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Abstract

The present paper provides a new method for numerical solution of nonlinear boundary value prob-
lems. This method is a combination of group preserving scheme (GPS) and a shooting–like technique
which takes advantage of two powerful methods for solving nonlinear boundary value problems. This
method is very effective to search unknown initial conditions. To demonstrate the computational
efficiency, the mentioned method is implemented for some nonlinear exactly solvable differential
equations including strongly nonlinear Bratu equation, nonlinear reaction–diffusion equation and
one singular nonlinear boundary value problem. It is also applied successfully on two nonlinear
three-point boundary value problems and a third-order nonlinear boundary value problem which the
exact solutions of this problems are unknown. The examples show the power of method to search for
unique solution or multiple solutions of nonlinear boundary value problems with high computational
speed and high accuracy. In the test problem 5 a new branch of solutions is found which shows the
power of the method to search for multiple solutions and indicates that the method is successful in
cases where purely analytic methods are not.
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1. Introduction

Boundary value problems for ordinary differential equations play an fundamental role in both the-
ory and applications. They are used to describe a large amount of physical, biological and chemical
phenomena. Finding approximate solutions of nonlinear boundary value problems is very important
in engineering. Nonlinear boundary value problems may have no, one or more than one solutions [1]-
[4]. There are many methods to give approximate solutions of this problems, but despite the existence
of multiple solutions for some of these problems, mentioned methods usually converge to only one
branch of the solutions. It is important to predict the multiplicity of solutions and also approximate
all branches of the solutions with good accuracy. In this paper we combine group preserving scheme
(GPS) with shooting–like method for solving different types nonlinear boundary value problems and
prediction the number of solutions, properties of solutions and compute the approximate solutions
of this problems with high accuracy.
The GPS, which was first derived by Liu [5], uses the Cayley transformation and the Pade approxima-
tions in the augmented Minkowski space. The main difference between the GPS and the traditional
numerical methods is that those schemes are all formulated directly in the usual Euclidean space Rn,
while the GPS is formulated in the Minkowski space Mn+1. One direct advantage of the formulation
in the augmented Minkowski space is that we can develop general group preserving schemes. This re-
sulting schemes can avoid spurious solutions and ghost fixed points. The GPS approach has received
a lot of attention in recent years. Hung–Chang Lee et al. [6] use from a modified GPS for solving the
initial value problems of stiff ordinary differential equations. Chein–Shan Liu [7] studies the dynamic
behavior of a single–mass, two degree of freedom bilinear oscillator, whose restoring force obeys a
bilinear elastoplastic law, via GPS. Chein–Shan Liu [8] uses from GPS to solve backward heat con-
duction problems. Su–Ying Zhang et al. [9] combine GPS with RKMK methods for solving nonlinear
dynamic system. Chein–Shan Liu [10] applies GPS on time–varying linear systems and Chein–Shan
Liu [11] solves an inverse sturm–Liouville problem by a Lie–group method. S. Abbasbandy et al.
[12] solve cauchy problem of the Laplace equation by GPS. Chein–Shan Liu et al. [13] combine the
spring–damping regularization method (SDRM) and the mixed group–preserving scheme (MGPS)
to solve highly ill–conditioned inverse Cauchy problem. Chein-Shan Liu et al [14] use a new form
of this method for numerical differentiation of noisy signal. Chein–Shan Liu et al. [15] use another
type of GPS to solve ordinary differential equations. S. Abbasbandy et al [16] use GPS for numerical
simulation of periodic traveling wave solutions to the Casimir equation for the Ito system.
Liu [17] applied GPS for boundary value problems by search unknown initial condition through a
weighting factor r ∈ (0, 1). He called his method Lie–group shooting method (LGSM). This method
is considered by authors; for example you can see [18]-[32]. In LGSM we require complex calculations
for obtain unknown initial condition as a function respect to parameter r ∈ (0, 1). In this calculations
it is very important that we replace the originally un–equal boundary conditions by the boundary
conditions with an equal value, that it’s difficult for boundary value problems with nonlocal, non-
linear or three–point boundary conditions. Furthermore, the implementation of LGSM and perform
the calculations for boundary value problems of higher two–order is difficult.

In this paper, we introduce a new method for solving boundary value problems. In this method
we combine the GPS with a shooting method. We show the mention method is applicable for second–
order of boundary value problems and higher order. Also, the method is suitable for boundary value
problems with nonlocal, nonlinear or three–point boundary value problems. Since this method is
combined with shooting method, we can predict the number of solutions by the number of best
unknown initial condition that obtain from matching the right–end boundary condition. Therefore,
this method is very suitable for nonlinear boundary value problems with multiple solutions. Ap-
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plicability, Simplicity, high speed computation and high accuracy are important advantages of our
method, that become apparent from different examples that we solve in section 4.

