

Fixed point of set-valued graph contractions in metric spaces

Masoud Hadian Dehkordi¹, Masoud Ghods^{1,*}

^aDepartment of Mathematics, Faculty of Basic Science,Iran University of Science and Technology, Narmak, Tehran,Iran. (Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we introduce the $(G-\psi)$ contraction in a metric space by using a graph. Let T be a multivalued mappings on X. Among other things, we obtain a fixed point of the mapping T in the metric space X endowed with a graph G such that the set of vertices of G, V(G) = X and the set of edges of G, $E(G) \subseteq X \times X$.

Keywords: Fixed point, multivalued, $(G - \psi)$ contraction, directed graph. 2010 MSC: Primary 47H10; Secondary 47H09.

1. Introduction and preliminaries

For a given metric space (X, d), let T denote a selfmap. According to Petrusel and Rus [9], T is called a Picard operator (PO) if it has a unique fixed point x^* and $\lim_{n\to\infty} T^n x = x^*$, for all $x \in X$, and is a weakly Picard operator (WPO) if for all $x \in X$, $\lim_{n\to\infty} (T^n x)$ exists (which may depend on x) and is a fixed point of T. Let (X, d) be a metric space and G be a directed graph with set V(G)of its vertices coincides with X, and the set of its edges E(G) is such that $(x, x) \notin E(G)$. Assume that G has no parallel edges, we can identify G with the pair (V(G), E(G)), and can treat it as a weighted graph by assigning to each edge, the distance between its vertices. By G^{-1} we denote the conversion of a graph G, i.e., the graph obtained from G by reversing the direction of the edges. Thus we can write

$$E(G^{-1}) = \{(x, y) | (y, x) \in E(G)\}.$$
(1.1)

Let \tilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a directed graph for which the set of its edges is symmetric. Under this convention,

$$E(\tilde{G}) = E(G) \cup E(G^{-1}).$$
(1.2)

*Corresponding author

Email addresses: mhadian@iust.ac.ir (Masoud Hadian Dehkordi), mghods@iust.ac.ir (Masoud Ghods)

We point out the followings:

- (i) G' = (V', E') is called a subgraph of G if $V' \subseteq V(G)$ and $E' \subseteq E(G)$, for all $(x, y) \in E'$, $x, y \in V'$.
- (ii) If x and y are vertices in a graph G, then a path in G from x to y of length N ($N \in \mathbb{N}$) is a sequence $(x_i)_{i=0}^N$ of N + 1 vertices such that $x_0 = x$, $x_N = y$ and $(x_{i-1}, x_i) \in E(G)$ for i = 1, ..., N.
- (iii) Graph G is connected if there is a path between any two vertices, and is weakly connected if \tilde{G} is connected.
- (iv) Assume that G is such that E(G) is symmetric and x is a vertex in G, then the subgraph G_x consisting x is called component of G, if it consists all edges and vertices which are contained in some path beginning at x. In this case $V(G_x) = [x]_G$, where $[x]_G$ is the equivalence class of the following relation R defined on V(G) by the rule: yRz if there is a path in G from y to z. Clearly, G_x is connected.
- (v) The sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$, included in X, are Cauchy equivalent if each of them is a Cauchy sequence and $d(x_n, y_n) \longrightarrow 0$.

Let (X, d) be a complete metric space and let CB(X) be a class of all nonempty closed and bounded subset of X. For $A, B \in CB(X)$, let

$$H(A,B) := \max\{\sup_{b \in B} d(b,A), \sup_{a \in A} d(a,B)\},\$$

where

$$d(a,B):=\inf_{b\in B}d(a,b).$$

The mapping H is said to be a Hausdorff metric induced by d.

Definition 1.1. Let $T: X \longrightarrow CB(X)$ be a mappings, a point $x \in X$ is said to be a fixed point of the set-valued mapping T if $x \in T(x)$

Definition 1.2. A metric space (X, d) is called a ϵ -chainable metric space for some $\epsilon > 0$ if given $x, y \in X$, there is $n \in \mathbb{N}$ and a sequence $\{x_i\}_{i=0}^n$ such that $x_0 = x$, $x_n = y$ and $d(x_{i-1}, x_i) < \epsilon$, for $i = 1, \ldots, n$.

Property A[6]. For any sequence $(x_n)_{n \in \mathbb{N}}$ in X, if $x_n \longrightarrow x$ and $(x_n, x_{n+1}) \in E(G)$ for $n \in \mathbb{N}$, then $(x_n, x) \in E(G)$.

