x_{0}\right), F\left(x_{1}\right)\right)\right)+k \leq k \psi d\left(x_{0}, x_{1}\right)+k .\right. \tag{2.2}
\end{equation*}
$$

Using the property of F being a $(G-\psi)$ contraction $\left(x_{1}, x_{2}\right) \in E(G)$, we obtain

$$
\psi\left(H\left(F\left(x_{1}\right), F\left(x_{2}\right)\right)\right) \leq k \psi d\left(x_{1}, x_{2}\right)
$$

and then Lemma 1.4 shows the existence of an $x_{3} \in F\left(x_{2}\right)$ such that

$$
\begin{equation*}
\psi\left(d\left(x_{2}, x_{3}\right)\right) \leq \psi\left(H\left(F\left(x_{1}\right), F\left(x_{2}\right)\right)\right)+k^{2} . \tag{2.3}
\end{equation*}
$$

By inequalities (2.2) and (2.3), we have

$$
\begin{equation*}
\psi\left(d\left(x_{2}, x_{3}\right)\right) \leq k \psi\left(d\left(x_{1}, x_{2}\right)\right)+k^{2} \leq k^{2} \psi\left(d\left(x_{0}, x_{1}\right)\right)+2 k^{2} . \tag{2.4}
\end{equation*}
$$

By a similar method, in general we can prove $x_{n+1} \in F\left(x_{n}\right)$ such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ and

$$
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq k^{n} \psi\left(d\left(x_{0}, x_{1}\right)+n k^{n} .\right.
$$

We can easily show by following that $\left(x_{n}\right)$ is a Cauchy sequence in X :

$$
\sum_{n=0}^{\infty} \psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(d\left(x_{0}, x_{1}\right)\right) \sum_{n=0}^{\infty} k^{n}+\sum_{n=0}^{\infty} n k^{n}<\infty
$$

hence $\left(x_{n}\right)$ converges to some point x in X. Next step is to show that x is a fixed point of the mapping F. Using the property (\boldsymbol{A}) and the fact of F being a $(G-\psi)$ contraction, we have

$$
\psi\left(H\left(F\left(x_{n}\right), F(x)\right) \leq k \psi\left(d\left(x_{n}, x\right)\right)\right.
$$

Since $x_{n+1} \in F\left(x_{n}\right)$ and $x_{n} \longrightarrow x$, by Lemma 1.3, $x \in F(x)$. We conclude that $\left(x_{n}, x\right) \in E(G)$, for $n \in \mathbb{N}$, then $\left(x_{0}, x_{1}, \ldots, x_{n}, x\right)$ is a path in G and so $x \in\left[x_{0}\right]_{G}$.
2. For $X_{F} \neq \emptyset$, there exists $x_{0} \in X_{F}$, and since G is weakly connected, $\left[x_{0}\right]_{G}=X$ and by $1, F$ has a fixed point.
3. $F \subseteq E(G)$ implies that all $x \in X$ are such that there exist some $u \in F(x)$ with $(x, u) \in E(G)$, so $X_{F}=X$ by $2, F$ has a fixed point.
4. Let Fix $F \neq \emptyset$; this implies that exists $x \in$ Fix F such that $x \in F(x)$. Since $\Delta \subseteq E(G)$, $(x, x) \in E(G)$ which implies that $x \in X_{F}$, so $X_{F} \neq \emptyset$. If $X_{F} \neq \emptyset$ then $F i x F \neq \emptyset$.

Example 2.3. Let $X=\{0\} \cup\left\{\frac{1}{2^{n}}: n \in \mathbb{N} \cup\{0\}\right\}$. Consider the undirected graph G such that $V(G)=$ X and $E(G)=\left\{\left(\frac{1}{2^{n}}, 0\right),\left(0, \frac{1}{2^{n}}\right),\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right),\left(\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right): n \in \mathbb{N} \cup\{0\}\right\} \cup \Delta$. Let $F: X \longrightarrow C B(X)$ be defined by

$$
F(x)= \begin{cases}\{0\} & x=0, \tag{2.5}\\ \left\{\frac{1}{2}\right\} & x=1, \\ \left\{\frac{1}{2^{n+1}}, 0\right\} & x=\frac{1}{2^{n}}, n \in \mathbb{N} .\end{cases}
$$

Then F is a $(G-\psi)$ contraction and $0 \in F(0)$ where $\psi(t)=\frac{t}{t+1}$.

Figure 1

Example 2.4. Let $X=\{0\} \cup\left\{\frac{1}{2^{n}}, \frac{1}{3^{n}}: n \in \mathbb{N} \cup\{0\}\right\}$. Consider the directed graph G such that $V(G)=X$ and $E(G)=\left\{\left(\frac{1}{2^{n}}, 0\right),\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right): n \in \mathbb{N} \cup\{0\}\right\} \cup\left\{\left(\frac{1}{3^{n}}, 0\right),\left(\frac{1}{3^{n}}, \frac{1}{3^{n+1}}\right): n \in \mathbb{N}\right\} \cup \Delta$. Let $F: X \longrightarrow C B(X)$ be defined by

$$
F(x)= \begin{cases}\{0\} & x=0 \tag{2.6}\\ \left\{\frac{1}{3^{n+1}}, 0\right\} & x=\frac{1}{3^{n}}, n \in \mathbb{N}, \\ \left\{\frac{1}{3^{n}}\right\} & x=\frac{1}{2^{n}}, n \in \mathbb{N} \cup\{0\} .\end{cases}
$$

Then F is a $(G-\psi)$ contraction and $0 \in F(0)$ with $\psi(t)=\frac{t}{2}$.