This paper is organized as follows. In section 2 we give a short sketch of the GPS for ODEs. In
section 3 we combine GPS with shooting method for solving boundary value problems, also we explain
the numerical method of obtain unknown initial condition by matching the right-end boundary. In
section 4 we show applicability and high accuracy of method by various test problems.

2. Group preserving scheme

Liu [5] has derived a Lie group transformation for the augmented dynamical system on the future
cone, and developed the group preserving scheme for an effective numerical solution of nonlinear
ODEs. Consider a system of n ordinary differential equations:

u′(x) = f(u(x), x), u(x) ∈ Rn, x ∈ R, (2.1)

where u(x) is an n-dimensional vector, x is an independent variable and f is a vector–valued function
of u and x, also named vector field. We can transform Eq. (2.1) into the following n+ 1–dimensional
augmented dynamical system:

d

dx

[
u
‖u‖

]
=

 0n×n
f(u, x)

‖u‖
fT (u, x)

‖u‖
0

[ u
‖u‖

]
. (2.2)

Here we assume ‖u‖ > 0, and hence the above system is well–defined.
Obviously, the first equation in Eq. (2.2) is the same as the original Eq. (2.1), but the addition

of the second equation gives us a Minkowskian structure of the augmented state variables of U =
(uT , ‖u‖)T , satisfying the cone condition

UTgU = 0, (2.3)

where

g =

[
In 0n×1

01×n −1

]
, (2.4)

is a Minkowski metric, In is the identity matrix, and the superscript T stands for the transpose. In
terms of (u, ‖u‖) Eq. (2.3) becomes

UTgU = u · u− ‖u‖2 = ‖u‖2 − ‖u‖2 = 0, (2.5)

where the dot between two n–dimensional vectors denotes the Euclidean inner product. The cone
condition is thus the most natural constraint that we can impose on the dynamical system (2.2).
Consequently, we have a n+ 1–dimensional augmented system:

U′ = AU, (2.6)

with a constraint (2.3), where

A =

 0n×n
f(u, x)

‖u‖
fT (u, x)

‖u‖
0

 , (2.7)
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satisfying
ATg + gA = 0, (2.8)

is an element of the Lie algebra so(n, 1) of the proper orthochronous Lorentz group SO0(n, 1).
Although the dimension of the new system is increased, Liu [5] has developed a group preserving
scheme as follows to guarantee that each Uk can be located on the cone. The iteration proceeds as

Uk+1 = G(k)Uk, (2.9)

where Uk denotes the numerical value of U at the discrete xk, and G(k) ∈ SO0(n, 1) satisfies

GTgG = g, (2.10)

det G = 1, (2.11)

G0
0 > 0, (2.12)

where G0
0 > 0 is the 00th component of G.

With the integration of the Eq. (2.6) on interval [xk, xk+1], we obtain:

Uk+1 = exp

[∫ xk+1

xk

Adx

]
Uk ' exp [∆xA(k)]Uk. (2.13)

Since A(k) ∈ so(n, 1), then exp [∆xA(k)] ∈ SO0(n, 1). An exponential mapping of A(k) admits
the closed–form representation:

exp[∆xA(k)] =

In + (αk−1)
‖fk‖

2 fkf
T
k

βkfk

‖fk‖

βkf
T
k

‖fk‖
αk

 (2.14)

where

αk = cosh

(
∆x‖fk‖
‖uk‖

)
, (2.15)

βk = sinh

(
∆x‖fk‖
‖uk‖

)
. (2.16)

For notational convenience, we have used fk = f(uk, xk). Substituting the above exp[∆xA(k)] for
G(k) into Eq. (2.9) , we obtain

uk+1 = uk +
(αk − 1)fk.uk + βk‖uk‖‖fk‖

‖fk‖2
fk = uk + ηkfk, (2.17)

‖uk+1‖ =
βk(fk · uk) + ak‖uk‖‖fk‖

‖fk‖
. (2.18)

This scheme therefore preserves group properties for all ∆x > 0. In the practical numerical
calculation, we only need Eq. (2.17) such that by knowing the initial value u0 we can obtain
uk, k = 1, 2, 3, · · · .