Lemma 1.3. [1] Let (X, d) be a complete metric space and $A, B \in CB(X)$. Then for all $\epsilon > 0$ and $a \in A$ there exists a point $b \in B$ such that $d(a, b) \leq H(A, B) + \epsilon$.

Lemma 1.4. [1] Let $\{A_n\}$ be a sequence in CB(X) and $\lim_{n\to\infty} H(A_n, A) = 0$ for $A \in CB(X)$. If $x_n \in A_n$ and $\lim_{n\to\infty} d(x_n, x) = 0$, then $x \in A$.

Lemma 1.5. Let $A, B \in CB(X)$ with $H(A, B) < \epsilon$, then for each $a \in A$ there exists an element $b \in B$ such that $d(a, b) < \epsilon$.

Definition 1.6. Let us define the class $\Psi = \{\psi : [0, +\infty) \longrightarrow [0, +\infty) | \psi \text{ is nondecreasing} \}$ which satisfies the following conditions:

- (i) for every $(t_n) \in \mathbb{R}^+$, $\psi(t_n) \longrightarrow 0$ if and only if $t_n \longrightarrow 0$;
- (*ii*) for every $t_1, t_2 \in \mathbb{R}^+$, $\psi(t_1 + t_2) \le \psi(t_1) + \psi(t_2)$;
- (iii) for any t > 0 we have $\psi(t) \leq t$.

Lemma 1.7. Let $A, B \in CB(X)$, $a \in A$ and $\psi \in \Psi$. Then for each $\epsilon > 0$, there exists $b \in B$ such that $\psi(d(a, b)) \leq \psi(H(A, B)) + \epsilon$.

2. Main results

We begin with the following theorem the gives the existence of a fixed point for set valued mappings (not necessarily unique) in metric spaces endowed with a graph.

Definition 2.1. Let (X, d) be a complete metric space and $T : X \longrightarrow CB(X)$ be a mappings, T is said to be a $(G \cdot \psi)$ contraction if there exists $k \in (0, 1)$ such that

$$\psi(H(T(x), T(y)) \le k\psi(d(x, y)) \text{ for all } (x, y) \in E(G),$$

$$(2.1)$$

and for all $(x, y) \in E(G)$ if $u \in T(x)$ and $v \in T(y)$ are such that $\psi(d(u, v)) \leq k\psi(d(x, y)) + \epsilon$, for each $\epsilon > 0$, then $(u, v) \in E(G)$.

Theorem 2.2. Let (X,d) be a complete metric space and suppose that the triple (X,d,G) have the property A. Let $F : X \longrightarrow CB(X)$ be a $(G - \psi)$ contraction and $X_F = \{x \in X : (x,u) \in E(G) \text{ for some } u \in F(x)\}$. Then the following statements hold:

- 1. for any $x \in X_F$, $F|_{[x]_G}$ has a fixed point.
- 2. if $X_F \neq \emptyset$ and G is weakly connected, then F has a fixed point in X.
- 3. if $F \subseteq E(G)$, then F has a fixed point.
- 4. Fix $F \neq \emptyset$ if and only if $x \in X_F \neq \emptyset$.

Proof. 1. Let $x_0 \in X_F$. Then there exists $x_1 \in F(x_0)$ for which $(x_0, x_1) \in E(G)$. Since F is a $(G \cdot \psi)$ contraction, we should have

$$\psi(H(F(x_0), F(x_1))) \le k\psi d(x_0, x_1).$$

By Lemma 1.4, it ensures that there exists $x_2 \in F(x_1)$ such that

$$\psi(d(x_1, x_2) \le \psi(H(F(x_0), F(x_1))) + k \le k \psi d(x_0, x_1) + k.$$
(2.2)

Using the property of F being a $(G-\psi)$ contraction $(x_1, x_2) \in E(G)$, we obtain

$$\psi(H(F(x_1), F(x_2))) \le k\psi d(x_1, x_2)$$

and then Lemma 1.4 shows the existence of an $x_3 \in F(x_2)$ such that

$$\psi(d(x_2, x_3)) \le \psi(H(F(x_1), F(x_2))) + k^2.$$
(2.3)

By inequalities (2.2) and (2.3), we have

$$\psi(d(x_2, x_3)) \le k\psi(d(x_1, x_2)) + k^2 \le k^2 \psi(d(x_0, x_1)) + 2k^2.$$
(2.4)