Property \mathbf{A}^{\prime} : For any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, if $x_{n} \longrightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in \mathbb{N}$, then there is subsequence $\left(x_{n_{k}}\right)_{n_{k} \in \mathbb{N}}$ such that $\left(x_{n_{k}}, x\right) \in E(G)$ for $n_{k} \in \mathbb{N}$. If We have property A^{\prime}, then improve the result of this paper as follows:

Theorem 2.5. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property A^{\prime}. Let $F: X \longrightarrow C B(X)$ be a $(G-\psi)$ contraction and $X_{F}=\{x \in X:(x, u) \in$ $E(G)$ for some $u \in F(x)\}$. Then the following statements hold.

1. for any $x \in X_{F},\left.F\right|_{[x]_{G}}$ has a fixed point.
2. If $X_{F} \neq \emptyset$ and G is weakly connected, then F has a fixed point in X.
3. If $F \subseteq E(G)$, then F has a fixed point.
4. Fix $F \neq \emptyset$ if and only if $x \in X_{F} \neq \emptyset$.

See the following example.
Example 2.6. Let $X=\left\{0, \frac{2}{3}, 1\right\} \cup\left\{\frac{1}{2^{n}}, \frac{1}{3^{n}}: n \in \mathbb{N}\right\}$. Consider the directed graph G such that $V(G)=X$ and

$$
E(G)=\left(\frac{2}{3}, 0\right) \cup(1,0) \cup\left(1, \frac{1}{3}\right) \cup\left\{\left(\frac{1}{3^{2 n}}, 0\right),\left(\frac{1}{3^{n}}, \frac{1}{3^{n+1}}\right),\left(\frac{1}{2^{2 n+1}}, 0\right),\left(\frac{1}{2^{n}}, \frac{1}{2^{n+1}}\right): n \in \mathbb{N}\right\} \cup \Delta .
$$

Let $F: X \longrightarrow C B(X)$ be defined by

$$
F(x)= \begin{cases}\{0\} & x=0,1 \tag{2.7}\\ \left\{\frac{1}{2}\right\} & x=\frac{2}{3} \\ \left\{\frac{1}{3^{n+1}}, 0\right\} & x=\frac{1}{3^{n}}, n \in \mathbb{N} \\ \left\{\frac{1}{2^{n+1}}, 0\right\} & x=\frac{1}{2^{n}}, n \in \mathbb{N}\end{cases}
$$

Corollary 2.7. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property \boldsymbol{A}. If G is weakly connected, then $(G-\psi)$ contraction mapping $T: X \longrightarrow C B(X)$ such that $\left(x_{0}, x_{1}\right) \in E(G)$ for some $x_{1} \in T_{x_{0}}$ has a fixed point.

Corollary 2.8. Let (X, d) be a ϵ-chainable complete metric space for some $\epsilon>0$. Let $T: X \longrightarrow$ $C B(X)$ be a such that there exists $k \in(0,1)$ with

$$
0<d(x, y)<\epsilon \Longrightarrow \psi(H(T(x), T(y)) \leq k \psi(d(x, y))
$$

Then T has a fixed point.
Proof. Consider the G as $V(G)=X$ and

$$
E(G):=(x, y) \in X \times X: 0<d(x, y)<\epsilon
$$

The ϵ-chainability of (X, d) means G is connected. If $(x, y) \in E(G)$, then

$$
\psi(H(T(x), T(y)) \leq k \psi(d(x, y)) \leq k(d(x, y)<k \epsilon<\epsilon
$$

and by using Lemma 1.5, for each $u \in T(x)$, we have the existence of $v \in T(y)$, such that $d(u, v)<\epsilon$, which implies $(u, v) \in E(G)$. Therefore T is $(G-\psi)$ contraction mapping. Also, (X, d, G) has property \boldsymbol{A}. Indeed, if $x_{n} \longrightarrow x$ and $d\left(x_{n}, x_{n+1}\right)<\epsilon$, for $\in \mathbb{N}$, then $d\left(x_{n}, x\right)<\epsilon$ for sufficiently large n, hence $\left(x_{n}, x\right) \in E(G)$. So, by Theorem 2.2 T has a fixed point.

References

[1] N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 533-562.
[2] T. G.Bahaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
[3] I. Beg and A. Rashid Butt, Fixed point of set-valued graph contractive mappings, J. Inequal. Appl. 2013 (2013):252, doi 10,1186/1029-242X-2013-252
[4] I. Beg, A. Rashid Butt and S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010), 1214-1219.
[5] J. Gross and J. Yellen, Graph theory and its applications, CRC Press, 1998.
[6] J. Jamchymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. (136) (2008), 1359-1373.
[7] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-487.
[8] M. öztürk and E. Girgin, On some fixed-point theorems for ψ-contraction on metric space involving a graph, J. Inequal. Appl. 2014(2014):39, doi: 10.1186/1029-242X-2014-39.
[9] A. Petrusel and I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134(2006) 411-418.

[^0]: ＊Corresponding author
 Email addresses：mhadian＠iust．ac．ir（Masoud Hadian Dehkordi），mghods＠iust．ac．ir（Masoud Ghods ）