Theorem 1. The cone condition is preserved by Eqs. (2.17) and (2.18) for every time increment.
Proof . According to Eq. (2.5), we must prove

uk+1 · uk+1 − ‖uk+1‖2 = 0. (2.19)
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From Eq. (2.17), we have

uk+1 ·uk+1 =

(
uk +

(αk − 1)fk.uk + βk‖uk‖‖fk‖
‖fk‖2

fk

)
·
(
uk +

(αk − 1)fk.uk + βk‖uk‖‖fk‖
‖fk‖2

fk

)
, (2.20)

after doing the above inner product and possible simplifications, we obtain

uk+1 · uk+1 =
(1 + β2

k) ‖uk‖2‖fk‖2 + (α2
k − 1) (fk · uk)2 + 2αkβk(fk · uk)‖uk‖‖fk‖

‖fk‖2
. (2.21)

Therefore, according to definition αk and βk from Eqs. (2.15) and (2.16) we obtain

uk+1 · uk+1 =
α2
k‖uk‖2‖fk‖2 + β2

k(fk · uk)2 + 2αkβk(fk · uk)‖uk‖‖fk‖
‖fk‖2

=

(
αk‖uk‖‖fk‖+ βk(fk · uk)

)2
‖fk‖2

=

‖uk+1‖2,
(2.22)

where the last equal is obtained from Eq. (2.18). Thus, the proof is finished. �
Theorem 2. Scheme (2.17), unconditionally preserves the fixed point and the property of the

original differential equation.
Proof . First, we prove ηk = η(xk) > 0 for each xk. From αk > 1, ∀∆x > 0 and −‖fk‖uk‖ ≤
fk · uk ≤ ‖fk‖uk‖, we can prove that

‖uk‖
‖fk‖

[
exp

(
∆x‖fk‖
‖uk‖

)
− 1

]
≥ ηk ≥

‖uk‖
‖fk‖

[
1− exp

(
−∆x‖fk‖
‖uk‖

)]
> 0, ∀∆x > 0. (2.23)

Therefore, it is obvious that
uk+1 = uk ⇐⇒ fk = 0. (2.24)

This means that uk is a fixed point of the discretized mapping (2.17) if and only if the point uk is an
equilibrium (critical, fixed) point of the system (2.1). We next investigate the property of the fixed
point. The Jacobian of the map (2.17) is

J :=
∂uk+1

∂uk
= In + fk

(
∂ηk
∂uk

)T
+ ηk

∂fk
∂uk

. (2.25)

At the fixed point fk = 0, we thus have

J = In + ηk
∂fk
∂uk

. (2.26)

Recalling that ηk > 0, the property of the fixed point is not altered by the map (2.17). More precisely,
the map (2.17) has the same type of stability that the system (2.1) has. �

According to the above two theorems, the long–term behavior of the original system can be
described very well by this numerical scheme.
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3. Combination of GPS and shooting method

In this section we combine the GPS with shooting method for solving nonlinear boundary value
problems. Consider the following nonlinear boundary value problem of order two (the same trend is
for higher order): {

u′′(x) = f(x, u(x), u′(x)), a ≤ x ≤ b,

u(a) = u0, u(b) = uf ,
(3.1)

where the initial value u0 and final value uf are known. Using the change of variables u(x) = u1(x)
and u′(x) = u2(x), we convert Eq. (3.1) to following vector form:{

u′(x) = f(x,u(x)),

u1(a) = u0, u1(b) = uf ,
(3.2)

where

u(x) =

[
u1(x)
u2(x)

]
, f =

[
u2(x)

f(x, u1(x), u2(x))

]
. (3.3)

Then, we transform boundary value problem (3.2) to following initial value problem:
u′(x) = f(x,u(x)),

u1(a) = u0,

u2(a) = α.

(3.4)

We will obtain α such that |uα1 (b) − uf | < ε which ε is a certain small value. For this purpose, for
a trial α, we solve initial value problem (3.4) by GPS from x = a to x = b and compare the end
value of uα1 (b) with the exact one u1(b) = uf . If |uα1 (b) − uf | is smaller than a given error tolerance
ε, then the process of finding α is finished. Otherwise, we need to calculate the end values of u1(b)
corresponding to different α1 < α and α2 > α, which are denoted by uα1

1 (b) and uα2
1 (b), respectively.

If (uα1
1 (b)−uf )(uα1 (b)−uf ) < 0, there exists one root between α1and α. otherwise, the root is located

between α and α2. Then, we apply the half-interval method to find a suitable α. We will continue
this process until find α such that |uα1 (b)− uf | < ε. In this process we require to calculate Eq. (3.4)
by GPS at each of the calculation until |uα1 (b)− uf | < ε.

4. Numerical results

In this section we present the numerical results of new method on several nonlinear boundary
value problems. Test problems 1, 2 and 3 have zero, one or two solutions according to value of param-
eters λ, m, φ and δ. The exact form solutions of this problems available. Comparison of numerical
results obtained of our method with exact solutions of test problems 1, 2 and 3, we can conclude:

� The new method predict all branches of solutions very good.

� The new method approximate all branches of solutions with high accuracy.