By a similar method, in general we can prove $x_{n+1} \in F(x_n)$ such that $(x_n, x_{n+1}) \in E(G)$ and

$$\psi(d(x_n, x_{n+1})) \le k^n \psi(d(x_0, x_1) + nk^n)$$

We can easily show by following that (x_n) is a Cauchy sequence in X:

$$\sum_{n=0}^{\infty} \psi(d(x_n, x_{n+1})) \le \psi(d(x_0, x_1)) \sum_{n=0}^{\infty} k^n + \sum_{n=0}^{\infty} nk^n < \infty$$

hence (x_n) converges to some point x in X. Next step is to show that x is a fixed point of the mapping F. Using the property (A) and the fact of F being a $(G \cdot \psi)$ contraction, we have

$$\psi(H(F(x_n), F(x))) \le k\psi(d(x_n, x))$$

Since $x_{n+1} \in F(x_n)$ and $x_n \longrightarrow x$, by Lemma 1.3, $x \in F(x)$. We conclude that $(x_n, x) \in E(G)$, for $n \in \mathbb{N}$, then $(x_0, x_1, ..., x_n, x)$ is a path in G and so $x \in [x_0]_G$.

2. For $X_F \neq \emptyset$, there exists $x_0 \in X_F$, and since G is weakly connected, $[x_0]_G = X$ and by 1, F has a fixed point.

3. $F \subseteq E(G)$ implies that all $x \in X$ are such that there exist some $u \in F(x)$ with $(x, u) \in E(G)$, so $X_F = X$ by 2, F has a fixed point.

4. Let Fix $F \neq \emptyset$; this implies that exists $x \in \text{Fix } F$ such that $x \in F(x)$. Since $\Delta \subseteq E(G)$, $(x, x) \in E(G)$ which implies that $x \in X_F$, so $X_F \neq \emptyset$. If $X_F \neq \emptyset$ then $FixF \neq \emptyset$. \Box

Example 2.3. Let $X = \{0\} \cup \{\frac{1}{2^n} : n \in \mathbb{N} \cup \{0\}\}$. Consider the undirected graph G such that V(G) = X and $E(G) = \{(\frac{1}{2^n}, 0), (0, \frac{1}{2^n}), (\frac{1}{2^n}, \frac{1}{2^{n+1}}), (\frac{1}{2^{n+1}}, \frac{1}{2^n}) : n \in \mathbb{N} \cup \{0\}\} \cup \Delta$. Let $F : X \longrightarrow CB(X)$ be defined by

$$F(x) = \begin{cases} \{0\} & x = 0, \\ \{\frac{1}{2}\} & x = 1, \\ \{\frac{1}{2^{n+1}}, 0\} & x = \frac{1}{2^n}, n \in \mathbb{N}. \end{cases}$$
(2.5)

Then F is a $(G - \psi)$ contraction and $0 \in F(0)$ where $\psi(t) = \frac{t}{t+1}$.

Example 2.4. Let $X = \{0\} \cup \{\frac{1}{2^n}, \frac{1}{3^n} : n \in \mathbb{N} \cup \{0\}\}$. Consider the directed graph G such that V(G) = X and $E(G) = \{(\frac{1}{2^n}, 0), (\frac{1}{2^n}, \frac{1}{2^{n+1}}) : n \in \mathbb{N} \cup \{0\}\} \cup \{(\frac{1}{3^n}, 0), (\frac{1}{3^n}, \frac{1}{3^{n+1}}) : n \in \mathbb{N}\} \cup \Delta$. Let $F: X \longrightarrow CB(X)$ be defined by

$$F(x) = \begin{cases} \{0\} & x = 0, \\ \{\frac{1}{3^{n+1}}, 0\} & x = \frac{1}{3^n}, n \in \mathbb{N}, \\ \{\frac{1}{3^n}\} & x = \frac{1}{2^n}, n \in \mathbb{N} \cup \{0\}. \end{cases}$$
(2.6)

Then F is a $(G \cdot \psi)$ contraction and $0 \in F(0)$ with $\psi(t) = \frac{t}{2}$.

Property A': For any sequence $(x_n)_{n \in \mathbb{N}}$ in X, if $x_n \longrightarrow x$ and $(x_n, x_{n+1}) \in E(G)$ for $n \in \mathbb{N}$, then there is subsequence $(x_{n_k})_{n_k \in \mathbb{N}}$ such that $(x_{n_k}, x) \in E(G)$ for $n_k \in \mathbb{N}$. If We have property A', then improve the result of this paper as follows:

Theorem 2.5. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property A'. Let $F : X \longrightarrow CB(X)$ be a $(G \cdot \psi)$ contraction and $X_F = \{x \in X : (x, u) \in E(G) \text{ for some } u \in F(x)\}$. Then the following statements hold.

- 1. for any $x \in X_F$, $F|_{[x]_G}$ has a fixed point.
- 2. If $X_F \neq \emptyset$ and G is weakly connected, then F has a fixed point in X.
- 3. If $F \subseteq E(G)$, then F has a fixed point.
- 4. $FixF \neq \emptyset$ if and only if $x \in X_F \neq \emptyset$.

See the following example.

Example 2.6. Let $X = \{0, \frac{2}{3}, 1\} \cup \{\frac{1}{2^n}, \frac{1}{3^n} : n \in \mathbb{N}\}$. Consider the directed graph G such that V(G) = X and

$$E(G) = (\frac{2}{3}, 0) \cup (1, 0) \cup (1, \frac{1}{3}) \cup \{(\frac{1}{3^{2n}}, 0), (\frac{1}{3^n}, \frac{1}{3^{n+1}}), (\frac{1}{2^{2n+1}}, 0), (\frac{1}{2^n}, \frac{1}{2^{n+1}}) : n \in \mathbb{N}\} \cup \Delta.$$

Let $F: X \longrightarrow CB(X)$ be defined by

$$F(x) = \begin{cases} \{0\} & x = 0, 1 \\ \{\frac{1}{2}\} & x = \frac{2}{3}, \\ \{\frac{1}{3^{n+1}}, 0\} & x = \frac{1}{3^n}, n \in \mathbb{N}, \\ \{\frac{1}{2^{n+1}}, 0\} & x = \frac{1}{2^n}, n \in \mathbb{N}. \end{cases}$$

$$(2.7)$$

Corollary 2.7. Let (X, d) be a complete metric space and suppose that the triple (X, d, G) have the property \mathbf{A} . If G is weakly connected, then $(G \cdot \psi)$ contraction mapping $T : X \longrightarrow CB(X)$ such that $(x_0, x_1) \in E(G)$ for some $x_1 \in T_{x_0}$ has a fixed point.

Corollary 2.8. Let (X, d) be a ϵ -chainable complete metric space for some $\epsilon > 0$. Let $T : X \longrightarrow CB(X)$ be a such that there exists $k \in (0, 1)$ with

$$0 < d(x, y) < \epsilon \Longrightarrow \psi(H(T(x), T(y)) \le k\psi(d(x, y)).$$

Then T has a fixed point. **Proof**. Consider the G as V(G) = X and

$$E(G) := (x, y) \in X \times X : 0 < d(x, y) < \epsilon.$$

The ϵ -chainability of (X, d) means G is connected. If $(x, y) \in E(G)$, then

$$\psi(H(T(x), T(y)) \le k\psi(d(x, y)) \le k(d(x, y) < k\epsilon < \epsilon,$$

and by using Lemma 1.5, for each $u \in T(x)$, we have the existence of $v \in T(y)$, such that $d(u, v) < \epsilon$, which implies $(u, v) \in E(G)$. Therefore T is $(G \cdot \psi)$ contraction mapping. Also, (X, d, G) has property **A**. Indeed, if $x_n \longrightarrow x$ and $d(x_n, x_{n+1}) < \epsilon$, for $\in \mathbb{N}$, then $d(x_n, x) < \epsilon$ for sufficiently large n, hence $(x_n, x) \in E(G)$. So, by Theorem 2.2 T has a fixed point. \Box

References

- N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 533-562.
- T. G.Bahaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
- [3] I. Beg and A. Rashid Butt, Fixed point of set-valued graph contractive mappings, J. Inequal. Appl. 2013 (2013):252, doi 10,1186/1029-242X-2013-252
- [4] I. Beg, A. Rashid Butt and S. Radojevic, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60 (2010), 1214-1219.
- [5] J. Gross and J. Yellen, Graph theory and its applications, CRC Press, 1998.
- [6] J. Jamchymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. (136) (2008), 1359-1373.
- [7] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-487.
- [8] M. öztürk and E. Girgin, On some fixed-point theorems for ψ-contraction on metric space involving a graph, J. Inequal. Appl. 2014(2014):39, doi: 10.1186/1029-242X-2014-39.
- [9] A. Petrusel and I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134(2006) 411-418.