But, for test problems 4, 5 and 6 only has been proved existence of solutions and some features of this
solutions have also been reported. But, about the number of solutions and exact form of solutions
we do not have accurate information. From solving examples 4, 5 and 6 by our numerical method we
conclude:



A simple, efficient and accurate new Lie-group shooting method . . . 12 (2021) No. 1,761-781 767

� Numerical results obtained of our method have full agreement with the obtained analytical
results.

� In some cases numerical results gives us more information about branches of solutions of prob-
lem.

4.1. Test problem 1

The Bratu problem is a nonlinear BVP that is used as a benchmark problem to test the accuracy
of many numerical method [1, 2, 21, 33, 34]. The problem is given by{

u′′(x) + λeu(x) = 0, x ∈ [0, 1],

u(0) = u(1) = 0,
(4.1)

where λ > 0. The Bratu problem has an analytical solution given in the following form [34]:

u(x) = −2ln

[
cosh

(
(x− 1

2
) θ
2

)
cosh( θ

4
)

]
, (4.2)

where θ is the solution of θ =
√

2λcosh( θ
4
). The Bratu problem has zero, one or two solutions when

λ > λc, λ = λc or λ < λc respectively, where the critical value λc satisfies the equation

1 =
1

4

√
2λcsinh

(
θc
4

)
. (4.3)

It was evaluated that the critical value λc is given by λc = 3.513830719.
To apply the method, we firstly convert the boundary value problem (4.1) to equivalent initial value
problem 

u′′(x) + λeu(x) = 0, x ∈ [0, 1],

u(0) = 0,

u′(0) = α.

(4.4)

Then we obtain α such that |u(1) − 0| < ε by the numerical method in section 3. We fix ε = 10−12

(this show the numerical result matches very well to the right–boundary condition) and the step-size
∆x = 0.0001, and results have been given as follows for λ = 2, λ = λc = 3.513830719, λ = 4
and λ = 5. Figure (1) shows the Bratu equation has two solutions for λ = 2, unique solution for
λ = λc = 3.513830719 and no solution for λ = 4 and 5, which has full agreement with the analytical
concept of the critical value λc. Figure (2) shows exact and numerical dual solutions for λ = 2 and
exact and numerical unique solution for λ = λc = 3.513830719. In Figure (3) we can show absolute
error (in logarithmic scale) of dual solutions for λ = 2 for different ∆x. Also, in Table (1) we show
absolute error of unique solution for λ = λc = 3.513830719 for some different nodes. We show when
the step size becomes smaller, numerical solutions convergence to exact solutions.

4.2. Test problem 2

A nonlinear model of diffusion and reaction in porous catalysts has been investigated by approx-
imate analytical methods [1, 2, 35, 36, 37, 38]. In dimensionless variable the basic boundary value
problem reads, {

u′′(x)− ψ2um(x) = 0, x ∈ [0, 1],

u′(0) = 0, u(1) = 1.
(4.5)
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Figure 1: Plot of u(1) − 0 respect to α for λ = 2, λ = λc = 3.513830719 and λ = 4, 5 (respectively, from above left)
for test problem 1.

Figure 2: The comparison of numerical dual solutions of test problem 1 with the exact dual solutions for λ = 2 (left)
and comparison of numerical unique solution of test problem 1 with the exact unique solution for λ = λc = 3.513830719
(right).
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Figure 3: Absolute error (in logarithmic scale) of first branch (left) and second branch (right) for dual solutions of
test problem 1 with λ = 2 for various ∆x.

x ∆x = 0.01 ∆x = 0.001 ∆x = 0.0001 ∆x = 0.00001

0 0 0 0 0
0.1 1.72932× 10−3 1.79683× 10−4 2.04852× 10−5 1.4759× 10−6

0.2 1.88855× 10−3 1.98756× 10−4 2.47392× 10−5 2.72026× 10−6

0.3 2.50284× 10−4 1.86987× 10−5 4.92517× 10−6 3.54441× 10−7

0.4 5.76176× 10−3 5.87503× 10−4 5.07901× 10−5 3.68798× 10−6

0.5 1.58693× 10−2 1.62084× 10−3 1.53847× 10−4 2.90846× 10−5

0.6 2.49998× 10−2 2.47907× 10−3 2.39603× 10−4 1.80027× 10−5

0.7 2.59347× 10−2 2.54113× 10−3 2.46867× 10−4 1.02705× 10−5

0.8 2.06147× 10−2 2.01179× 10−3 1.95932× 10−4 5.14020× 10−5

0.9 1.14139× 10−2 1.11215× 10−3 1.08483× 10−4 1.86488× 10−5

1 2.69139× 10−13 3.35075× 10−13 6.46312× 10−13 2.59323× 10−13

Table 1: Comparison of unique numerical solution of test problem 1 with unique exact solution for λ = λc =
3.513830719, in different number of nodal points for various ∆x.

Magyari [36] have considered this model and given successfully exact analytical solutions in implicit
form for all values of parameters of the problem. For the reaction order m = −1, the problem
has dual solutions for 0 ≤ ψ < ψmax(m) = 0.765152, for ψ > ψmax(m) no solution exist, and for
ψ = ψmax(m) unique solution exists. In the range −1 < m < 0 of the reaction order, the problem
has unique solution for 0 ≤ ψ < ψ∗(m) and ψ = ψmax(m), two solutions for ψ∗(m) ≤ ψ < ψmax(m)
and for ψ > ψmax(m) no solution exist. For testing the numerical method we consider the problem
when the model takes m = −3

4
for reaction order and ψ = 0.2, 0.8, 0.9 and ψ = 1. In this case, it

was evaluated in [36] that the critical values ψ∗(m) and ψmax(m), are given by ψ∗(m) = 0.40 and
ψmax(m) = 0.839768. It has been shown that the problem admit the following solution for m = −3

4
,

x =
2
√

2c
7
8
0

35ψ

√(
u

c0

) 1
4

− 1

[
16 + 8

(
u

c0

) 1
4

+ 6

(
u

c0

) 1
2

+ 5

(
u

c0

) 3
4

]
, (4.6)

where if ψ = 0.8, c0 = 0.1836751649400644 for first branch of solutions and c0 = 0.533047876754385
for second branch of solutions. If ψ = 0.2, c0 = 0.9797428483877718 for unique solution.
For apply the numerical method we convert the boundary value problem (4.5) to following initial
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Figure 4: Plot of u(1)−1 for test problem 2 respect to α for m = − 3
4 and ψ = 0.8, ψ = 0.2 and ψ = 0.9, 1 (respectively,

from above left) for test problem 2.

value problem: 
u′′(x)− ψ2um(x) = 0, x ∈ [0, 1],

u(0) = α,

u′(0) = 0,

(4.7)

and obtain α such that u(1) = 1. We fix ε = 10−12 and the step-size ∆x = 0.0001 and results have
been given as follows. Figure (4) shows the reaction-diffusion model has two solutions for ψ = 0.8,
unique solution for ψ = 0.2 and no solution for ψ = 0.9, 1, which has full agreement with the
analytical concept of the critical value ψ∗(m) and ψmax(m) with reaction order m = −3

4
. Figure (5)

shows exact and numerical dual solutions for ψ = 0.8 and exact and numerical unique solution for
ψ = 0.2 . In Figure (6) we show absolute error (in logarithmic scale) of dual solutions for ψ = 0.8
and for different ∆x. Table (2) shows absolute error of unique solution for ψ = 0.2 and for some
different nodes. We can show when the step size becomes smaller, numerical solutions convergence
to exact solutions.

4.3. Test problem 3

Let us consider the following BVP [41]{
u′′(x) + 1

x
u′(x) = −δeu(x), x ∈ (0, 1),

u′(0) = 0, u(1) = 0.
(4.8)

This problem is of the Robin type and is singular at the zero point x = 0. The closed form solution
of (4.8) is

u(x) = ln
8ρ

δ(1 + ρx2)2
, (4.9)
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Figure 5: The comparison of numerical dual solutions of test problem 2 with the exact dual solutions for m = − 3
4

and ψ = 0.8 (left), numerical unique solution of test problem 2 with the exact unique solution for m = − 3
4 , ψ = 0.2

(right).

Figure 6: Absolute error (in logarithmic scale) of first branch (left) and second branch (right) for dual solutions of
test problem 2 with m = − 3

4 and ψ = 0.8 for various ∆x.
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x ∆x = 0.01 ∆x = 0.001 ∆x = 0.0001 ∆x = 0.00001

0 1.98852× 10−4 1.98753× 10−5 1.98743× 10−6 1.98741× 10−7

0.1 1.78521× 10−4 1.79683× 10−4 1.78410× 10−6 1.78408× 10−7

0.2 1.58171× 10−4 1.98756× 10−4 1.58061× 10−6 1.58059× 10−7

0.3 1.37846× 10−4 1.86987× 10−5 1.37740× 10−6 1.37738× 10−7

0.4 1.17592× 10−4 5.87503× 10−4 1.17493× 10−6 1.17491× 10−7

0.5 9.74529× 10−5 1.62084× 10−3 9.73636× 10−7 9.73619× 10−8

0.6 7.74731× 10−5 2.47907× 10−3 7.73964× 10−7 7.73948× 10−8

0.7 5.76959× 10−5 2.54113× 10−3 5.76344× 10−7 5.76330× 10−8

0.8 3.81637× 10−5 2.01179× 10−3 3.81202× 10−7 3.81189× 10−8

0.9 1.89182× 10−5 1.11215× 10−3 1.88953× 10−7 1.88942× 10−8

1 2.55795× 10−13 3.35075× 10−13 3.07754× 10−13 8.69749× 10−13

Table 2: Comparison of unique numerical solution of test problem 2 with unique exact solution for m = − 3
4 and

ψ = 0.2, in different number of nodal points for various ∆x.

where the integration constant ρ is determined by

8ρ

δ(1 + ρ)2
= 1. (4.10)

It can be seen that for a given δ in the range of 0 < δ < 2, two distinct real roots of ρ Eq. (4.10)
exist:

ρ =
4− δ − 2

√
2
√

2− δ
δ

,

ρ =
4− δ + 2

√
2
√

2− δ
δ

,

and correspondingly, there are two solutions for Eq. (4.8). For δ = 2, there is only one solution
corresponding to ρ = 1. This problem is singular in start point x = 0 and we can’t apply GPS and
thus our method. So, we consider t = −x and solve following problem instead of Eq. (4.8){

u′′(t)− 1
−tu

′(t) = −δeu(t), t ∈ (−1, 0),

u(−1) = 0, u′(0) = 0.
(4.11)

Now, we transform boundary value problem (4.11) to following initial problem:
u′′(t) + 1

t
u′(t) = −δeu(t), t ∈ (−1, 0),

u(−1) = 0,

u′(−1) = α,

(4.12)

and apply our method and obtain α such that |u′(0)− 0| < ε. If the target equation |u′(0)− 0| < ε is
satisfied then we obtain the numerical solution of Eq. (4.8) by merely mapping the solution into the
interval of 0 ≤ x ≤ 1. We fix ε = 10−12 and the step-size ∆x = 0.0001 and results have been given as
follows for δ = 1, 2, 3 and 4. Figure (7) shows Eq. (4.8) has two solutions for δ = 1, unique solution
for δ = 2 and no solution for δ = 3 and 4, which has full agreement with the analytical concept of
the critical value δ. Figure (8) shows exact and numerical dual solutions for δ = 1 and exact and
numerical unique solution for δ = 2. In Figure (9) we show absolute error (in logarithmic scale) of
dual solutions for δ = 1 and for different ∆x. Table (3) shows absolute error of unique solution for
δ = 2 and for some different nodes.
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Figure 7: Plot of u′(0)− 0 for test problem 3 respect to α for δ = 1, δ = 2 and δ = 3, 4 (respectively, from above left)
for test problem 3.

Figure 8: Comparison of numerical dual solutions of test problem 3 with exact dual solutions for δ = 1 (left), numerical
unique solution of test problem 3 with exact unique solution for δ = 2 (right).
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Figure 9: Absolute error (in logarithmic scale) of first branch (left) and second branch (right) for dual solutions of
test problem 3 with δ = 1 for various ∆x.

x ∆x = 0.01 ∆x = 0.001 ∆x = 0.0001 ∆x = 0.00001

0 1.31076× 10−1 3.77222× 10−2 1.15978× 10−2 3.63565× 10−3

0.1 1.26160× 10−1 3.67638× 10−2 1.13475× 10−2 3.56161× 10−3

0.2 1.16684× 10−1 3.44262× 10−2 1.06672× 10−2 3.35217× 10−3

0.3 1.03821× 10−1 3.09770× 10−2 9.63226× 10−3 3.03028× 10−3

0.4 8.87579× 10−2 2.67470× 10−2 8.34285× 10−3 2.62720× 10−3

0.5 7.26031× 10−2 2.20725× 10−2 6.90388× 10−3 2.17595× 10−3

0.6 5.62879× 10−2 1.72489× 10−2 5.40861× 10−3 1.70601× 10−3

0.7 4.05087× 10−2 1.25042× 10−2 3.92982× 10−3 1.24045× 10−3

0.8 2.57231× 10−2 7.99426× 10−3 2.51780× 10−3 7.95282× 10−4

0.9 1.21859× 10−2 3.81165× 10−3 1.20291× 10−3 3.80198× 10−4

1 0 0 0 0

Table 3: Comparison of unique numerical solution of test problem 3 with unique exact solution for δ = 2, in different
number of nodal points for various ∆x.

4.4. Test problem 4

We consider nonlinear three–point boundary value problem{
u′′(x) + 3

8
u(x) + 2

1089
(u′(x))2 + 1 = 0, x ∈ [0, 1],

u(0) = 0, u(1
3
) = u(1).

(4.13)

The uniqueness or multiplicity of solutions and the exact solutions are unknown, but the author in
[39] gives some information. [39] proves the existence of one concave positive solution u(x) such that
0 ≤ max0≤x≤1|u(x)| ≤ 4 and 0 ≤ max0≤x≤1|u′(x)| ≤ 33 and an iterative scheme for approximating
this solution has been given. To apply our method we convert boundary value problem (4.13) to
following initial value problem:

u′′(x) + 3
8
u(x) + 2

1089
(u′(x))2 + 1 = 0, x ∈ [0, 1],

u(0) = 0,

u′(0) = α,

(4.14)
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Figure 10: (Respectively, from above left, for test problem 4): plot of u( 1
3 )−u(1) respect to α, comparison of numerical

solution and u∗5(x) (the fifth iteration of approximated solution in [39]), and absolute error (in logarithmic scale) for
different ∆x.

and obtain α such that |u(1
3
)− u(1)| < ε by numerical method has been explained in section 3. For

this purpose, we fix ε = 10−12 and the step–size ∆x = 1
9999

and results have been given as follows .
Figure (10) shows the best α such that |u(1

3
)− u(1)| < ε and as you can see we find one appropriate

α with our method, which indicates this problem may has one solution. Comparison of solution
obtained of our method and u∗5(x) (the fifth iteration of approximated solution in [39]) and absolute
error (in logarithmic scale) for solution obtained of our method and u∗5(x), also can be seen in Figure
(10). Table (4) shows absolute error in some different nodes for various ∆x.

x ∆x = 1/99 ∆x = 1/999 ∆x = 1/9999 ∆x = 1/99999

0 0 0 0 0
1/9 9.50592× 10−4 9.49553× 10−5 9.90512× 10−6 1.40518× 10−6

2/9 1.72804× 10−3 1.72595× 10−4 1.80494× 10−5 2.60476× 10−6

1/3 2.29761× 10−3 2.29426× 10−4 2.40581× 10−5 3.53556× 10−6

4/9 2.61049× 10−3 2.60565× 10−4 2.74208× 10−5 4.12457× 10−6

5/9 2.61567× 10−3 2.61015× 10−4 2.76225× 10−5 4.30345× 10−6

2/3 2.35000× 10−3 2.34811× 10−4 2.50592× 10−5 4.10128× 10−6

7/9 2.06914× 10−3 2.07368× 10−4 2.22676× 10−5 3.76808× 10−6

8/9 2.03747× 10−3 2.04199× 10−4 2.17933× 10−5 3.56193× 10−6

1 2.29761× 10−3 2.29426× 10−4 2.40581× 10−5 3.53556× 10−6

Table 4: Comparison of numerical results for test problem 4 with u∗5(x) (the fifth iteration of approximated solution
in [39]), in different number of nodal points for various ∆x.
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4.5. Test problem 5

Consider the other three–point boundary value problem{
u′′(x) + f(x, u(x), u′(x)) = 0, 0 ≤ x ≤ 1,

u(0) = 0, 2u(1
3
) = u(1),

(4.15)

where

f (x, u(x), u′(x)) =

{
9
√
u(x), 0 ≤ u(x) ≤ 36,

180
√
u(x)− 35.91 36 ≤ u(x) < +∞.

This problem has been considered in [39] and the author proves the existence only two concave
positive solutions u1 and u2 such that 3

8
≤ max0≤x≤1|u1(x)| ≤ 36 and

299.97

2
≤ max0≤x≤1|u2(x)| ≤ 22535.91.

To apply numerical method we transform boundary value problem (4.15) to following initial value
problem: 

u′′(x) + f(x, u(x), u′(x)) = 0, 0 ≤ x ≤ 1,

u(0) = 0,

u′(0) = α.

(4.16)

Then, we obtain α such that |2u(1
3
) − u(1)| < ε. In Figure (11) we see the graph of 2u(1

3
) −

u(1) respect to α which shows the problem has three solutions corresponding to three roots α1 =
33.78607764710614, α2 = 59.00776348389991 and α3 = 13392.584868312042. The positive concave
solutions corresponding to these roots are given in Figure (12) and we can see 3

8
≤ max0≤x≤1|u1(x)| ≤

36 and 299.97
2
≤ max0≤x≤1|u3(x)| ≤ 22535.91 that Author in [39] shows the existence of two solutions

with this two properties. In fact we show the multiplicity of solutions of (4.15) and find a new branch
of solutions u2(x) such that 0 ≤ u2(x) < 40. So, results have full agreement with the obtained results
in [39] and in addition gives us more information about branches of solutions.
This problem no have closed–form of exact or approximate solutions, for this reason we obtain RMS
for residual error of this problem:√∑n−1

i=1 (u′′(xi)− f(xi, u(xi), u′(xi))
2

n− 1
, (4.17)

where the values of u(xi) calculated from our method. Also we approximate u′′(xi) with

(u′(xi+1)− u′(xi−1)) /2∆x,

such that u′(xi) obtained by our method. Table (5) shows the RMS of residual error for two branches
of solutions u1(x) and u2(x). We can show numerical results are good given that u1(x) and u2(x) are
rapidly increasing in small interval x ∈ [0, 1].

4.6. Test problem 6

We consider nonlinear third–order boundary value problem:{
u′′′(x) + 1

2

(
1 + 1

3
(u′′(x))2

) (
1 + 1

3
u2(x)

)
= 0, x ∈ [0, 1],

u(0) = u(1) = 0, u′′(0) = 0.
(4.18)
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Figure 11: Plot of 2u( 1
3 )− u(1) respect to α for test problem 5.

Figure 12: Plot of three branches of numerical solutions for test problem 5.
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The branches of solutions ∆x = 1/999 ∆x = 1/9999 ∆x = 1/99999

u1(x) 4.45682× 10−2 4.88086× 10−3 5.24924× 10−4

u2(x) 5.15212× 10−1 5.16273× 10−2 5.17044× 10−3

Table 5: The RMS of residual error for two branches of test problem 5 for various ∆x.

Figure 13: (Respectively, from above left, for test problem 6): plot of 2u( 1
3 ) − u(1) respect to α, comparison of

numerical solution with u∗5(x) (the fifth iteration of approximated solution in [40]), and absolute error (in logarithmic
scale) for different ∆x.

The uniqueness or multiplicity of solutions and the exact solutions are unknown, but the author in [40]
gives some information. [40] proves the existence of one concave positive solution u∗(x) ∈ C3[0, 1] such
that 0 ≤ u∗(x) ≤ 1 and −1 ≤ (u∗(x))′′ ≤ 0 for 0 ≤ x ≤ 1 and an iterative scheme for approximating
this solution has been given. To apply our method we convert boundary value problem (4.18) to
following initial value problem:

u′′′(x) + 1
2

(
1 + 1

3
(u′′(x))2

) (
1 + 1

3
u2(x)

)
= 0, x ∈ [0, 1],

u(0) = u′′(0) = 0,

u′(0) = α,

(4.19)

and obtain α such that |u(1) − 0| < ε. Figure (13) shows the best α such that |u(1) − 0| < 10−12,
comparison of solution obtained of our method and u∗5(x) (the fifth iteration of approximated solution
in [40]) and absolute error (in logarithmic scale) for solution obtained of our method and u∗5(x). For
this problem we find only one α such that |u(1)− 0| < 10−12, therefore this problem may has unique
solution. Table (6) shows absolute error in some different nodes for various ∆x.
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x ∆x = 0.01 ∆x = 0.001 ∆x = 0.0001 ∆x = 0.00001

0 0 0 0 0
0.1 1.92908× 10−5 1.82556× 10−6 1.81536× 10−7 1.81411× 10−8

0.2 5.47123× 10−5 5.38537× 10−6 5.37731× 10−7 5.37696× 10−8

0.3 1.41691× 10−4 1.39124× 10−5 1.38876× 10−6 1.38858× 10−7

0.4 2.14233× 10−4 2.10649× 10−5 2.10301× 10−6 2.10275× 10−7

0.5 2.63758× 10−4 2.59687× 10−5 2.59291× 10−6 2.59263× 10−7

0.6 2.85456× 10−4 2.81323× 10−5 2.80921× 10−6 2.80893× 10−7

0.7 2.74873× 10−4 2.71086× 10−5 2.70717× 10−6 2.70695× 10−7

0.8 2.27262× 10−4 2.24252× 10−5 2.23958× 10−6 2.23946× 10−7

0.9 1.37481× 10−4 1.35716× 10−5 1.35544× 10−6 1.35542× 10−7

1 4.59591× 10−13 7.58327× 10−13 7.92597× 10−13 7.22817× 10−13

Table 6: Comparison of numerical results for test problem 6 with u∗5(x) (the fifth iteration of approximated solution
in [40]), in different number of nodal points for various ∆x.

5. Conclusions

We introduce a practical algorithmic method for studying existence and multiplicity, and also
obtain numerical approximations of all branches of solutions for nonlinear boundary value problems,
which may be successful in cases where purely analytic methods have failed. Combination of two
useful and practical methods, group preserving scheme and shooting method provide us a powerful
method. The implementation of the proposed method is simple and speed computation and accuracy
are high. The method is implemented successfully for six examples of nonlinear second and third
order, two and three point boundary value problems. Interesting results presented in the examples
demonstrate the power of the method in searching for multiple solutions as well as the computational
efficiency of the method.
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